US3044123A - Pressed solid propellant pellets - Google Patents

Pressed solid propellant pellets Download PDF

Info

Publication number
US3044123A
US3044123A US803324A US80332459A US3044123A US 3044123 A US3044123 A US 3044123A US 803324 A US803324 A US 803324A US 80332459 A US80332459 A US 80332459A US 3044123 A US3044123 A US 3044123A
Authority
US
United States
Prior art keywords
pellet
ammonium nitrate
composition
propellant
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US803324A
Inventor
Richard F Grubangh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Priority to US803324A priority Critical patent/US3044123A/en
Application granted granted Critical
Publication of US3044123A publication Critical patent/US3044123A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/30Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with vegetable matter; with resin; with rubber
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0041Shaping the mixture by compression
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Definitions

  • the propellant composition in the form of pellets or tablets.
  • pellets may be cylindrical, egg-shaped, flat tablets or wafers (with or without perforations), etc.
  • These pellets are normally made by introducing into a mold cavity the necessary amount of propellant composition and applying an elevated pressure to the mold until the pellet of desired shape has been formed. This operation is normally carried out at ambient temperatures. guished for strength; they crumble easily to applied pressure and wafer type pellets are readily broken by finger pressure.
  • the objects of the instant invention are to produce an ammonium nitrate-base propellant pellet which does not suffer from these disabilities.
  • an ammonium nitrate-base propellant pellet prepared by the usual molding techniques is convertible to a strong, durable, compacted pellet by heat treatment thereof at a temperature from about 70 C. to 85 C. for a time between about 1 hour and 2 hours and subsequent cooling of the hot propellant to ambient temperatures. It is to be understood that the time of heat treatment is dependent upon the shape of the particular pellet; in the case of tablets or wafers, the thickness of the tablet has a bearing on the time of heat treatment.
  • the invention is particularly applicable to propellant compositions consisting of essentially between about 0.5 to weight percent of a catalyst for promoting combustion of ammonium nitrate, between about 10 and 40 weight percent of an oxidiza'ble organic binder material, hereinafter defined, for ammonium nitrate and the other components of the composition.
  • the pellet is formed from the composition by the application of pressure between about 3,000 p.s.i. and 8,000 p.s.i. for a short time between about 0.05 and 0.25 seconds.
  • the pellet is a wafer about 0.5 inch in diameter and about 0.2 inch thick the pellet is molded These pellets are not distinat a pressure of about 6,000 p.s.i.
  • a strong compressed propellant pellet is obtained by heat treating this particular molded pellet at a temperature of about 75 C.- 80 C. for a time of about l1.5 hour; greater strength is obtained when the heat treated pellet is cooledin a substantially dehumidified atmosphere.
  • dehumidified atmosphere applies to ordinary atmospheric air or similar gaseous material whose moisture content has been controlled to on the order of 40-50% at temperature on the order of 18-25 C.
  • the propellant pellets of the invention contain ammonium nitrate as the major component.
  • the ammonium nitrate may be either GP. or ordinary commercial ammonium nitrate such as is used for fertilizers. This commercial grade material contains a small amount of impurities and the particles are usually coated with moisture resisting material such as parafiin wax. Military grade ammonium nitrate which is almost chemically ppre is particularly suitable.
  • the ammonium nitrate is preferably in a finely divided particulate form which may be either produced by prilling or 'by grinding.
  • the ammonium nitrate is the major component of the propellant composition and usually the composition will contain between about 65 and of ammonium nitrate.
  • a matrix former or binder material is present.
  • ammonium nitrate decomposes free-oxyge'n is formed.
  • Advantage of the existence of this free-oxygen is taken and oxidizable organic materials are used as the binders.
  • the stoichiornetry of the composition is improved, with respect to smoke production by the use of oxygenated organic material as the binders.
  • the binder is usually present in an amount between about 10 and 40 weight percent of the propellant composition.
  • the multi-component binder or matrix former commonly consists of a polymeric base material and a plasticizer therefor.
  • Particularly suitable polymeric base materials are cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms such as cellulose acetate,
  • the polyvinyl resins such as polyvinylchloride and polyvinyl acetate are also good bases; acrylonitxile is good; styreneacrylonitrile is an example of a copolymer which forms a good base material.
  • the binder contains between about 15 and 45% of the particular polymeric base material.
  • the plasticizer component of the binder is broadly definedas an oxygenated hydrocarbon.
  • the hydrocarbon base may be aliphatic or aromatic or may contain both forms.
  • the oxygen may be present in the plasticizer in ether linkage and/or hydroxyl group and/or carboxyl groups; also the oxygen may be present in inorganic substituents particularly nitro groups.
  • any plasticizer which is suitable for work with the defined polymers may be used in the invention. Exemplary classes of plasticizers which are suitable are set out below.
  • Di-lower alkyl-phthalates e.g. dimethyl phthalate, dibutyl phthalate, dioctyl phthalate .and dimethyl nitrophthalate.
  • Nitrobenzene e.g. nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitroxylene, and nitrodiphenyl.
  • Nitrodiphenyl ethers e.g. nitrodiphenyl ether and 2,4-dinitrodiphenyl ether.
  • Tri-lower alkyl-citrates e.g. triethyl citrate, tributyl citrate and triamyl citrate.
  • Glycerol-lower alkanoates e.g. monoacetin, triacetin,
  • Lower alkylene-glycol-lower alkanoates wherein the glycol portion has a molecular weight below about 200 e.g. ethylene glycol diacetate, triethylene glycol dihexoate, triethylene glycol dioctoate, polyethylene glycol dioctate, dipropylene glycol diacetate, nitromethyl pro below about 200, e.g. diethylene glycol, polyethylene glycol (200), and tetrapropylene glycol.
  • Lower alkylene-glycol oxolates e.g. diethylene glycol oxolate and polyethylene glycol (200) oxolate.
  • Lower alkylene-glycol maleates e.g. ethylene glycol maleate and bis-(diethylene glycol monoethyl ether)maleate.
  • Lower alkylene-glycol diglycolates e.g. ethylene glycol diglycolate and diethylene glycol diglycolate.
  • Lower alkyl-phthalyl-lower alkyl-glycollate e.g. methyl phthalyl ethyl glycollate, ethyl phthalyl ethyl glycollate and butyl phthalyl butyl glycollate.
  • Di-lower alkyloxy-tetraglycol e.g., dimethoxy tetra glycol and dibutoxy tetra glycol.
  • Nitrophenyl ether of lower alkylene glycols e.g. dinitrophenyl ether of triethylene glycol and nitrophenyl ether of polypropylene glycol.
  • Nitrophenoxy alkanols wherein the alkanol portion is derived from a glycol having a molecular weight of not more than about 200. These may be pure compounds or admixed with major component bis(nitrophenoxy) alkane.
  • a single plasticizer may be used or more usually two or more plasticizers may be used in conjunction.
  • the particular requirements with respect to use will determine not only the polymer but also the particular plasticizer or combination of plasticizers which are used.
  • the gas generator propellant composition may contain other materials.
  • materials may be present to improve low temperature ignitability, for instance oximes may be present or, asphalt may be present.
  • Surfactants may be present in order to improve the coating of the nitrate with the binder and to improve the shape characteristics of the composition.
  • Various burning rate promoters which are not catalyst per se, may also be present.
  • the aromatic hydrocarbon amines are known to be gas evolution stabilization additives. Examples of these aromatic amines are toluene diamine, diphenyl amine, naphthalene diamine, and toluene triamine. In general the aromatic hydrocarbon amines are used in amounts between about 0.5 and 5 percent.
  • the mixture of ammonium nitrate, polymeric base and oxygenated hydrocarbon is essentially as insensitive to shock as is ammonium nitrate itself. It is extremely difficult to get this particular mixture to burn. Smooth burning is attained by the addition of a catalyst to the mixture.
  • This catalyst is distinguished from the well known sensitizers. For example, nitro starch or nitroglycerin may be added to ammonium nitrate in order to increase its sensitivity to shock and enable it to be more easily detonated for explosive use.
  • Catalysts as a class do not promote sensitivity and are used to cause the ammonium nitrate composition to burn for example, like a cigarette.)
  • the effectiveness of the catalyst is in general measured by its ability to impart a finite burning rate to a cylindrical strand of ammonium nitrate composition.
  • the burning rate is specified as inches per second at a given pressure and temperature; usually these burning rates are obtained by a bomb procedure operating at 1000 p.s.i. and about 75 F. temperature.
  • the inorganic chromium salts form the best known classes of catalysts.
  • the better known members of this class are ammonium chromate, ammonium polychromate, the alkali metal chromates and polychromates, chromic oxide, chromic nitrate, and copper chromite.
  • Ammonium dichromate is the most commonly used chromium salt.
  • Various hydrocarbon amine chromates such as ethylene diamine chromate and piperidine chromate are also excellent chromium catalysts.
  • Certain heavy metal cyanides particularly those of cobalt, copper, lead, nickel, silver and zinc are effective catalysts.
  • the cyanamides of barium, copper, lead, mercury and silver are effective catalysts.
  • the various Prussian blues are excellent catalysts.
  • organic catalysts are known.
  • the organic catalysts are particularly useful when it is desired to have combustion products which are gases or vapors and thereby do not erode gas exit orifices.
  • Catalysts which do not contain any metal components are triethanolamine, N- (hydroxyethyl)-morpholine, pyrogene blue (Color Index 956-961), hydrogen phthalocyanine and methylene blue.
  • Other suitable catalysts are the alkali metal barbiturates. alkali metal parabanates, alkali metal anthranilates and sodium glutamate.
  • combustion catalysts are present in amounts needed to give, within limits, the desired burning rates. While amounts from about 0.5 to as much as 15 weight percent may be present, in general amounts above about 8% do not boost the burning rate greatly. Usually the catalyst is present in amounts between about 2 and 5 weight percent.
  • Finely divided carbon such as carbon black present in amounts of several percent is effective alone as a catalyst, however, carbon is generally used in combination with another catalyst as a burning rate promoter.
  • Example For purposes of illustration the preparation of pellets suitable for use in a gas generator igniter is described.
  • the propellant compostiion consisted of an ammonium nitrate composition as follows: cellulose acetate 12%, acetyl triethyl citrate 9%, 9% of a 2:1 mixture of dinitrophenoxyethanol and bis(dinitrophenoxy)ethane, carbon black 4%, toluene diamine 1%, sodium barbiturate catalyst 3% and ammonium nitrate 62%.
  • the pellets (tablets) in this illustration were 0.5 inch in diameter and 0.18 inch thick.
  • pellets were prepared using a commercial tableting machine providing a mold pressure of approximately 6000 p.s.i.; the pressure was maintained on the composition in the mold for approximately 0.1 second.
  • the molding operation was carried out in a room whose temperature was held at about 20 C. and had a relative humidity of about 40%.
  • pellets as they came from the pelleting press, broke easily between the fingers and tended to crumble when handled with ordinary care.
  • Pellets were heat treated in an oven at a temperature of 75-80 C. Various heat treating times were used. It was observed that for these particular pellets times below 1 hour did not increase the strength of the pellets substantially over the strength of the non-heat treated pellets. At about 1.5 hours the strength of the pellets had leveled off and no significant improvement in strength was obtained by heating for more than 2 hours. It was also observed that there was some additional strength gained in a period of 18-24 hours holding at ambient temperature following the cooling of the pellet to ambient temperature.
  • a process for producing a propellant pellet which process comprises introducing into a mold cavity a predetermined amount of a propellent composition consisting essentially of between about 0.5 and 15 weight percent of a combustion catalyst, and between about 10 and 40,
  • oxidiza-ble organic binder material wherein said binder material consists of a polymeric base selected 'from the class consisting of cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms, polyvinylchloride, poly-vinyl acetate, acrylonitrile and styrene acrylonitrile, and an oxygenated hydrocarbon plasticizer therefor said plasticer containing said oxygen in chemical combination, and the remainder essentially only ammonium nitrate, applying to said composition in said mold cavity a pressure between about 3000 p.s.i. and 8000 p.s.i.
  • a process for producing a strong compressed propellant-pellet which process comprises inserting into a mold a predetermined amount of ammonium nitrate-base propellant composition consisting of ammonium nitrate,

Description

Bfi idJZB Patented July 17, 19%2 fine This invention relaies to pellets of ammonium nitratebase propellant and aprocess for the preparation thereof.
In the preparation of igniters or propulsion powders for large guns it is desirable to have the propellant composition in the form of pellets or tablets. These pellets may be cylindrical, egg-shaped, flat tablets or wafers (with or without perforations), etc. These pellets are normally made by introducing into a mold cavity the necessary amount of propellant composition and applying an elevated pressure to the mold until the pellet of desired shape has been formed. This operation is normally carried out at ambient temperatures. guished for strength; they crumble easily to applied pressure and wafer type pellets are readily broken by finger pressure.
For military purposes, particularly, it is desirable to have pellets which are strong enough to withstand fairly severe handling in transportation and other movement of the article housing the pellet. Also, it is a problem to handle these pellets in the subsequent manufacture of' igniters or propulsion powders without breakage or excess amount of scrap formation. The objects of the instant invention are to produce an ammonium nitrate-base propellant pellet which does not suffer from these disabilities.
It has been discovered that an ammonium nitrate-base propellant pellet prepared by the usual molding techniques is convertible to a strong, durable, compacted pellet by heat treatment thereof at a temperature from about 70 C. to 85 C. for a time between about 1 hour and 2 hours and subsequent cooling of the hot propellant to ambient temperatures. It is to be understood that the time of heat treatment is dependent upon the shape of the particular pellet; in the case of tablets or wafers, the thickness of the tablet has a bearing on the time of heat treatment.
The invention is particularly applicable to propellant compositions consisting of essentially between about 0.5 to weight percent of a catalyst for promoting combustion of ammonium nitrate, between about 10 and 40 weight percent of an oxidiza'ble organic binder material, hereinafter defined, for ammonium nitrate and the other components of the composition. The pellet is formed from the composition by the application of pressure between about 3,000 p.s.i. and 8,000 p.s.i. for a short time between about 0.05 and 0.25 seconds. In a particular embodiment wherein the pellet is a wafer about 0.5 inch in diameter and about 0.2 inch thick the pellet is molded These pellets are not distinat a pressure of about 6,000 p.s.i. with application of such pressure for a time of about 0.1 second. A strong compressed propellant pellet is obtained by heat treating this particular molded pellet at a temperature of about 75 C.- 80 C. for a time of about l1.5 hour; greater strength is obtained when the heat treated pellet is cooledin a substantially dehumidified atmosphere.
The term dehumidified atmosphere applies to ordinary atmospheric air or similar gaseous material whose moisture content has been controlled to on the order of 40-50% at temperature on the order of 18-25 C.
The propellant pellets of the invention contain ammonium nitrate as the major component. The ammonium nitrate may be either GP. or ordinary commercial ammonium nitrate such as is used for fertilizers. This commercial grade material contains a small amount of impurities and the particles are usually coated with moisture resisting material such as parafiin wax. Military grade ammonium nitrate which is almost chemically ppre is particularly suitable. The ammonium nitrate is preferably in a finely divided particulate form which may be either produced by prilling or 'by grinding. The ammonium nitrate is the major component of the propellant composition and usually the composition will contain between about 65 and of ammonium nitrate.
In order to permit the shaping of the ammonium nitrate composition to definite configurations a matrix former or binder material is present. When ammonium nitrate decomposes free-oxyge'n is formed. Advantage of the existence of this free-oxygen is taken and oxidizable organic materials are used as the binders. The stoichiornetry of the composition is improved, with respect to smoke production by the use of oxygenated organic material as the binders. The binder is usually present in an amount between about 10 and 40 weight percent of the propellant composition.
The multi-component binder or matrix former commonly consists of a polymeric base material and a plasticizer therefor. Particularly suitable polymeric base materials are cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms such as cellulose acetate,
cellulose acetate butyrate and cellulose propionate; the polyvinyl resins such as polyvinylchloride and polyvinyl acetate are also good bases; acrylonitxile is good; styreneacrylonitrile is an example of a copolymer which forms a good base material. In general the binder contains between about 15 and 45% of the particular polymeric base material.
The plasticizer component of the binder is broadly definedas an oxygenated hydrocarbon. The hydrocarbon base may be aliphatic or aromatic or may contain both forms. The oxygen may be present in the plasticizer in ether linkage and/or hydroxyl group and/or carboxyl groups; also the oxygen may be present in inorganic substituents particularly nitro groups. In general any plasticizer which is suitable for work with the defined polymers may be used in the invention. Exemplary classes of plasticizers which are suitable are set out below.
It is to be understood that these classes are illustrative only and do not limit the types of oxygenated hydrocarbons which may be used to plasticize the polymer.
Di-lower alkyl-phthalates, e.g. dimethyl phthalate, dibutyl phthalate, dioctyl phthalate .and dimethyl nitrophthalate.
Nitrobenzene, e.g. nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitroxylene, and nitrodiphenyl.
Nitrodiphenyl ethers, e.g. nitrodiphenyl ether and 2,4-dinitrodiphenyl ether.
Tri-lower alkyl-citrates, e.g. triethyl citrate, tributyl citrate and triamyl citrate.
Acyl tri-lower alkyl-citrates where the acyl group contains 2-4 carbon-atoms, e.g. acetyl triethyl citrate and acetyl tributyl citrate.
Glycerol-lower alkanoates, e.g. monoacetin, triacetin,
glycerol, tripropionate and glycerol tributyrate.
Lower alkylene-glycol-lower alkanoates wherein the glycol portion has a molecular weight below about 200, e.g. ethylene glycol diacetate, triethylene glycol dihexoate, triethylene glycol dioctoate, polyethylene glycol dioctate, dipropylene glycol diacetate, nitromethyl pro below about 200, e.g. diethylene glycol, polyethylene glycol (200), and tetrapropylene glycol.
Lower alkylene-glycol oxolates, e.g. diethylene glycol oxolate and polyethylene glycol (200) oxolate.
Lower alkylene-glycol maleates, e.g. ethylene glycol maleate and bis-(diethylene glycol monoethyl ether)maleate.
Lower alkylene-glycol diglycolates, e.g. ethylene glycol diglycolate and diethylene glycol diglycolate.
Miscellaneous diglycollates, e.g. dibutyl diglycollate, di-
methylalkyl diglycollate and methylcarbitol diglycollate.
Lower alkyl-phthalyl-lower alkyl-glycollate, e.g. methyl phthalyl ethyl glycollate, ethyl phthalyl ethyl glycollate and butyl phthalyl butyl glycollate.
Di-lower alkyloxy-tetraglycol, e.g., dimethoxy tetra glycol and dibutoxy tetra glycol.
Nitrophenyl ether of lower alkylene glycols, e.g. dinitrophenyl ether of triethylene glycol and nitrophenyl ether of polypropylene glycol.
Nitrophenoxy alkanols wherein the alkanol portion is derived from a glycol having a molecular weight of not more than about 200. These may be pure compounds or admixed with major component bis(nitrophenoxy) alkane.
A single plasticizer may be used or more usually two or more plasticizers may be used in conjunction. The particular requirements with respect to use will determine not only the polymer but also the particular plasticizer or combination of plasticizers which are used.
In addition to the basic components, i.e. ammonium nitrate binder and catalyst, the gas generator propellant composition may contain other materials. For example, materials may be present to improve low temperature ignitability, for instance oximes may be present or, asphalt may be present. Surfactants may be present in order to improve the coating of the nitrate with the binder and to improve the shape characteristics of the composition. Various burning rate promoters, which are not catalyst per se, may also be present.
The aromatic hydrocarbon amines are known to be gas evolution stabilization additives. Examples of these aromatic amines are toluene diamine, diphenyl amine, naphthalene diamine, and toluene triamine. In general the aromatic hydrocarbon amines are used in amounts between about 0.5 and 5 percent.
The mixture of ammonium nitrate, polymeric base and oxygenated hydrocarbon is essentially as insensitive to shock as is ammonium nitrate itself. It is extremely difficult to get this particular mixture to burn. Smooth burning is attained by the addition of a catalyst to the mixture. (This catalyst is distinguished from the well known sensitizers. For example, nitro starch or nitroglycerin may be added to ammonium nitrate in order to increase its sensitivity to shock and enable it to be more easily detonated for explosive use. Catalysts as a class do not promote sensitivity and are used to cause the ammonium nitrate composition to burn for example, like a cigarette.) The effectiveness of the catalyst is in general measured by its ability to impart a finite burning rate to a cylindrical strand of ammonium nitrate composition. The burning rate is specified as inches per second at a given pressure and temperature; usually these burning rates are obtained by a bomb procedure operating at 1000 p.s.i. and about 75 F. temperature.
Many catalysts which promote the burning of ammonium nitrate compositions are known. The inorganic chromium salts form the best known classes of catalysts. The better known members of this class are ammonium chromate, ammonium polychromate, the alkali metal chromates and polychromates, chromic oxide, chromic nitrate, and copper chromite. Ammonium dichromate is the most commonly used chromium salt. Various hydrocarbon amine chromates such as ethylene diamine chromate and piperidine chromate are also excellent chromium catalysts. Certain heavy metal cyanides particularly those of cobalt, copper, lead, nickel, silver and zinc are effective catalysts. The cyanamides of barium, copper, lead, mercury and silver are effective catalysts. The various Prussian blues are excellent catalysts.
In addition to the above primarily inorganic catalysts various organic catalysts are known. The organic catalysts are particularly useful when it is desired to have combustion products which are gases or vapors and thereby do not erode gas exit orifices. Catalysts which do not contain any metal components are triethanolamine, N- (hydroxyethyl)-morpholine, pyrogene blue (Color Index 956-961), hydrogen phthalocyanine and methylene blue. Other suitable catalysts are the alkali metal barbiturates. alkali metal parabanates, alkali metal anthranilates and sodium glutamate.
These combustion catalysts are present in amounts needed to give, within limits, the desired burning rates. While amounts from about 0.5 to as much as 15 weight percent may be present, in general amounts above about 8% do not boost the burning rate greatly. Usually the catalyst is present in amounts between about 2 and 5 weight percent.
Finely divided carbon such as carbon black present in amounts of several percent is effective alone as a catalyst, however, carbon is generally used in combination with another catalyst as a burning rate promoter.
Example For purposes of illustration the preparation of pellets suitable for use in a gas generator igniter is described. The propellant compostiion consisted of an ammonium nitrate composition as follows: cellulose acetate 12%, acetyl triethyl citrate 9%, 9% of a 2:1 mixture of dinitrophenoxyethanol and bis(dinitrophenoxy)ethane, carbon black 4%, toluene diamine 1%, sodium barbiturate catalyst 3% and ammonium nitrate 62%. The pellets (tablets) in this illustration were 0.5 inch in diameter and 0.18 inch thick.
These pellets were prepared using a commercial tableting machine providing a mold pressure of approximately 6000 p.s.i.; the pressure was maintained on the composition in the mold for approximately 0.1 second. The molding operation was carried out in a room whose temperature was held at about 20 C. and had a relative humidity of about 40%.
The pellets, as they came from the pelleting press, broke easily between the fingers and tended to crumble when handled with ordinary care.
Pellets were heat treated in an oven at a temperature of 75-80 C. Various heat treating times were used. It was observed that for these particular pellets times below 1 hour did not increase the strength of the pellets substantially over the strength of the non-heat treated pellets. At about 1.5 hours the strength of the pellets had leveled off and no significant improvement in strength was obtained by heating for more than 2 hours. It was also observed that there was some additional strength gained in a period of 18-24 hours holding at ambient temperature following the cooling of the pellet to ambient temperature.
It was also observed that the strength of the heat treated pellets was improved when the cooling to ambient temperature was carried out in a dehumidified atmosphere equivalent to about 40-50% relative humidity at about 20 C. temperature.
The heat treated pellets could not be broken by the finger pressure test and did not crumble even though handled fairly roughly in the subsequent manufacture of igniters for use in gas generator cartridges.
Thus having described the invention what is claimed is:
1. A process for producing a propellant pellet which process comprises introducing into a mold cavity a predetermined amount of a propellent composition consisting essentially of between about 0.5 and 15 weight percent of a combustion catalyst, and between about 10 and 40,
weight percent of oxidiza-ble organic binder material wherein said binder material consists of a polymeric base selected 'from the class consisting of cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms, polyvinylchloride, poly-vinyl acetate, acrylonitrile and styrene acrylonitrile, and an oxygenated hydrocarbon plasticizer therefor said plasticer containing said oxygen in chemical combination, and the remainder essentially only ammonium nitrate, applying to said composition in said mold cavity a pressure between about 3000 p.s.i. and 8000 p.s.i. for a time between about 0.05 and 0.25 second to form said composition into a pellet of the desired shape, removing said pellet from said mold, heat treating said pellet at a temperature from about 70 C. to 85 C. for a time between about 1 hour and 2 hours and cooling said hot pellet toambient temperature to obtain a strong compressed propellant pellet.
2. A process for producing a strong compressed propellant-pellet which process comprises inserting into a mold a predetermined amount of ammonium nitrate-base propellant composition consisting of ammonium nitrate,
62%; combustion catalyst, 3%; carbon black, 4%; toluene diamine, 1%; cellulose acetate, 12%; acetyl triethyl citrate, 9% and a 2:1 mixture of dinitrophenoxyethanol and bis (dinitrophenoxy) ethane, 9%; applying to said composition in said mold a pressure of about 6000 p.s.i. for a time of about 0.1 second to form a pellet about 0.5 inch in diameter and about 0.2 inch thick, removing said pellet from said mold, heat treating said pellet at a temperature of about 758() C. for about 11.5 hour, and cooling said heat treated pellet in a substantially dehumidified atmosphere to ambient temperature to obtain a strong compressed propellant pellet.
2,159,234 Taylor May 23, 1939 OTHER REFERENCES Jet Propulsion, Galcit, 1946, page 158. Scientific Library.)
(Copy in

Claims (1)

1. A PROCESS FOR PRODUCING A PROPELLANT PELLET WHICH PROCESS COMPRISES INTRODUCING INTO A MOLD CAVITY A PREDETERMINED AMOUNT OF A PROPELLENT COMPOSITION CONSISTING ESSENTIALLY OF BETWEEN ABOUT 0.5 AND 15 WEIGHT PERCENT OF A COMBUSTION CATALYST, AND BETWEEN ABOUT 10 AND 40 WEIGHT PERCENT OF OXIDIZABLE ORGANIC BINDER MATERIAL WHEREIN SAID BINDER MATERIAL CONSISTS OF A POLYMERIC BASE SELECTED FROM THE CLASS CONSISTING OF CELLULOSE ESTERS OF ALKANOIC ACIDS CONTAINING FROM 2 TO 4 CARBON ATOMS, POLYVINYLCHLORIDE, POLYVINYL ACETATE, ACRYLONITRILE AND STYRENEACRYLONITRILE, AND AN OXYGENATED HYDROCARBON PLASTICIZER THEREFOR SAID PLASTICER CONTAINING SAID OXYGEN IN CHEMICAL COMBINATION, AND THE REMAINDER ESSENTIALLY ONLY AMMONIUM NITRATE, APPLYING TO SAID COMPOSITION IN SAID MOLD CAVITY A PRESSURE BETWEEN ABOUT 3000 P.S.I. AND 800P.S.I., FOR A TIME BETWEEN ABOUT 0.05 AN D0.25 SECOND TO FORM SAID COMPOSTION INTO A PELLET OF THE DESIRED SHAPE, REMOVING SAID PELLET FROM SAID MOLD HEAT TREATING SAID PELLET AT A TEMPERATURE FROM ABOUT 70* C. TO 85* C. FOR A TIME BETWEEN ABOUT 1 HOUR AN D 2 HOURS AND COOLING SAID HOT PELLET TO AMBIENT TEMPERATURE TO OBTAIN A STRONG COMPRESSED PROPELLANT PELLET.
US803324A 1959-03-31 1959-03-31 Pressed solid propellant pellets Expired - Lifetime US3044123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US803324A US3044123A (en) 1959-03-31 1959-03-31 Pressed solid propellant pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US803324A US3044123A (en) 1959-03-31 1959-03-31 Pressed solid propellant pellets

Publications (1)

Publication Number Publication Date
US3044123A true US3044123A (en) 1962-07-17

Family

ID=25186235

Family Applications (1)

Application Number Title Priority Date Filing Date
US803324A Expired - Lifetime US3044123A (en) 1959-03-31 1959-03-31 Pressed solid propellant pellets

Country Status (1)

Country Link
US (1) US3044123A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154448A (en) * 1961-11-28 1964-10-27 Borden Co Dinitropolystyrene explosive composition
US3431151A (en) * 1967-02-23 1969-03-04 American Cyanamid Co Polyester resins
US5531941A (en) * 1993-08-04 1996-07-02 Automotive Systems Laboratory, Inc Process for preparing azide-free gas generant composition
US5641938A (en) * 1995-03-03 1997-06-24 Primex Technologies, Inc. Thermally stable gas generating composition
US5726382A (en) * 1995-03-31 1998-03-10 Atlantic Research Corporation Eutectic mixtures of ammonium nitrate and amino guanidine nitrate
US5783773A (en) * 1992-04-13 1998-07-21 Automotive Systems Laboratory Inc. Low-residue azide-free gas generant composition
US5866842A (en) * 1996-07-18 1999-02-02 Primex Technologies, Inc. Low temperature autoigniting propellant composition
US6045726A (en) * 1998-07-02 2000-04-04 Atlantic Research Corporation Fire suppressant
CN103086814A (en) * 2013-02-06 2013-05-08 郭洋 Gunpowder-containing powdery explosive and its preparation technology
US20140120229A1 (en) * 2012-11-01 2014-05-01 Xerox Corporation Printing 3d tempered chocolate
US10201467B2 (en) 2012-06-06 2019-02-12 Allen Medical Systems, Inc. Surgical accessory interface device
US11234449B2 (en) 2012-11-01 2022-02-01 Xerox Corporation Method of printing 3D tempered chocolate
US11412755B2 (en) 2014-02-28 2022-08-16 Xerox Corporation Method of printing chocolate structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2159234A (en) * 1935-03-11 1939-05-23 Ici Ltd Gas-producing nondetonating composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2159234A (en) * 1935-03-11 1939-05-23 Ici Ltd Gas-producing nondetonating composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154448A (en) * 1961-11-28 1964-10-27 Borden Co Dinitropolystyrene explosive composition
US3431151A (en) * 1967-02-23 1969-03-04 American Cyanamid Co Polyester resins
US5783773A (en) * 1992-04-13 1998-07-21 Automotive Systems Laboratory Inc. Low-residue azide-free gas generant composition
US5531941A (en) * 1993-08-04 1996-07-02 Automotive Systems Laboratory, Inc Process for preparing azide-free gas generant composition
US5641938A (en) * 1995-03-03 1997-06-24 Primex Technologies, Inc. Thermally stable gas generating composition
US5726382A (en) * 1995-03-31 1998-03-10 Atlantic Research Corporation Eutectic mixtures of ammonium nitrate and amino guanidine nitrate
US5866842A (en) * 1996-07-18 1999-02-02 Primex Technologies, Inc. Low temperature autoigniting propellant composition
US6045726A (en) * 1998-07-02 2000-04-04 Atlantic Research Corporation Fire suppressant
US10201467B2 (en) 2012-06-06 2019-02-12 Allen Medical Systems, Inc. Surgical accessory interface device
US20140120229A1 (en) * 2012-11-01 2014-05-01 Xerox Corporation Printing 3d tempered chocolate
US9185923B2 (en) * 2012-11-01 2015-11-17 Xerox Corporation Printing 3D tempered chocolate
US9924731B2 (en) 2012-11-01 2018-03-27 Xerox Corporation Printing 3D tempered chocolate
US11234449B2 (en) 2012-11-01 2022-02-01 Xerox Corporation Method of printing 3D tempered chocolate
CN103086814A (en) * 2013-02-06 2013-05-08 郭洋 Gunpowder-containing powdery explosive and its preparation technology
US11412755B2 (en) 2014-02-28 2022-08-16 Xerox Corporation Method of printing chocolate structures

Similar Documents

Publication Publication Date Title
US3044123A (en) Pressed solid propellant pellets
US3897285A (en) Pyrotechnic formulation with free oxygen consumption
CN109896913A (en) A kind of novel point gunpowder and preparation method thereof
US3006743A (en) Solid composite propellants containing decaborane
US3157127A (en) Solid propellant grain with cellulose acetate coating
US4094712A (en) Consolidated charges incorporating integral ignition compounds
US3732130A (en) Gun propellant containing nonenergetic plasticizer,nitrocellulose and triaminoguanidine nitrate
US3473982A (en) Nitrocellulose explosive containing a charcoal binder-oxidizer mixture
US3180772A (en) Ammonium nitrate propellant
US3017300A (en) Pelleted igniter composition and method of manufacturing same
US3067076A (en) Stabilized ammonium nitrate propellant
US2995430A (en) Composite propellant reinforced with
US3020180A (en) Stabilized ammonium nitrate propellant
US3188962A (en) Restricted propellant body
US3154449A (en) saucxuc acid
US3247035A (en) Ammonium nitrate propellants containing a nitro-aminocarboxy-alkali metal phenolate combustion catalyst
US3148096A (en) Ammonium nitrate gas generating composition with combustion catalyst
US3028810A (en) Propellent grain
US3056703A (en) Ammonium nitrate combustion catalyst
US3012508A (en) Shaped ammonium nitrate propellant grain
US3032449A (en) Coated solid rocket propellants with improved ignition characteristics
US3153603A (en) Ammonium nitrate combustion catalyst
US3026191A (en) Solid ammonium nitrate propellant containing alkali metal aminobenzoate combustion catalysts
US2942963A (en) Solid propellant combustion catalyst
US3132058A (en) Ammonium nitrate composition containing an alkali metal phthalocyanine combustion catalyst