US3055303A - Fuses operating optically in the vicinity of the target - Google Patents
Fuses operating optically in the vicinity of the target Download PDFInfo
- Publication number
- US3055303A US3055303A US634238A US63423857A US3055303A US 3055303 A US3055303 A US 3055303A US 634238 A US634238 A US 634238A US 63423857 A US63423857 A US 63423857A US 3055303 A US3055303 A US 3055303A
- Authority
- US
- United States
- Prior art keywords
- target
- frequency
- fuse
- modulation
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C13/00—Proximity fuzes; Fuzes for remote detonation
- F42C13/02—Proximity fuzes; Fuzes for remote detonation operated by intensity of light or similar radiation
- F42C13/023—Proximity fuzes; Fuzes for remote detonation operated by intensity of light or similar radiation using active distance measurement
Definitions
- Such fuses may operate by night, they may also include an arrangement for producing the desired radiation and this radiation reflected by the target is adapted to release the operation of the fuse.
- My invention has for its object to cut out these drawback and to obtain a suitable synchronization between the received waves and the transmitted waves, said synchronization being sufficient for it to be possible to obtain the desired result without perfect stability of the transmitted frequency being essential.
- This allows using for the modulation of the transmitted waves a simple mechanical arrangement actuated for instance by a mere blade propeller. Under such conditions, my invention consists in obtaining a constant selectivity for the reception to either side of the transmitting frequency, within a band of frequencies of a constant breadth, by resorting to a phase bridge.
- 1 designates a mechanical modulator surrounding a source of light 2 and driven by a windwheel 3; said modulator may be constituted for instance by a simple rotary screen cutting off periodically the beam of light at the frequency provided by the windwheel.
- This modulator 1 carries one or more poles of magnetic material 4 adapted to move in front of a permanent magnet 5 provided with a winding 6.
- the voltage induced in said winding is app-lied to the feeding of a phase bridge including for instance as well known per se a transformer of which the secondary 7 has been illustrated at 7 while its primary 14 is fed by an amplifier filter 13 operating on a broad band of frequencies and following the photocell 1'2.
- Said band of frequencies is defined so as to provide for the passage of only those frequencies which lie within the extreme possible variations of modulation.
- the phase bridge includes furthermore two dry rectifiers 8 and 8', two resistances 9 and 9' and two condensers 1e and 10' connected across the outer terminals of the rectifiers between the two wires 11 and 11, which release in the conventional manner the operation of the fuse at 15.
- Untimely parasitic optic signals may be produced for instance if the target is illuminated by a non-stable light or else if the cell sees, for instance, the visible portion of the objective alternatingly as a dark or as a light surface.
- these parasitic optic signals correspond generally to a frequency which is very different from the modulation frequency and the phase bridge produces then no signal or if it did produce a signal, as may occur for certain ratios between the frequencies involved, it would be necessary for said parasitic signals to last enough time for the time constant constituted by the association of the resistances 9-9 and of the capacities 1tl-10 to be loaded, which is obviously hardly probable.
- the parasitic signal will have been relieved of all the frequencies incorporated with it, which are not included within the passing band of the amplifier.
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, means for producing a mechanical modulation of said luminous beam roughly at a predetermined frequency, light sensitive means adapted to receive the modulated beam reflected back by the target and to transform it into an electric current of the same frequency as that of the beam modulation, means for transforming the mechanical frequency of the beam-modulating means into an electric current of equal frequency, a phase bridge adapted to superpose said two currents of equal frequencies to produce a unidirectional current and fuse-operating means controlled by said unidirectional current from the phase bridge.
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, means for producing a mechanical modulation of said luminous beam roughly at a predetermined frequency, light sensitive means adapted to receive the modulated beam reflected back by the target and to transform it into an electric current of the same frequency as that of the beam modulation, means for transforming the mechanical frequency of the beammodulating means into a second electric current of equal frequency, a phase bridge including two rectifying bridge arms each of said bridge arms connected to the other at one end to form a connecting point, the connecting point between which is adapted to be fed in opposition by the first-mentioned current, the other ends of said bridge arms forming output ends, two condensers connected in series across the output ends of said arms, resistances connected in series across the output ends of said arms and a diagonal branch-circuit fed by the second current and connecting the connection point between the rectifying arms with the connecting points between the condensers and resistances and fuse
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, means for producing a mechanical modulation of said luminous beam roughly at a. predetermined frequency, light sensitive means adapted to receive the modulated beam reflected back by the target and to transform it into an electric current of the same frequency as that of the beam modulation, electromagnetic means for transforming the mechanical frequency of the beam modulating means into an electric current of equal frequency, a phase bridge adapted to superpose said two currents of equal frequencies to produce a unidirectional current and fuse operating means controlled by said unidirectional current from the phase bridge.
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, a wind-wheel for producing a mechanical modulation of said luminous beam roughly at a predetermined frequency, light sensitive means adapted to receive the modulated beam reflected back by the target and to transform it into an electric current of the same frequency as that of the beam modulation, means for transforming the mechanical frequency of the beam-modulating means into a second electric current of equal frequency, a phase bridge adapted to superpose said two currents of equal frequencies to produce a unidirectional current and fuse operating means controlled by said unidirectional current from the phase bridge.
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, means for producing a mechanical modulation of said luminous beam roughly at a predetermined frequency, a photo-cell adapted to receive the modulated beam reflected back by the target, an amplifier fed by said photocell, a transformer fed by the photocell and the secondary of which produces an electric current of the same frequency as that of the beam modulation, means for transforming the mechanical frequency of the beam modulating means into a second electric current of equal frequency, a phase bridge adapted to superpose said two currents of equal frequencies to produce a unidirectional current and fuse operating means controlled by said unidirectional current from the phase bridge.
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, means for producing a mechanical modulation of said luminous beam roughly at a predetermined frequency, a photo-cell adapted to receive the modulated beam reflected back by the target, an amplifier fed by said photo-cell and forming a band pass filter allowing the passage of the range of frequencies corresponding to the rough frequency of the modulation, a transformer fed by said photo-cell and the secondary of which produces an electric current of the same frequency as that of the beam modulation, means for transforming the mechanical frequency of the beam-modulating means into a second electric current of equal frequency, a phase bridge adapted to superpose said two currents of equal frequencies to produce a unidirectional current and fuse operating means controlled by said unidirectional current from the phase bridge.
- a light-controlled fuse operating system comprising a source of light producing a luminous beam, a wind-wheel for producing a mechanical modulation of said luminous beam roughly at a predetermined frequency, a photo-cell adapted to receive the modulated beam reflected back by the target, an amplifier fed by said photo-cell, and forming a band pass filter allowing the passage of the range of frequencies corresponding to the rough frequency of modulation, a transformer fed by the photo-cell and the secondary of which produces an electric current of the same frequency as that of the beam modulation, electromagnetic means for transforming the mechanical frequency of the beam-modulating means into a second electric current of equal frequency, a phase bridge including two rectifying bridge arms each of said bridge arms connected to the other at one end to form a connecting point, the connecting point between which is adapted to be fed in opposition by the corresponding halves of the transformer secondary with the first-mentioned current, the two other ends of said bridge arms forming output ends,
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1141537T | 1956-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3055303A true US3055303A (en) | 1962-09-25 |
Family
ID=9642708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US634238A Expired - Lifetime US3055303A (en) | 1956-01-19 | 1957-01-15 | Fuses operating optically in the vicinity of the target |
Country Status (4)
Country | Link |
---|---|
US (1) | US3055303A (enrdf_load_stackoverflow) |
DE (1) | DE1066107B (enrdf_load_stackoverflow) |
FR (1) | FR1141537A (enrdf_load_stackoverflow) |
GB (1) | GB855073A (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3955507A (en) * | 1963-12-23 | 1976-05-11 | General Electric Company | Proximity fuse |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2804437C3 (de) * | 1978-02-02 | 1981-04-23 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Drallgeschoß-Annäherungszünder |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2137598A (en) * | 1935-04-02 | 1938-11-22 | Ericsson Telefon Ab L M | Artillery projectile |
US2234329A (en) * | 1939-09-29 | 1941-03-11 | Rca Corp | Distance determining device |
US2365580A (en) * | 1943-01-28 | 1944-12-19 | Westinghouse Electric & Mfg Co | Ceiling level monitor |
US2490899A (en) * | 1946-06-17 | 1949-12-13 | United Shoe Machinery Corp | Apparatus for determining the phase relation of sinusoidal electric signals |
US2506946A (en) * | 1946-09-17 | 1950-05-09 | Joseph B Walker | Indicator for the blind |
CH268889A (de) * | 1949-08-30 | 1950-06-15 | Patelhold Patentverwertung | Einrichtung zur Verminderung der Störempfindlichkeit eines Annäherungszünders. |
US2524807A (en) * | 1947-03-28 | 1950-10-10 | Heinz E Kallmann | Optical automatic range determining device |
US2632040A (en) * | 1952-05-01 | 1953-03-17 | Rabinow Jacob | Automatic headlight dimmer |
-
0
- DE DENDAT1066107D patent/DE1066107B/de active Pending
-
1956
- 1956-01-19 FR FR1141537D patent/FR1141537A/fr not_active Expired
-
1957
- 1957-01-15 US US634238A patent/US3055303A/en not_active Expired - Lifetime
- 1957-01-18 GB GB1961/57A patent/GB855073A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2137598A (en) * | 1935-04-02 | 1938-11-22 | Ericsson Telefon Ab L M | Artillery projectile |
US2234329A (en) * | 1939-09-29 | 1941-03-11 | Rca Corp | Distance determining device |
US2365580A (en) * | 1943-01-28 | 1944-12-19 | Westinghouse Electric & Mfg Co | Ceiling level monitor |
US2490899A (en) * | 1946-06-17 | 1949-12-13 | United Shoe Machinery Corp | Apparatus for determining the phase relation of sinusoidal electric signals |
US2506946A (en) * | 1946-09-17 | 1950-05-09 | Joseph B Walker | Indicator for the blind |
US2524807A (en) * | 1947-03-28 | 1950-10-10 | Heinz E Kallmann | Optical automatic range determining device |
CH268889A (de) * | 1949-08-30 | 1950-06-15 | Patelhold Patentverwertung | Einrichtung zur Verminderung der Störempfindlichkeit eines Annäherungszünders. |
US2632040A (en) * | 1952-05-01 | 1953-03-17 | Rabinow Jacob | Automatic headlight dimmer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3955507A (en) * | 1963-12-23 | 1976-05-11 | General Electric Company | Proximity fuse |
Also Published As
Publication number | Publication date |
---|---|
FR1141537A (fr) | 1957-09-03 |
DE1066107B (enrdf_load_stackoverflow) | |
GB855073A (en) | 1960-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES487141A1 (es) | Conexion digital de regulacion de fases con una conexion - auxiliar, especialmente para sintonizadores de aparatos de -television. | |
ES412164A1 (es) | Un sistema generador de corriente alterna. | |
GB484590A (en) | Improvements in radio direction finders and course indicating devices | |
US2203807A (en) | Radio beam system | |
US3055303A (en) | Fuses operating optically in the vicinity of the target | |
US2380929A (en) | Indicating system particularly for the measure of angles | |
US1936400A (en) | Method and means for signal to aircraft | |
US2572041A (en) | Selective azimuth signaling system | |
US2274546A (en) | Radio compass | |
GB878592A (en) | Improvements in or relating to radio direction-finding equipment | |
US4014003A (en) | Circuit for controlling a semi-conductor valve | |
US2476349A (en) | Phase or frequency modulation system | |
US2552511A (en) | Instrument landing system | |
GB1000229A (en) | Radio signal receivers | |
US2257594A (en) | Direct reading radio goniometer | |
US2534106A (en) | Servo mechanism | |
JPS56150733A (en) | Optical homodyne detecting and receiving device using semiconductor laser | |
US3051950A (en) | Arrangement in speaking radio beacons | |
GB1024242A (en) | Radio navigation system | |
GB1260670A (en) | Radio compass and means for controlling its motor | |
GB467095A (en) | An improved system for the electrical transmission of wave signals such as speech or television | |
JPS5459004A (en) | Fm stereo modulating system | |
GB991365A (en) | Radio direction finding system | |
SU664118A1 (ru) | След щий фазометр оптического диапазона | |
SU814840A1 (ru) | Устройство контрол перекоса опорКРАНА |