US3050954A - Moisture condenser - Google Patents

Moisture condenser Download PDF

Info

Publication number
US3050954A
US3050954A US27448A US2744860A US3050954A US 3050954 A US3050954 A US 3050954A US 27448 A US27448 A US 27448A US 2744860 A US2744860 A US 2744860A US 3050954 A US3050954 A US 3050954A
Authority
US
United States
Prior art keywords
fluid
chamber
moisture
coil
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US27448A
Inventor
Edwin H Royse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US27448A priority Critical patent/US3050954A/en
Application granted granted Critical
Publication of US3050954A publication Critical patent/US3050954A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

1962 E. H. ROYSE 3,050,954
MOISTURE CONDENSER Filed May a, 1960 s Sheets-Sheet 1 lNmvToR. Edwin H. Rayse BY W A TTORNEYS 1962 E. H. ROYSE 3,050,954
MOISTURE CONDENSER Filed May 6, 1960 3 Sheets-Sheet 2 Edwin H. ROyS6 Fig.6 BY QZM A TTORNEYS E. H. ROYSE MOISTURE CONDENSER Aug. 28, 1962 5 Sheets-Sheet 5 Filed May 6. 1960 m m m Edwin H. Royse ATTORNEYS Patented Aug. 28, 1962 3,050,954 MOISTURE CONDENSER Edwin H. Royse, 4740 Vicksburg, Dallas, Tex. Filed May 6, 1961 Ser. No. 27,448 9 Claims. (Ql. 62139) This invention relates to new and useful improvements in moisture condensers.
One object of the invention is to provide an improved moisture condenser for dehumidifying air or other fluid under pressure by refrigerating the fluid to condense the moisture therein and separating the condensed moisture from said fluid.
A particular object of the invention is to provide an improved moisture condenser having refrigerating means for dehumidifying compressed air or other fluid to condense the moisture therein for separation therefrom, the refrigerating means being of the latent ice type so as to eliminate the necessity of constantly supplying a refrigerant thereto.
An important object of the invention is to provide an improved moisture condenser for dehumidifying compressed air or other fluid having a sealed chamber containing a liquid and means immersed in the liquid for conducting the air or fluid in heat exchange relation to a refrigerant, the chamber communicating with a pressureresponsive switch which controls the supply of refrigerant whereby the switch is actuated by the variations in pressure of said liquid created by the formation and melting of ice on the heat exchange means.
Another object of the invention is to provide an improved moisture condenser, of the character described, wherein the heat exchange means includes nested coils for conducting the fluid and refrigerant in contiguous relationship and surrounding an inner chamber into which the condensed fluid is discharged and in which said fluid is whirled to separate the condensed moisture therefrom.
A further object of the invention is to provide an improved moisture condenser, of the character described, wherein the fluid conducting coil has its upstream end portion spaced from the refrigerant coil whereby the fluid is pre-cooled by the liquid.
An object of the invention is to provide an improved moisture condenser, of the character described, which is cap-able of being utilized to cool water and other liquids as well as fluids.
A construction designed to carry out the invention will be hereinafter described, together with other features of the invention.
The invention will be more readily understood from a reading of the following specification and by reference to the accompanying drawings, wherein examples of the invention are shown, and wherein:
FIG. 1 is a side elevational view, partly in section, of a moisture condenser constructed in accordance with the invention and connected to a refrigerant compressor,
FIG. 2 is a transverse, vertical, sectional view of the moisture condenser,
FIG. 3 is an enlarged, cross-sectional view, showing the formation of ice on the refrigerant coils of the heat exchanger,
FIG. 4 is an enlarged, plan view, partly in section, of the condenser,
FIG. 5 is a horizontal, cross-sectional View, taken on the line 5-5 of FIG. 2,
FIG. 6 is an enlarged, detailed view of the pressureresponsive switch,
FIG. 7 is a transverse, vertical, sectional view, taken on the line 77 of FIG. 5,
FIG. 8 is a transverse, vertical, sectional view of a modified moisture condenser,
FIG. 9 is a transverse, vertical, sectional view of the separator with a portion of the fluid coil connected thereto, and
FIG. 10 is a horizontal, cross-sectional view, taken on the line 10-10 of FIG. 9.
In the drawings, the numeral 10 designates a moisture condenser having refrigerant inlet and outlet conductors 11 and 12 connected to a compressor 13 which is driven by a motor 14 in the usual manner. A conventional expansion valve 15 and condenser 15 are mounted in the inlet conductor .11, and electrical lead Wires 16 connect the motor 14 to a source of electrical energy (not shown). For controlling operation of the motor, a pressure-responsive switch 17 is connected in one of the lead wires 16 and communicates with the condenser 10 through a conductor 18. As shown in FIGS. 2 and 4, the condenser includes an upright cylindrical casing or housing '19 having continuous side, top and bottom walls 20, 21 and 22 which are joined to each other to provide a hermetically sealed chamber 23. A complementary casing or housing 24, of greater diameter and length, concentrically surrounds the housing 19 and is hermetically sealed by having continuous side, top and bottom walls 25, 26 and 27 of a fiber reinforced plastic material bonded together. Insulation material 28, such as glass fibers, fills the space between the Walls of the housing 19 and casing 24 whereby the chamber 23 is isolated from external temperatures as well as moistures.
The conductors 11, 12 and 18 as well as a fluid outlet conductor 29 extend through the side wall 25 of the casing and the top wall 21 of the housing, while a fluid inlet conductor 30 from a compressor or other pressure source (not shown) and a liquid drain conductor 31 extend through said side wall and the bottom wall 22 of said housing. A suitable valve 32, which may be of the float type, is mounted in the drain conductor 31 and is adapted to be opened periodically. The chamber 23 is filled with a suitable liquid, such as distilled water or an eutectic solution, after substantially all air has been evacuated therefrom. A small quantity or bubble of air is retained in the chamber, as shown by the numeral 33 in FIG. 2, so as to provide a greater pressure differential for actuating the switch 17.
A heat exchanger 34 is disposed within the chamber 23 and includes an outer helical coil 35 communicating and extending upwardly from the fluid inlet conductor 30 to the upper end of said chamber. The upper end of the coil 35 communicates with an inner helical coil 36 which extends downwardly in the chamber and terminates above its lower end. Between and contiguous the convolutions of the inner fluid coil 36, an outer refrigerant coil 37 extends helically downward from the refrigerant inlet conductor 11 and has its lower end communicating with an inner helical coil 38 which extends upwardly within said inner fluid coil and which may be of reduced diameter as shown. The upper end of the inner refrigerant coil 38 communicates with the refrigerant outlet conductor 12, and all of the coils are concentric relative to the chamber and one another. A plurality of upright tubular rods or tubes 39 extend longitudinally of the chamber 23 and are secured to the top and bottom walls 21 and 22 of the housing 19 as well as to the inner fluid coil 36 and outer refrigerant coil 37 to support the heat exchanger 34 and maintain its coils in spaced relationship. It is noted that the outer fluid coil 35 is disposed externally of the tubes 39 adjacent the housing side wall 20.
A separator 40 is disposed concentrically within the inner refrigerant coil 38 and includes an upright tubular body 41 having reduced or domed ends 42 which terminate in axial nipples 43 for receiving the inner ends of the conductors 29 and '30. Preferably, the coil 38 is wound around and in close proximity to the separator. As shown by the numeral 44 in FIG. 7, the inner end of the fluid outlet conductor depends through the upper nipple 43 so as to project an appreciable distance into the interior 45 of the separator 40 which functions as a cylindrical separating chamber. The lower end of the inner fluid coil 36 communicates with the lower portion of the separating chamber 45, preferably, having its inlet 46 at a tangent to said chamber (FIGS. 5 and 7) to impart a whirling movement to the fluid. It is noted that the separating chamber is of much larger area than the crosssectional area of the fluid coil.
Primarily, the condenser '10 is adapted to dehumify compressed air, gasses or other fluids under pressure by refrigerating the fluid so as to condense the moisture therein. Due to the refrigerant coils 37 and 38, the liquid in the chamber 23 of the housing 19 is chilled and serves as a heat exchange medium for pre-cooling the fluid as it flows through the outer coil 35. The principal cooling of the air occurs in the inner coil 36 which is in close proximity 'to the outer coil 37 and adjacent the inner coil 38. Upon reaching the separator 40, the velocity of the cooled fluid is reduced and said fluid whirls around the chamber 45 in an upward spiral movement until it enters the lower end 44 of the outlet conductor 29. As the fluid travels upwardly, the moisture accumulates in droplets which cling to the wall of the chamber and gravitate toward the bottom thereof. Entrainment of moisture in the escaping fluid is reduced to a minimum due to said fluid being forced to leave the wall of the chamber in order to enter the depending end 44 of the conductor 29. Periodically, the valve 32 is opened to drain the accumulated moisture from the chamber, it being noted that said valve is normally closed to prevent escape of fluid through the drain conductor 31. Since the inner refrigerant coil 38 closely surrounds the separator, its chamber is cooled so as to further cool the fluid and condense additional moisture. By eliminating one of the conductors 29 and 31, the condenser could be employed to cool water or other liquids.
As shown by the letter I in FIG. 3, ice is adapted to accumulate around the refrigerant coils and the ice around the outer coil 37 contacts and partially encases the inner fluid coil 36. Although not shown, the ice around the inner coil 38 contacts and partially encases the separator 40 due to its close proximity. In addition to chilling the fluid, the ice refrigerates the liquid in the chamber 23 and maintains it at a low temperature for pre-cooling said fluid. Due to this accumulation of ice, the refrigerating capacity of the condenser is increased without requiring frequent operation of the compressor 13. The amount of ice allowed to accumulate is controlled by the pressure-responsive switch 17 which includes a housing 47 having the conductor 18 extending thereinto (FIG. 6). A bellows or pressure-responsive member 48, mounted in the housing 47, communicates with the conductor and has an axial element or projection 49 extending therefrom. The projection 49 bears against a pivoted switch arm 50 which carries a contact 51 for engagement with a stationary contact 52, the contacts being connected in one of the wires 16. A spring 53 is provided for urging the arm 50 counter-clockwise to hold the contacts 51 and 52 engaged and the circuit to the motor 14 closed for operating the compressor 13. When a predetermined quantity of ice accumulates on the refrigerant coils, the pressure of the liquid in the chamber 23 increases sufficiently to overcome the force of the spring 53 and expand or elongate the bellows 48. The movement of the projection 49 with the bellows causes clockwise pivoting of the switch arm 50 and disengagement of its contact 51 with the contact 52, whereby the circuit to the motor is broken to stop operation of the compressor. Until a predetermined amount of ice melts, the pressure of the liquid holds the switch 17 open to prevent operation of the compressor. Upon suflicient decrease in pressure, the contacts are re-engaged. Although the pressure-responsive switch permits most accurate control of the formation and melting of ice, the bellows 48 is more sensitive to slight variations in pressure when the air bubble 33 is utilized to create a greater pressure difierential. Since the switch is actuated by the pressure of the liquid, it is unnecessary to have any portion thereof or any operating means in contact with the ice. As a result, the thickness of the ice may be maintained within rather fine limits for more eflicient operation.
A slightly modified moisture condenser is shown in FIGS. 8-10 and includes a housing 61, substantially identical to the housing 19, which is adapted to be mounted in the insulated casing 24 and have the conductors 11, 12, 18, 29, 30 and 31 extending thereinto. The interior or chamber 62 of the housing 61 is substantially filled with the same liquid except for a small air bubble 63 and a heat exchanger 64 is immersed in the liquid. For clarity of illustration, the rods or tubes for supporting the heat exchanger are not shown. The heat exchanger 64 includes helical coils 65 and 66 communicating with and extending upwardly from the fluid inlet conductor 30. An outer helical coil 67 extends downwardly from the refrigerant inlet conductor 11 and communicates with an upwardly extending inner helical coil 68 which is connected to the refrigerant outlet conductor 12. The refrigerant coils 67 and 63 are substantially identical to the coils 37 and 38, with the convolutions of said coil 67 being disposed between the convolutions of the fluid coil 66 in the same manner as the coils 36 and 37. Instead of being outwardly disposed like the coil 35, the convolutions of the fluid coil 65 are of substantially the same diameter as the convolutions of the coils 66 and 67 and said coil .65 is positioned adjacent the bottom of the chamber 62 below and in spaced relation to said coils 66 and 67 for pre-cooling the fluid. Since the fluid coil 66 extends upwardly rather than downwardly, its downstream end is adjacent the top of the chamber for com municating with the upper portion of a modified separator 69 through a tangential inlet 76.
The separator 69 is similar to the separator 4% and includes an upright tubular body 71 having similar domed ends 72 and nipples 73 for receiving the fluid outlet and drain conductors 29 and 31 (FIG. 9). An external peripheral lip 74 is provided on the lower end of the conductor 29 which extends an appreciable distance into the interior or chamber 75 of the separator below the tangential inlet 7t). The lip 74 is formed by enlarging or flaring the lower end of the conductor outwardly and is adapted to coact with a conical hood or skirt 76 which depends from said conductor in concentric, spaced relationship and which extends slightly below said lip. Due to the tangential inlet being in the upper portion of the chamber 75, the fluid is whirled downwardly in a spiral path to impart downward movement to the condensed moisture. In addition to clinging to the wall of the chamber, the moisture tends to cling to the lower end portion of the conductor, but is prevented from entering said conductor :by the hood 76 which deflects said moisture outwardly away from the lip 74. Any moisture which collects on the hood drips therefrom and accumulates in the bottom of the chamber, with the moisture which runs down the wall of said chamber, for periodic removal through the drain conduct-or 31. The flared lip assists in deflecting or directing the moisture outwardly. As shown in FIG. 8, the separator 69 is spaced above the bottom of the housing 61 and the fluid coil 65 in the lower portion of the chamber 62, and the inner refrigerant coil 68 is wound therearound so as to be contiguous thereto as Well as adjacent the fluid coil 66. Although the condensers function in the same manner, the modified condenser 60 is more eflicient due to the downward flow of the fluid in its separating chamber 75 which encourages the dropping out of condensed moisture.
The foregoing description of the invention is explanatory thereof and various changes in the size, shape and materials, as well as in the details of the illustrated construction may be made, within the scope of the appended claims, without departing from the spirit of the invention.
What I claim and desire to secure by Letters Patent is:
1. A moisture condenser for dehumidifying fluids under pressure including a sealed housing containing a cooling liquid, a heat exchanger immersed in the liquid and having coils for circulating a refrigerant and a fluid in heat exchange relationship to condense moisture in the fluid, a separator immersed in the liquid and having a chamber communicating with the fluid coil of the heat exchanger to receive the fiuid therefrom, the chamber being of larger area than said fluid coil whereby the velocity of the fluid is reduced to permit the dropping out of condensed moisture in said chamber, outlet means for conducting the dehumidifled fluid from said chamber, and means for draining the condensed moisture from said chamber.
2. A moisture condenser as set forth in claim 1 wherein the coils of the heat exchanger helically surround the separator to cool the same and condense moisture in its chamber.
3. A moisture condenser as set forth in claim 1 wherein the upstream portion of the fluid coil is spaced from the refrigerant coil of the heat exchanger whereby the fluid is pre-cooled by the liquid.
4. A moisture condenser as set forth in claim 1 wherein the chamber of the separator has a tangential inlet for imparting whirling movement to the fluid.
5. A moisture condenser as set forth in claim 4 wherein the outlet means is at the upper portion of the chamher, the tangential inlet being at the lower portion of said chamber whereby the fluid is whirled upwardly toward said outlet means,
6. A moisture condenser as set forth in claim 1 Wherein the outlet means includes a conductor depending into the upper portion of the chamber of the separator, the tangential inlet being at the upper portion of said chamher for whirling the fluid downwardly therein, and hood means surrounding the depending conductor to deflect moisture therefrom.
7. A moisture condenser as set forth in claim 1 including refrigerant supply means communicating With the refrigerant coil of the :heat exchanger to freeze the liquid in the sealed housing around said coil, and pressure-responsive means controlling the operation of the supply means to regulate the amount of frozen liquid, the pressure-responsive means having an actuating member communicating with the housing so as to be responsive to variations in the pressure of the liquid.
8. A moisture condenser as set forth in claim 7 wherein the housing is substantially filled with liquid, 2. small quantity of air being retained in said housing to increase the pressure diflerential for actuating the pressure-responsive means.
9. A moisture condenser for dehumidifying gaseous fluids including a sealed housing filled with a cooling liquid, a separator immersed in the liquid and having an upright cylindrical chamber, a heat exchanger immersed in the liquid and having upright helical coils surrounding the separator for circulating a refrigerant and a gaseous fluid in heat exchange relationship to condense moisture in the fluid, the chamber having a tangential inlet communicating with the fluid coil to receive fluid therefrom and impart whirling movement thereto for separating condensed moisture therefrom, outlet means for conducting dehumidifled fluid from said chamber, and means for removing the condensed moisture from said chamber.
References Cited in the file of this patent UNITED STATES PATENTS 1,809,642 Sperry June 9, 1931 2,000,467 Lindseth May 7, 1935 2,187,258 Wood Jan. 16, 1940 2,724,950 Rothwell Nov. 29, 1955 2,856,760 Walter Oct. 21, 1958
US27448A 1960-05-06 1960-05-06 Moisture condenser Expired - Lifetime US3050954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US27448A US3050954A (en) 1960-05-06 1960-05-06 Moisture condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27448A US3050954A (en) 1960-05-06 1960-05-06 Moisture condenser

Publications (1)

Publication Number Publication Date
US3050954A true US3050954A (en) 1962-08-28

Family

ID=21837807

Family Applications (1)

Application Number Title Priority Date Filing Date
US27448A Expired - Lifetime US3050954A (en) 1960-05-06 1960-05-06 Moisture condenser

Country Status (1)

Country Link
US (1) US3050954A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112052A (en) * 1962-07-16 1963-11-26 Winston Res Corp Magnetic tape control system
US3213937A (en) * 1962-11-01 1965-10-26 Asea Ab Dehumidifying device
US3596474A (en) * 1968-12-18 1971-08-03 Kellogg American Inc Gas-handling apparatus and method
US3861165A (en) * 1972-10-02 1975-01-21 Itsuro Hirano Dehumidification of air
US3910062A (en) * 1974-08-07 1975-10-07 Francisco Rojas Dehumidifier
EP0230940A2 (en) * 1986-01-22 1987-08-05 Pressluft-Frantz GmbH Air compressor provided with a dehumidification device
US4715871A (en) * 1984-07-26 1987-12-29 Eiichi Uratani Dehumidifier for a compressed gas
US4787444A (en) * 1983-12-19 1988-11-29 Countryman James H Heating and cooling system
US4913711A (en) * 1982-07-16 1990-04-03 Foster Wheeler Energy Corporation Spiral coil cool wall construction for high temperature cylindrical furnaces, vessels, cyclones, etc.
EP1081445A2 (en) * 1999-08-31 2001-03-07 O.M.I. Srl Drying plant for compressed air
US20050066668A1 (en) * 2003-09-26 2005-03-31 Flair Corporation Refrigeration-type dryer apparatus and method
US20180099852A1 (en) * 2016-10-11 2018-04-12 Diqing Qiu Double Cooled Draft Beer Machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1809642A (en) * 1929-09-18 1931-06-09 Mechanical Devices Company Pressure actuated electric switch
US2000467A (en) * 1931-09-09 1935-05-07 Lindseth Theodore Cooling, freezing and heating apparatus
US2187258A (en) * 1936-08-31 1940-01-16 Penn Electric Switch Co Controller
US2724950A (en) * 1952-05-03 1955-11-29 Penn Controls Ice bank control
US2856760A (en) * 1955-11-07 1958-10-21 Leo N Walter Refrigeration apparatus for air cooling systems and the like

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1809642A (en) * 1929-09-18 1931-06-09 Mechanical Devices Company Pressure actuated electric switch
US2000467A (en) * 1931-09-09 1935-05-07 Lindseth Theodore Cooling, freezing and heating apparatus
US2187258A (en) * 1936-08-31 1940-01-16 Penn Electric Switch Co Controller
US2724950A (en) * 1952-05-03 1955-11-29 Penn Controls Ice bank control
US2856760A (en) * 1955-11-07 1958-10-21 Leo N Walter Refrigeration apparatus for air cooling systems and the like

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3112052A (en) * 1962-07-16 1963-11-26 Winston Res Corp Magnetic tape control system
US3213937A (en) * 1962-11-01 1965-10-26 Asea Ab Dehumidifying device
US3596474A (en) * 1968-12-18 1971-08-03 Kellogg American Inc Gas-handling apparatus and method
US3861165A (en) * 1972-10-02 1975-01-21 Itsuro Hirano Dehumidification of air
US3910062A (en) * 1974-08-07 1975-10-07 Francisco Rojas Dehumidifier
US4913711A (en) * 1982-07-16 1990-04-03 Foster Wheeler Energy Corporation Spiral coil cool wall construction for high temperature cylindrical furnaces, vessels, cyclones, etc.
US4787444A (en) * 1983-12-19 1988-11-29 Countryman James H Heating and cooling system
US4715871A (en) * 1984-07-26 1987-12-29 Eiichi Uratani Dehumidifier for a compressed gas
EP0230940A3 (en) * 1986-01-22 1987-10-14 Pressluft-Frantz GmbH Air compressor provided with a dehumidification device
EP0230940A2 (en) * 1986-01-22 1987-08-05 Pressluft-Frantz GmbH Air compressor provided with a dehumidification device
EP1081445A2 (en) * 1999-08-31 2001-03-07 O.M.I. Srl Drying plant for compressed air
EP1081445A3 (en) * 1999-08-31 2001-11-14 O.M.I. Srl Drying plant for compressed air
US20050066668A1 (en) * 2003-09-26 2005-03-31 Flair Corporation Refrigeration-type dryer apparatus and method
WO2005031225A1 (en) * 2003-09-26 2005-04-07 Flair Corporation Refrigeration-type dryer apparatus and method
US20180099852A1 (en) * 2016-10-11 2018-04-12 Diqing Qiu Double Cooled Draft Beer Machine
US10472222B2 (en) * 2016-10-11 2019-11-12 Diqing Qiu Double cooled draft beer machine

Similar Documents

Publication Publication Date Title
US3050954A (en) Moisture condenser
US3600904A (en) Control for refrigeration system
US4472278A (en) Separating device for an insulating gas-liquid two phase fluid
KR890008532A (en) Air conditioner and its condensing pressure control method
US4404814A (en) Auxiliary condenser cooling tool for refrigerated air conditioners
US2591084A (en) Apparatus for determining the solidifying temperatures of vapors dispersed in gases
KR890000862A (en) Suction accumulator for compressors in refrigeration systems
US4718245A (en) Refrigeration system with bypass valves
US4617806A (en) Liquid level control apparatus
US2861647A (en) Oil and gas separator
US2418671A (en) Restrictor device for refrigerating apparatus
US3461907A (en) Liquid level control device for refrigeration systems
KR920701767A (en) Compression Cooling Unit with Oil Separator
US3350895A (en) Defrost means for non-reversible refrigeration systems
US2594502A (en) Liquid cooler and evaporator coil therefor
US2267607A (en) Refrigerating apparatus
US2667039A (en) Water cooler thermostatic control
KR870001252Y1 (en) Liquid separator for use in a refrigerating air conditioning apparatus
US3008307A (en) Home appliance
US2713795A (en) Pressure measuring device
US3499296A (en) Refrigerant flow control mechanism
US3146603A (en) Method of cooling liquids
US2509404A (en) Thermostatic control means for bottle coolers
US1496676A (en) Refrigerating plant with automatic temperature regulation
US2051802A (en) Refrigerating apparatus