US3047374A - Motor fuel compositions - Google Patents

Motor fuel compositions Download PDF

Info

Publication number
US3047374A
US3047374A US12264A US1226460A US3047374A US 3047374 A US3047374 A US 3047374A US 12264 A US12264 A US 12264A US 1226460 A US1226460 A US 1226460A US 3047374 A US3047374 A US 3047374A
Authority
US
United States
Prior art keywords
gasoline
fluorine
engine
octane
motor fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12264A
Inventor
Jr Albert C Condo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Atlantic Refining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Refining Co filed Critical Atlantic Refining Co
Priority to US12264A priority Critical patent/US3047374A/en
Application granted granted Critical
Publication of US3047374A publication Critical patent/US3047374A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/20Organic compounds containing halogen
    • C10L1/205Organic compounds containing halogen carboxylic radical containing compounds or derivatives, e.g. salts, esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
    • C10L1/306Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond) organo Pb compounds

Definitions

  • This invention relates to improvements in motor fuels in the gasoline boiling range and in particular to such motor fuels, the effect of which will be to reduce the octane requirement increase and thus inhibit surface ignition in internal combustion engines. Specifically, this invention has to do with motor fuels to which has been added a fluorine-containing organic compound.
  • octane number requirement increase is termed octane number requirement increase and is usually abbreviated to ORI.
  • ORI is the result of combustion chamber deposits. These deposits decrease the physical volume of the combustion chamber and thus in effect increase the compression ratio of the engine which in turn raises the octane number requirement of the engine. They also have a heat insulating effect which reduces the rate of heat transfer from the combustion chamber to the cooling system. This latter causes excessive heat to be transferred to the incoming air-fuel mixture which sensitizes the mixture and promotes autoignition. Thus as the engine is operated, the amount of deposits increases and the octane number requirement increases.
  • a motor fuel composition comprising a major amount of hydrocarbons boiling in the gasoline range and a minor amount of an additive sufiicient to reduce the octane requirement increase of an internal combustion engine.
  • It is a further object of this invention to provide a motor fuel composition comprising a major amount of hydrocarbons boiling in the gasoline boiling range and a minor amount. of a fluorine-containing organic compound sufiicient to reduce the octane requirement increase of internal combustion engines.
  • a fluorinecontaining organic compound is added to gasoline in minor amounts.
  • These compounds are added preferably to a gasoline containing tetraethyl lead since the bulk of the gasoline presently being produced is leaded and it is the improvement of such fuels that is the primary purpose of this invention.
  • the tetraethyl lead anti-knock ice agent is employed in conventional amounts and contains the normal scavenging agents. may contain minor and conventional amounts of other additives such as solvent oils, gum inhibitors, dyes, lead 5 stabilizers, carburetor anti-icing agents, and similar additives.
  • the amount of fluorine-containing organic compound which is added to the gasoline is preferably measured in grams of compound per gallon of gasoline. It has been found that the octane requirement increase of an internal combustion engine may be substantially reduced by adding to the gasoline a fluorine-containing organic compound in an amount ranging between about 0.1 gram of compound per gallon of gasoline to about 3.5 grams of compound per gallon of gasoline. For best results, however, amounts ranging between about 0.17 gram of compound per gallon of gasoline to about 1.15 grams of compound per gallon of gasoline are preferred.
  • the fluorine-containing organic compounds suitable for use as gasoline additives in accordance with this invention have the general formula:
  • R and R are radicals selected from the group consisting of alkyl, aryl, alkaryl, aralkyl, fluoroalkyl, fluoro-alkaryl, and fluoro-aralkyl and wherein at least one of the radicals R and R is fluorine-substituted, the
  • any carbon atom which is fluorine-substituted bears at least 2 fluorine atoms and, in the case of terminal carbon atoms, may bear 3 fluorine atoms.
  • these compounds are prepared by condensing a fluoro alcohol with a carbonyl chloride.
  • the preferred compound for use in conjunction with the gasoline component of this invention is bis(trifluoroethyl) carbonate and has the following structural formula:
  • Example I Various fuel compositions were tested in a Briggs and Stratton, Model S-S, single cylinder, air cooled, L-head Patented July 31, 1962- In addition, the gasoline spe'zgsve internal combustion engine.
  • the base gasoline employed was a commercial premium gasoline containing a blend of C hydrocarbons, catalytically reformed naphtha and catalytically cracked naphtha together with isobutanebutylene alkylate. This gasoline had a boiling range of 90 F. to 420 F. and contained 3 cc. of conventional tetraethyl lead fluid per gallon.
  • the lubricant employed was a conventional premium grade detergent-inhibitor additive lubricating oil of SAE 20 grade.
  • the engine was first run for 20 hours on the conventional gasoline fuel during which time the octane requirement of the engine increased from 62 to 71, i.e., an increase of 9 octane numbers. After the run the engine was dismantled and'the interior surfaces of the combustion chamber and exhaust valve were cleaned of deposits. A new spark plug was used for each run.
  • the engine was operated for a period of 20 hours on the same gasoline, however, in this run the gasoline contained 0.68 gram of bis(trifluoroethyl) carbonate per gallon of the gasoline. During this run the octane requirement of the engine increased only 2 numbers, i.e., from 62 to 64.
  • the engine was operated for 20 hours on the same conventional gasoline which contained no additive specifically to reduce ORI. During this run the octane requirement of the engine increased'from 62 to 71, i.e., an increase of 9 octane numbers. After the run the engine was dismantled and the internal surfaces of the combustion chamber and exhaust valve were cleaned of deposits.
  • the engine was again disassembled, cleaned, reassembled and operated for a period of 20 hours on the same conventional gasoline containing no additive. During this run the octane requirement of the engine increased 9 octane numbers, i.e., from 62 to 71.
  • the engine was again disassembled, cleaned, reassembled and operated for a period of 20 hours on the same conventional gasoline which contained 0.68 gram of bis- (trifluoroethyl) carbonate per gallon of gasoline. During this run the octane requirement of the engine increased only 3 numbers i.e., from 62 to 65.
  • a gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline boiling range and a minor amount of a fluorine-containing organic compound sufiicient to reduce octane requirement increase in an internal combustion engine, the fluorine-containing organic compound having the general formula:
  • R and R are radicals selected from the group consisting of alkyl, alkaryl, and fluoro-alkyl and wherein at least one of the radicals R and R is fluorine'substituted, the total number of carbon atoms in the molecule ranges between 3 and 30, the total number of fluorine atoms in the molecule ranges between 2 and 16, and each fluorine substituted carbon atom has at least two fluorine atoms attached thereto.
  • a gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline range and con taining tetraethyllead anti-k-nock agent together with a minor amount of a fluorine-containing organic compound in an amount ranging between about 0.10 to about 3.50 grams of fluorine-containing compound per gallon of gasoline, the fluorine-containing organic compound having the general formula:
  • R and R are radicals selected from the group consisting of alkyl, 'alkaryl, and fluoro-a'lkyl and wherein at least one of the radicals R and R is fluorine-substituted, the total number of carbon atoms in the moleculeranges between 3 and 30, the total number of fluorine atoms in the molecule ranges between 2 and 16, and each fluorine substituted carbon atom has at least two fluorine atoms attached thereto.
  • a gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline range and containing tetraethyllead anti-knock agent together with bis- (trifluoroethyl) carbonate in an amount ranging between about 0.10 to about 3.50 grams of bis(trifluoroethyl) carbonate per gallon of gasoline.
  • a gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline range and containing tetraethyllead anti-knock agent together with bis- (trifluoroethyl) carbonate in an amount ranging between about 0.17 to about 1.14 grams of bis(trifluoroethyl) car bonate per gallon of gasoline.

Description

Uni :5 States 3,047,374 MOTOR FUEL COMPOSITIONS Albert C. Condo, Jr., Newtown Square, Pa., assignor to The Atlantic Refining Company, Philadelphia, Pa., a corporation of Pennsylvania N Drawing. Filed Mar. 2, 1960, Ser. No. 12,264 4 Claims. (Cl. 44-69) This invention relates to improvements in motor fuels in the gasoline boiling range and in particular to such motor fuels, the effect of which will be to reduce the octane requirement increase and thus inhibit surface ignition in internal combustion engines. Specifically, this invention has to do with motor fuels to which has been added a fluorine-containing organic compound.
The recent trend in internal combustion engines has been toward higher compression ratios for which there is required a motor fuel having a compensating octane number. Moderately high octane number fuels have been found to satisfy the octane requirements of the engines while the engines are new but after only a few months of operation, i.e., two to six months, these same engines have been found to require increasingly higher octane number fuels.
This increase in octane requirement that an engine may experience following this relatively short period of use is termed octane number requirement increase and is usually abbreviated to ORI. ORI is the result of combustion chamber deposits. These deposits decrease the physical volume of the combustion chamber and thus in effect increase the compression ratio of the engine which in turn raises the octane number requirement of the engine. They also have a heat insulating effect which reduces the rate of heat transfer from the combustion chamber to the cooling system. This latter causes excessive heat to be transferred to the incoming air-fuel mixture which sensitizes the mixture and promotes autoignition. Thus as the engine is operated, the amount of deposits increases and the octane number requirement increases. Moreover, it has been suggested also that these deposits produce hot spots in the combustion chamber with resultant preignition; that is, the hot, incandescent spot in the combustion chamber will cause the explosion of the gasoline-air mixture instead of the explosion being caused by the firing of the spark plug. This ignition generally occurs prior to the firing of the spark plug and hence this phenomenon is often termed preignition or surface ignition. Preignition or surface ignition often produces an effect similar to that of the knocking of 10W octane number fuels in a high octane requirement situation.
Accordingly it is an object of this invention to provide a motor fuel composition comprising a major amount of hydrocarbons boiling in the gasoline range and a minor amount of an additive sufiicient to reduce the octane requirement increase of an internal combustion engine.
It is a further object of this invention to provide a motor fuel composition comprising a major amount of hydrocarbons boiling in the gasoline boiling range and a minor amount. of a fluorine-containing organic compound sufiicient to reduce the octane requirement increase of internal combustion engines.
Further objects of this invention will be apparent from the description and claims that follow.
In accordance with the instant invention a fluorinecontaining organic compound is added to gasoline in minor amounts. These compounds are added preferably to a gasoline containing tetraethyl lead since the bulk of the gasoline presently being produced is leaded and it is the improvement of such fuels that is the primary purpose of this invention. The tetraethyl lead anti-knock ice agent is employed in conventional amounts and contains the normal scavenging agents. may contain minor and conventional amounts of other additives such as solvent oils, gum inhibitors, dyes, lead 5 stabilizers, carburetor anti-icing agents, and similar additives.
The amount of fluorine-containing organic compound which is added to the gasoline is preferably measured in grams of compound per gallon of gasoline. It has been found that the octane requirement increase of an internal combustion engine may be substantially reduced by adding to the gasoline a fluorine-containing organic compound in an amount ranging between about 0.1 gram of compound per gallon of gasoline to about 3.5 grams of compound per gallon of gasoline. For best results, however, amounts ranging between about 0.17 gram of compound per gallon of gasoline to about 1.15 grams of compound per gallon of gasoline are preferred.
The fluorine-containing organic compounds suitable for use as gasoline additives in accordance with this invention have the general formula:
Rz-O wherein R and R are radicals selected from the group consisting of alkyl, aryl, alkaryl, aralkyl, fluoroalkyl, fluoro-alkaryl, and fluoro-aralkyl and wherein at least one of the radicals R and R is fluorine-substituted, the
total number of carbon atoms in the molecule ranges between 3 and 30 and the total number of fluorine atoms in the molecule ranges between 2 and 16. In addition, any carbon atom which is fluorine-substituted bears at least 2 fluorine atoms and, in the case of terminal carbon atoms, may bear 3 fluorine atoms. In general, these compounds are prepared by condensing a fluoro alcohol with a carbonyl chloride.
The preferred compound for use in conjunction with the gasoline component of this invention is bis(trifluoroethyl) carbonate and has the following structural formula:
CF -OHz-O CFa-CHPO Other typical compounds included within the scope of this invention have structural formulas as follows:
The following examples will serve to illustrate the preferred mode for carrying out the instant invention and to further define its scope and usefulness which examples are not to be construed as limitative.
Example I Various fuel compositions were tested in a Briggs and Stratton, Model S-S, single cylinder, air cooled, L-head Patented July 31, 1962- In addition, the gasoline spe'zgsve internal combustion engine. The base gasoline employed was a commercial premium gasoline containing a blend of C hydrocarbons, catalytically reformed naphtha and catalytically cracked naphtha together with isobutanebutylene alkylate. This gasoline had a boiling range of 90 F. to 420 F. and contained 3 cc. of conventional tetraethyl lead fluid per gallon. The lubricant employed was a conventional premium grade detergent-inhibitor additive lubricating oil of SAE 20 grade.
The engine was first run for 20 hours on the conventional gasoline fuel during which time the octane requirement of the engine increased from 62 to 71, i.e., an increase of 9 octane numbers. After the run the engine was dismantled and'the interior surfaces of the combustion chamber and exhaust valve were cleaned of deposits. A new spark plug was used for each run.
After reassembly the engine was operated for a period of 20 hours on the same gasoline, however, in this run the gasoline contained 0.68 gram of bis(trifluoroethyl) carbonate per gallon of the gasoline. During this run the octane requirement of the engine increased only 2 numbers, i.e., from 62 to 64.
After disassembly, cleaning, and reassembly the engine was operated for 20 hours on the same conventional gasoline which contained no additive specifically to reduce ORI. During this run the octane requirement of the engine increased'from 62 to 71, i.e., an increase of 9 octane numbers. After the run the engine was dismantled and the internal surfaces of the combustion chamber and exhaust valve were cleaned of deposits.
After reassembly the engine was operated for a period of 20 hours on the same conventional gasoline which contained 0.17 gram of bis(trifluoroethy1) carbonate per gallon of gasoline. During this run the octane require ment of the engine increased only 4 numbers, i.e., from 62 to 66. a
The engine was again disassembled, cleaned, reassembled and operated for a period of 20 hours on the same conventional gasoline containing no additive. During this run the octane requirement of the engine increased 9 octane numbers, i.e., from 62 to 71.
The engine was again disassembled, cleaned, reassembled and operated for a period of 20 hours on the same conventional gasoline which contained 0.68 gram of bis- (trifluoroethyl) carbonate per gallon of gasoline. During this run the octane requirement of the engine increased only 3 numbers i.e., from 62 to 65.
Each type of run described above was repeated a number of times in a randomized order with the ORI number determined each time, and with disassembly, cleaning, and reassembly of the engine between each run. The results of these runs are set forth in Table I below.
These data clearly show that when an engine is operated with a conventional gasoline containing no additive to reduce ORI the octane requirement increase of the engine is substantially higher than when the same engine is operated with a similar fuel containing the preferred amounts of fluorine-containing organic compounds according to this invention. In addition these data clearly show that a substantial reduction in URI is obtained with each run when using the preferred compounds of this invention, since it is shown above that a blank run was performed both before and after the actual testing of the preferred compounds according to this invention.
I claim:
1. A gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline boiling range and a minor amount of a fluorine-containing organic compound sufiicient to reduce octane requirement increase in an internal combustion engine, the fluorine-containing organic compound having the general formula:
wherein R and R are radicals selected from the group consisting of alkyl, alkaryl, and fluoro-alkyl and wherein at least one of the radicals R and R is fluorine'substituted, the total number of carbon atoms in the molecule ranges between 3 and 30, the total number of fluorine atoms in the molecule ranges between 2 and 16, and each fluorine substituted carbon atom has at least two fluorine atoms attached thereto.
2. A gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline range and con taining tetraethyllead anti-k-nock agent together with a minor amount of a fluorine-containing organic compound in an amount ranging between about 0.10 to about 3.50 grams of fluorine-containing compound per gallon of gasoline, the fluorine-containing organic compound having the general formula:
RIF-O Rr-O wherein R and R are radicals selected from the group consisting of alkyl, 'alkaryl, and fluoro-a'lkyl and wherein at least one of the radicals R and R is fluorine-substituted, the total number of carbon atoms in the moleculeranges between 3 and 30, the total number of fluorine atoms in the molecule ranges between 2 and 16, and each fluorine substituted carbon atom has at least two fluorine atoms attached thereto.
3. A gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline range and containing tetraethyllead anti-knock agent together with bis- (trifluoroethyl) carbonate in an amount ranging between about 0.10 to about 3.50 grams of bis(trifluoroethyl) carbonate per gallon of gasoline.
4. A gasoline motor fuel comprising a major amount of hydrocarbons boiling in the gasoline range and containing tetraethyllead anti-knock agent together with bis- (trifluoroethyl) carbonate in an amount ranging between about 0.17 to about 1.14 grams of bis(trifluoroethyl) car bonate per gallon of gasoline.
References Cited in the file of this patent UNITED STATES PATENTS 2,214,768 Lincoln Sept. 17, 1940 2,281,598 Pnl-tton May 5, 1942 2,331,386 Gaylor Oct. 12, 1943 2,789,891 Brandes et a1 Apr. 23, 1957 2,844,448 Heisler et a1. July 22, 1958 2,844,450 Heisler et al. July 22, 1958 2,935,479 Oberdorfer May 3, 1960

Claims (1)

1. A GASOLINE MOTOR FUEL COMPRISING A MAJOR AMOUNT OF HYDROCARBONS BOILING IN THE GASOLINE BOILING RANGE AND A MINOR AMOUNT OF A FLUORINE-CONTAINING ORGANIC COMPOUND SUFFICIENT TO REDUC OCTANE REQUIREMENT INCREASE IN AN INTERNAL COMBUSTION ENGINE, THE FLUORINE-CONTAINING ORGANIC COMPOUND HAVING THE GENERAL FORMULA:
US12264A 1960-03-02 1960-03-02 Motor fuel compositions Expired - Lifetime US3047374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12264A US3047374A (en) 1960-03-02 1960-03-02 Motor fuel compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12264A US3047374A (en) 1960-03-02 1960-03-02 Motor fuel compositions

Publications (1)

Publication Number Publication Date
US3047374A true US3047374A (en) 1962-07-31

Family

ID=21754124

Family Applications (1)

Application Number Title Priority Date Filing Date
US12264A Expired - Lifetime US3047374A (en) 1960-03-02 1960-03-02 Motor fuel compositions

Country Status (1)

Country Link
US (1) US3047374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193573A (en) * 1962-04-25 1965-07-06 Smith Kline French Lab 2, 2, 2-trichloroethylcarbonate
US4874394A (en) * 1987-01-27 1989-10-17 Exxon Chemical Patents Inc. Crude oil and fuel oil compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2214768A (en) * 1938-02-05 1940-09-17 Lubri Zol Dev Corp Engine fuel
US2281598A (en) * 1939-03-17 1942-05-05 Lubri Zol Corp Solvent and fuel containing same
US2331386A (en) * 1939-11-03 1943-10-12 Standard Oil Dev Co Modified fuel
US2789891A (en) * 1953-08-24 1957-04-23 Gulf Research Development Co Gasoline fuel system conditioner
US2844450A (en) * 1956-01-18 1958-07-22 Texas Co Fuels containing deposit-control additives
US2844448A (en) * 1955-12-23 1958-07-22 Texas Co Fuels containing a deposit-control additive
US2935479A (en) * 1956-07-02 1960-05-03 Sun Oil Co Composition for engine deposit removal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2214768A (en) * 1938-02-05 1940-09-17 Lubri Zol Dev Corp Engine fuel
US2281598A (en) * 1939-03-17 1942-05-05 Lubri Zol Corp Solvent and fuel containing same
US2331386A (en) * 1939-11-03 1943-10-12 Standard Oil Dev Co Modified fuel
US2789891A (en) * 1953-08-24 1957-04-23 Gulf Research Development Co Gasoline fuel system conditioner
US2844448A (en) * 1955-12-23 1958-07-22 Texas Co Fuels containing a deposit-control additive
US2844450A (en) * 1956-01-18 1958-07-22 Texas Co Fuels containing deposit-control additives
US2935479A (en) * 1956-07-02 1960-05-03 Sun Oil Co Composition for engine deposit removal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193573A (en) * 1962-04-25 1965-07-06 Smith Kline French Lab 2, 2, 2-trichloroethylcarbonate
US4874394A (en) * 1987-01-27 1989-10-17 Exxon Chemical Patents Inc. Crude oil and fuel oil compositions

Similar Documents

Publication Publication Date Title
US2405560A (en) Fuel
US2897071A (en) Gasoline fuels
US2797153A (en) Fuel for spark ignition internal combustion engines
US2844449A (en) Fuels containing a deposit-control additive
US2881062A (en) Hydrocarbon fuel
US2844448A (en) Fuels containing a deposit-control additive
US2863743A (en) Motor fuel
US3047374A (en) Motor fuel compositions
US2324779A (en) Motor fuel
US3523769A (en) Mono-substituted hydrocarbon fuel additives
US2994595A (en) Motor fuel compositions
US2937933A (en) Fuel composition
US2784160A (en) Otto cycle engine fuels and lubricants containing halohydrocarbon
US3305330A (en) Amine-phosphorus-containing adducts and motor fuel containing same
US3073854A (en) Trimethyllead methyl thioglycolate
US3560174A (en) Motor fuel composition
US3007783A (en) Motor fuel compositions
US3008814A (en) Antiknock motor fuels
US2933380A (en) Motor fuels
US2863745A (en) Motor fuel
US2935973A (en) Hydrocarbon fuels having improved antiknock properties
US4401439A (en) Fuel and lubricant compositions for octane requirement reduction
US2863744A (en) Motor fuel
US4435187A (en) Fuel and lubricant compositions for octane requirement reduction
US2887368A (en) Automotive fuel