US3036935A - Method of sizing textile yarns - Google Patents

Method of sizing textile yarns Download PDF

Info

Publication number
US3036935A
US3036935A US800937A US80093759A US3036935A US 3036935 A US3036935 A US 3036935A US 800937 A US800937 A US 800937A US 80093759 A US80093759 A US 80093759A US 3036935 A US3036935 A US 3036935A
Authority
US
United States
Prior art keywords
amylose
sizing
yarns
ethers
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US800937A
Inventor
Lolkema Jan
Moes Geert
Vogel Willem Freerk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scholtens Chemische Fabrieken NV
Original Assignee
Scholtens Chemische Fabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scholtens Chemische Fabrieken NV filed Critical Scholtens Chemische Fabrieken NV
Application granted granted Critical
Publication of US3036935A publication Critical patent/US3036935A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B33/00Preparation of derivatives of amylose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B33/00Preparation of derivatives of amylose
    • C08B33/04Ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • yarns is to be understood here in its widest sense and is considered to comprise all threads or yarns that occur in the textile industry. They may consist of continuous filaments or of fibers, may be of a natural, semi-synthetic or synthetic nature and may be twisted or untwisted.
  • hydrophilic textile materials such as cotton, wool or viscose rayon especially sizing agents from groups 1 and 2 are used.
  • Strongly hydrophobic yarns are preferably sized by means of products from group 3.
  • Cellulose acetate yarns may be sized both with protein products and with synthetic agents. 4
  • the invention is more particularly of importance for sizing with amylose ethers and it will be therefore mainly described with reference to the use of the ethers.
  • droxyalkyl ethers and mixed alkyl and hydroxyalkyl ethers having 1-4 carbon atoms in the alkyl or hydroxyalkyl group are particularly suitable.
  • the alkyl or hydroxyalkyl group should not be too large because otherwise the solutions of the amylose ethers in the concentration that is conventional for the sizing operation, e.g. 5-10%, show the tendency in the heat to form a skin at the surface.
  • At least about 1 alkyl group or hydroxyalkyl group should be introduced per 7 an'hydroglucose units of the amylose molecule in order to obtain products which form stable solutions both in the cold and in the heat, which is desirable for sizing solutions.
  • amylose ethers to be used for sizing hydrophobic yarns and to the amylose ethers for sizing hydrophilic yarns.
  • hydroxyalkyl ethers are to be used for sizing hydrophobic yarns it is desirable to use a product of a higher degree of substitution, having e.g. l hydroxyalkyl group per 2 /2 anhydroglucose units.
  • alkyl ethers or hydroxyalkyl ethers which at the same time contain an arcmatic group, e.g. ethylbenzyl ethers or hydroxyethylbenzyl ethers, are also suitable.
  • Amylose ethers containing hydrophilic groups in the substituent are especially eligible for sizing hydrophilic yarns.
  • examples of such ethers are the amylose ether carboxylic acids and amylose ether sulphonic acids, which can be used as such or in the form of'their salts, e.g. the alkali salts.
  • amylose ether carboxylic acids and amylose ether sulphonic acids which can be used as such or in the form of'their salts, e.g. the alkali salts.
  • aminoalkyl ethers and aminoalkyl ethers substituted in the amino group are suitable.
  • the linear fraction obtained by separating starch into its components is preferably used as amylose raw material.
  • the linear fraction may be used both in its pure and in its impure state and in many cases it offers advantages for the preparation of the amylose ethers to work up the linear fraction without an intermediate drying.
  • amylose preparations obtained by separating starch into its components it is also'possible to use particular native starches having a high amylose content e.g. starches of specific corn varieties.
  • amylose ethers to be used according to the invention may be prepared by reacting the amylose with the etherifying agent in an aqueous mediumin the presence of the required catalysts, more particularly alkaline substances, in the conventional manner. If desired, however, the etherificationmay also take place in an organic solvent. 7 v
  • amylose ethers may be isolated fromthe reaction mixture, but
  • amylose ethers in the form of dry products.
  • Such dry products may be obtained by recovering the amylose ethers from the reaction mixture and purifying and subsequently drying them.
  • dry products of very good properties may be obtained by dry ing the reaction mass in its entirety on heated rollers and grinding the film thus formed into flakes of the desired size.
  • Suitable etherifying agents for the preparation of amylose alkyl ethers are i.e. the alkyl halides, dialkyl sulphates, alkyl tosylates and diazomethane.
  • alkylene oxides or alkylene chlorohydrins may be used.
  • amylose may be, treated simultaneously or successively with the required etherifying agents.
  • the treatment of the yarns with aqueous solutions of amylose ethers according to the invention may be efiected by conventional methods for sizing yarns. It is possible, for example, to submerge the yarns in the form of skeins in a solution of the sizing agent, to pass the yarns continuously through a solution of the sizing agent or to apply a solution of the sizing agent to the yarn by spraying or by means of a roller.
  • the yarns thus treated may be dried on heated drums or in heated drying chambers.
  • the sizing bath is preferably kept at a temperature between 30 and 90 C.
  • the concentration of the sizing solution may vary; very good results are obtained if said concentration is such that the yarn will absorb 2l0% of the dry sizing agent.
  • the pH of the sizing solution may likewise vary within wide ranges; for sizing cellulose acetate yarns, the pH of the solution, however, should not exceed about 8.0.
  • the sizing solutions to be used may contain in addition to the amylose ethers small amounts of the auxiliary agents conventionally used in sizing operations, for example softening agents, wetting agents or the like, but in general such auxiliary agents are unnecessary. In addition to the amylose ethers the solutions may also contain other sizing agents, if desired.
  • the yarns sized according to the invention are very resistent against mechanical influences, because they are coated with a strong, supple, smooth film. Especially in the weaving industry excellent results are obtained with said yarns.
  • a further advantage of the use of said amylose ethers is that the yarns sized will not substantially take up a static charge. Furthermore they have the advantage that after the weaving operation they may easily be washed out from the yarns.
  • Suitable amylose acetals are those obtained by prepared reacting amylose with formaldehyde.
  • amylose derivatives containing both ether groups and ester groups or amylose derivatives which in addition to ether or esters groups contain acetal groups and may be obtained e.g. by reacting amylose ethers or amylose esters with formaldehyde.
  • An example is an amylose benzyl ether which after the benzylation has been treated with formaldehyde.
  • the sizing value is a measure for the coherence of the elementary threads and as such it is very important.
  • the first sizing value relates to the point at which the elementary threads become detached from each other, unstuck, the second value relates to the complete dislocation of the threads. A high value, therefore, is indicative of a good sizing. All of the values are the average of at least five observations.
  • the smoothness is expressed in the number of seconds which a thread of a specific length requires for passing an apparatus for determining the smoothness in the first and in the tenth passage respectively. Low values, therefore, are indicative of a high degree of smoothness.
  • the abrasion resistance is a measure for the resistance of the sized yarn against abrasion. A high value is indicative of a good abrasion resistance.
  • Example 1 A warp of acetate silk of 75 denier is continuously passed at a temperature of 60 C. through an 8% solution of an amylose ethyl ether (degree of substitution 0.40), whereupon the yarn is squeezed. The same test is made with a solution of an ethyl ether of tapioca starch of a corresponding degree of substitution. For purposes of comparison the same yarn is sized with a synthetic copolymer on styrene maleic acid anhydride basis, said copolymer being especially recommended for sizing acetate silk. The yarn is dried on drums at a temperature of from -90 C.
  • Example 2 A warp of acetate silk of denier is sized at a temperature of 55 C. with aqueous solutions of some amylose alkyl ethers.
  • amylose ethyl ether produces about the same results as the polymethacrylic acid which is especially recommended for nylon, but is much more expensive than amylose ethyl ether.
  • Example 4 A hydroxypropyl ether of amylose with a degree of substitution of 0.5 1, a mixed ethylhydroxypropyl ether of amylose having a degree of substitution of 0.18 for the ethyl groups and of 0.30 for the hydroxyethyl groups, which two amylose ethers are excellently soluble both in cold and in hot water, and gelatin are used for sizing 75 denier acetate silk warps at a temperature of 60 C. To the solution of gelatin (which is frequently used for sizing acetate silk yarns in actual practice) a small amount of glycerol has been added.
  • Example 5 O0nc., Degree Abrasion Breaking Elonga- Sizing agent perof resiststrength, tion,
  • the sized spinning cake readily admits of being reeled off and the yarn has an excellent sizing.
  • Example 7 A skein of acetate silk of 100 denier is submerged for some minutes in a 9.2% solution of an amylose ethyl ether having a degree of substitution of 0.23 at a temperature of 60 C. After squeezing the skein and loosening the threads the skein is dried in a drying box at about 90 C. The sizing value of the yarn thus treated is found to be 16.8, the elongation is 25%.
  • Example 8 Continuous triacetate yarn of 100 denier is sized at a temperature of 50 C. with an aqueous solution of a water soluble mixed ethylbenzyl ether of amylose, obtained by treating amylose in :an alkaline medium in the heat with 0.7 mole of diethyl sulphate and 0.05 mole of benzylchloride per glucose unit and by subsequently removing the reaction salts in known manner and bringing the mass in dry form.
  • the sizing is also effected under the same conditions with a synthetic sizing agent on the basis of polyvinyl alcohol, in the presence of a slight amount of boric acid. After the treatment the yarn is dried on a drum at 95 C.
  • Example 10 The mixed ethylbenzyl ether of amylose described in Example 8 is compared with the corresponding ether of corn starch for sizing 75 denier diacetate silk warps at a Example 10
  • Cotton yarn is continuously passed in warp form through a 10% aqueous solution of the sodium salt of a carboxymethyl ether of amylose at a temperature of 80 C., squeezed out and dried on a drum at 110 C.
  • the amylose ether is prepared by treating amylose in an alkaline medium in the heat with 1 mole of sodium monochloroacetate per glucose unit, whereupon the amylose thus treated is freed in known manner from the reaction salts, and is brought in dry form.
  • the degree of substitution of the amylose ether is 0.56 carboxymethyl group per anhydroglucose unit.
  • For purposes of comparison sizing tests are also run with a sodium salt of a carboxymethyl ether of cassava starch (degree of substitution 0.59), as well as with the sodium salt of a carboxymethyl cellulose of low viscosity (degree of substitution 0.6).
  • the starch ether is obtained by etherifying cassava starch in known manner with one mole of sodium monochloroacetate per glucose unit and by subsequently removing the reaction salts.
  • a warp of diacetate silk of denier is continuously passed through an 8% aqueous solution of amylose acetate at a temperature of 60 C., whereupon the yarn is squeezed out.
  • the water soluble amylose acetate is obtained by hydrolyzing a solution of amylose triacetate in the presence of water and a small amount of a catalyst until the amylose acetate has become fully water soluble.
  • Example 12 Cotton yarn is sized with a 10% aqueous solution of an amylose formaldehyde compound. The yarn thus sized is very suitable for weaving.
  • Example 13 A dry amylose ether to be used according to the invention having good properties may be prepared as follows: In an autoclave provided with a stirring apparatus 1000 grams of finely ground amylose (obtained by fractionating potato starch) is agitated with a solution of 170 grams of sodium hydroxide in 2000 cc. of water at a temperature of 50-60 C., until a smooth dispersion is obtained. Subsequently 350 cc. of dimethyl sulphate are added in a period of 45 minutes, whereupon the mass is allowed to react for another hour at the same temperature. The reaction mixture is subsequently dried in a thin layer on a heated drum at a steam pressure of 6 at. The amylose methyl ether obtained has an excellent solubility both in cold and in hot water. The ether has a degree of substitution of 0.53 and accordingly contains 1 methyl group per 1.88 anhydroglucose units.
  • said sizing agent is an alkyl ether of amylose, wherein each alkyl group has from 1 to 4 carbon atoms.
  • said sizing agent is a hydroxyalkyl ether of amylose, wherein each hydroxyalkyl group has from 1 to 4 carbon atoms.
  • said sizing agent is a mixed alkyl hydroxyalkyl ether of amylose wherein each alkyl group has from 1 to 4 carbon atoms, and each hydroxy alkyl group has from 1 to 4 carbon atoms.
  • the sizing agent is a hydroxyalkyl ether of amylose containing at least one ether group per 2 /2 anhydroglucose units of the amylose.
  • the sizing agent is an ethyl benzyl ether of amylose.
  • the sizing agent is an ester of amylose and a fatty acid having from 2 to 4 carbon atoms.
  • said sizing agent is a carboxyalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
  • said sizing agent is a sulfoalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
  • said sizing agent is an aminoalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
  • said sizing agent is a substituted aminoalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.

Description

United States Patent Ofifice 3,036,935 Patented May 29, 1962 3,036,935 METHOD OF SIZING TEXTILE YARNS Jan Lolkema and Geert Moes, Hoogezand, and Willem Frcerk Vogel, Groningen, Netherlands, assignors to W. A. Scholtens Chemische Fabrieken N.V., Gronlngen, Netherlands, a corporation of the Netherlands No Drawing. Filed Mar. 23, 1959, Ser. No. 800,937
Claims priority, application France Mar. 24, 1958 15 Claims. (Cl. 117-139.5)
This invention relates to a method of sizing textile yarns. The term yarns is to be understood here in its widest sense and is considered to comprise all threads or yarns that occur in the textile industry. They may consist of continuous filaments or of fibers, may be of a natural, semi-synthetic or synthetic nature and may be twisted or untwisted.
In order to render textile yarns resistant against mechanical treatments it is customary to size the yarns prior to said mechanical treatments, for which purpose mostly aqueous solutions of sizing agents are used. The most generally known water soluble sizing agents used up to now are:
(1) Natural products on the basis of starch or protein.
(2) Derivatives of natural products on the basis of cellulose or starch.
(3) Synthetic sizing agents on thebasis of polyvinyl alcohol, polyacrylic acid, polyacryla-tes and styrenemaleic acid derivatives.
For hydrophilic textile materials, such as cotton, wool or viscose rayon especially sizing agents from groups 1 and 2 are used. Strongly hydrophobic yarns, on the other hand, are preferably sized by means of products from group 3. Cellulose acetate yarns may be sized both with protein products and with synthetic agents. 4
We have now found that excellent results .can be achieved if textile yarns are sized by treating them with an aqueous solution of water soluble ethers, esters or .acetals of amylose, the yarns thus treated being subsequently dried. The effect obtained by sizing yarns with said amylose derivatives surprisingly not only in many respects exceeds the efiect of the products from groups 1 and 2, but in addition they produce results that are at least just as good as results obtained by means of products from group 3.
The invention is more particularly of importance for sizing with amylose ethers and it will be therefore mainly described with reference to the use of the ethers.
As amylose ethers the Water soluble alkyl ethers, hy-
droxyalkyl ethers and mixed alkyl and hydroxyalkyl ethers having 1-4 carbon atoms in the alkyl or hydroxyalkyl group are particularly suitable. The alkyl or hydroxyalkyl group should not be too large because otherwise the solutions of the amylose ethers in the concentration that is conventional for the sizing operation, e.g. 5-10%, show the tendency in the heat to form a skin at the surface. At least about 1 alkyl group or hydroxyalkyl group should be introduced per 7 an'hydroglucose units of the amylose molecule in order to obtain products which form stable solutions both in the cold and in the heat, which is desirable for sizing solutions.
The above applies both to the amylose ethers to be used for sizing hydrophobic yarns and to the amylose ethers for sizing hydrophilic yarns. If hydroxyalkyl ethers are to be used for sizing hydrophobic yarns it is desirable to use a product of a higher degree of substitution, having e.g. l hydroxyalkyl group per 2 /2 anhydroglucose units. For this purpose alkyl ethers or hydroxyalkyl ethers which at the same time contain an arcmatic group, e.g. ethylbenzyl ethers or hydroxyethylbenzyl ethers, are also suitable.
Amylose ethers containing hydrophilic groups in the substituent are especially eligible for sizing hydrophilic yarns. Examples of such ethers are the amylose ether carboxylic acids and amylose ether sulphonic acids, which can be used as such or in the form of'their salts, e.g. the alkali salts. For this purpose also aminoalkyl ethers and aminoalkyl ethers substituted in the amino group are suitable.
The linear fraction obtained by separating starch into its components is preferably used as amylose raw material. The linear fraction may be used both in its pure and in its impure state and in many cases it offers advantages for the preparation of the amylose ethers to work up the linear fraction without an intermediate drying.
Instead of amylose preparations obtained by separating starch into its components it is also'possible to use particular native starches having a high amylose content e.g. starches of specific corn varieties.
The amylose ethers to be used according to the invention may be prepared by reacting the amylose with the etherifying agent in an aqueous mediumin the presence of the required catalysts, more particularly alkaline substances, in the conventional manner. If desired, however, the etherificationmay also take place in an organic solvent. 7 v
It is possible, for example, to'dissolve the amylose in water by heating at atmosphen'cor at elevated pressure, if desired, in the presence of substances having a peptisizingyaction and subsequently adding the desired amount of etherifying agent and, if necessary, the alkaline substance, whereupon the reaction is carried out at room temperature or at elevated temperature. The amylose ethers may be isolated fromthe reaction mixture, but
this is not necessary. In many cases it is suflicient after the etherification of the amylose to dilute the reaction mixture with water to a concentration suitable for the sizing operation.
For actual -practice it may be of importance to supply the amylose ethers in the form of dry products. Such dry products may be obtained by recovering the amylose ethers from the reaction mixture and purifying and subsequently drying them. However we have found that in most cases the isolation and purification of the ethers is not necessary and according to the invention dry products of very good properties may be obtained by dry ing the reaction mass in its entirety on heated rollers and grinding the film thus formed into flakes of the desired size. In this case care should be taken that the degree of substitution of theamylose ether is not so 'high' that the mass will become plasticon theheated roller so that it would be difiicu-lt to remove it from the roller in the form of a thin film, As a rule difiiculties of this n-ature'will not manifest themselves eg in the case of alkyl ethers and hydroxyalkyl ethersunless the amylose ether contains more than one alkyl group and/ or hydroxvalkyl group per anhydroglucose unit.
Suitable etherifying agents for the preparation of amylose alkyl ethers are i.e. the alkyl halides, dialkyl sulphates, alkyl tosylates and diazomethane. For the preparation of the hydroxyalkyl ethers alkylene oxides or alkylene chlorohydrins may be used.
For the preparation of the mixed ethers the amylose may be, treated simultaneously or successively with the required etherifying agents.
The treatment of the yarns with aqueous solutions of amylose ethers according to the invention may be efiected by conventional methods for sizing yarns. It is possible, for example, to submerge the yarns in the form of skeins in a solution of the sizing agent, to pass the yarns continuously through a solution of the sizing agent or to apply a solution of the sizing agent to the yarn by spraying or by means of a roller. The yarns thus treated may be dried on heated drums or in heated drying chambers.
For obtaining a good penetration of the solution into the yarn the sizing bath is preferably kept at a temperature between 30 and 90 C. The concentration of the sizing solution may vary; very good results are obtained if said concentration is such that the yarn will absorb 2l0% of the dry sizing agent. The pH of the sizing solution may likewise vary within wide ranges; for sizing cellulose acetate yarns, the pH of the solution, however, should not exceed about 8.0. The sizing solutions to be used may contain in addition to the amylose ethers small amounts of the auxiliary agents conventionally used in sizing operations, for example softening agents, wetting agents or the like, but in general such auxiliary agents are unnecessary. In addition to the amylose ethers the solutions may also contain other sizing agents, if desired.
The yarns sized according to the invention are very resistent against mechanical influences, because they are coated with a strong, supple, smooth film. Especially in the weaving industry excellent results are obtained with said yarns. A further advantage of the use of said amylose ethers is that the yarns sized will not substantially take up a static charge. Furthermore they have the advantage that after the weaving operation they may easily be washed out from the yarns.
The invention has been described hereinbefore with reference to the use of water soluble amylose ethers. Instead of said ethers, however, water soluble amylose esters or amylose acetals may also be successfully used. Good results in sizing hydrophobic yarns are obtained, for example, by means of water soluble esters of amylose, which are derived from saturated or unsaturated fatty acids having not more than four carbon atoms, such as acetic acid, propionic acid, butyric acid, acrylic acid and methacrylic acid. For sizing hydrophilic yarns esters containing hydrophilic substituents are suitable, for example, amylose ester carboxylic acids and amylose ester sulphonic acids.
Suitable amylose acetals are those obtained by prepared reacting amylose with formaldehyde.
It is also possible to use amylose derivatives containing both ether groups and ester groups or amylose derivatives, which in addition to ether or esters groups contain acetal groups and may be obtained e.g. by reacting amylose ethers or amylose esters with formaldehyde. An example is an amylose benzyl ether which after the benzylation has been treated with formaldehyde.
The invention will be further elucidated with reference to some examples. According to said examples the yarns sized are tested for certain properties that are characteristic of the sizing effect obtained. The values mentioned in this connection have the following meaning:
The sizing value is a measure for the coherence of the elementary threads and as such it is very important. The first sizing value relates to the point at which the elementary threads become detached from each other, unstuck, the second value relates to the complete dislocation of the threads. A high value, therefore, is indicative of a good sizing. All of the values are the average of at least five observations.
The values for the breaking strength and the elongation are obtained according to conventional dynarnometrical determinations.
The smoothness is expressed in the number of seconds which a thread of a specific length requires for passing an apparatus for determining the smoothness in the first and in the tenth passage respectively. Low values, therefore, are indicative of a high degree of smoothness.
The abrasion resistance is a measure for the resistance of the sized yarn against abrasion. A high value is indicative of a good abrasion resistance.
4 Example 1 A warp of acetate silk of 75 denier is continuously passed at a temperature of 60 C. through an 8% solution of an amylose ethyl ether (degree of substitution 0.40), whereupon the yarn is squeezed. The same test is made with a solution of an ethyl ether of tapioca starch of a corresponding degree of substitution. For purposes of comparison the same yarn is sized with a synthetic copolymer on styrene maleic acid anhydride basis, said copolymer being especially recommended for sizing acetate silk. The yarn is dried on drums at a temperature of from -90 C.
The following results are obtained:
Degree Elon- Smoothncss,scc. Sizing agent of Cone, Sizing gation,
substipercent percent tution 1st X 10th X amylose ethyl ether 0.40 8 1. 88.8 14.4 2 2 3.1 starch ethyl ether. 0.40 8 13.2 14.0 2 7 2.9 styrcnemaleic acid anhydride copolymer 8 1. 2-6. 4 9. 3 2.8 4. 7
Example 2 A warp of acetate silk of denier is sized at a temperature of 55 C. with aqueous solutions of some amylose alkyl ethers.
The results are as follows:
aqueous solution of an amylose ethyl ether (degree of substitution 0.40). For purposes of comparison this nylon is sized under the same conditions with a synthetic sizing agent on polymethacrylic acid basis, which is especially intended for sizing nylon. The sized yarn is dried on drums at 80-90 C. The results are as follows:
I Degree Elon- Smoothncss,see. Sizing agent of Cone, Sizing gation,
substipercent percent tution 1st X 10th X amylose ethyl ether 0.40 9 2. 8-13.2 29 2.4 2.8 polymethacrylic acid 0.40 9 2. 6-15 26.4 2.1 2.3
The table shows that amylose ethyl ether produces about the same results as the polymethacrylic acid which is especially recommended for nylon, but is much more expensive than amylose ethyl ether.
Example 4 A hydroxypropyl ether of amylose with a degree of substitution of 0.5 1, a mixed ethylhydroxypropyl ether of amylose having a degree of substitution of 0.18 for the ethyl groups and of 0.30 for the hydroxyethyl groups, which two amylose ethers are excellently soluble both in cold and in hot water, and gelatin are used for sizing 75 denier acetate silk warps at a temperature of 60 C. To the solution of gelatin (which is frequently used for sizing acetate silk yarns in actual practice) a small amount of glycerol has been added.
When testing the yarns the following values for the sizing are obtained.
temperature of 60 C. The following sizing values are found.
Degree of Concen- Ooncen- Sizing agent substitutration, Sizing Sizing agent tration, Sizing tion percent percent mylose hydroxypropyl ether 2-7. amylose ethylbenzyl ether 9 1. 8-9. 2 mylose ethyl hydroxypropyl ethe 9 2.2-7.6 starch ethylbenzyl ether 9 1. 1-4. 2 gelatin glycerol) 2-7. 2
Example 5 O0nc., Degree Abrasion Breaking Elonga- Sizing agent perof resiststrength, tion,
cent subst1- ance grams percent tution none 84 269 7. 2 amylose ethyl ether..- 0.30 1, 144 420 6. 1 thin boiling starch 10 g 352 410 6 Example 6 In a closed dyeing apparatus a 4% solution of an amylose ethyl ether (degree of substitution 0.26) is pumped for minutes at a temperature of 50 C. through a viscose spinning cake.
The sized spinning cake readily admits of being reeled off and the yarn has an excellent sizing.
Example 7 A skein of acetate silk of 100 denier is submerged for some minutes in a 9.2% solution of an amylose ethyl ether having a degree of substitution of 0.23 at a temperature of 60 C. After squeezing the skein and loosening the threads the skein is dried in a drying box at about 90 C. The sizing value of the yarn thus treated is found to be 16.8, the elongation is 25%.
Example 8 Continuous triacetate yarn of 100 denier is sized at a temperature of 50 C. with an aqueous solution of a water soluble mixed ethylbenzyl ether of amylose, obtained by treating amylose in :an alkaline medium in the heat with 0.7 mole of diethyl sulphate and 0.05 mole of benzylchloride per glucose unit and by subsequently removing the reaction salts in known manner and bringing the mass in dry form. For purposes of comparison the sizing is also effected under the same conditions with a synthetic sizing agent on the basis of polyvinyl alcohol, in the presence of a slight amount of boric acid. After the treatment the yarn is dried on a drum at 95 C.
The following results are obtained:
The mixed ethylbenzyl ether of amylose described in Example 8 is compared with the corresponding ether of corn starch for sizing 75 denier diacetate silk warps at a Example 10 Cotton yarn is continuously passed in warp form through a 10% aqueous solution of the sodium salt of a carboxymethyl ether of amylose at a temperature of 80 C., squeezed out and dried on a drum at 110 C.
The amylose ether is prepared by treating amylose in an alkaline medium in the heat with 1 mole of sodium monochloroacetate per glucose unit, whereupon the amylose thus treated is freed in known manner from the reaction salts, and is brought in dry form. The degree of substitution of the amylose ether is 0.56 carboxymethyl group per anhydroglucose unit. For purposes of comparison sizing tests are also run with a sodium salt of a carboxymethyl ether of cassava starch (degree of substitution 0.59), as well as with the sodium salt of a carboxymethyl cellulose of low viscosity (degree of substitution 0.6). The starch ether is obtained by etherifying cassava starch in known manner with one mole of sodium monochloroacetate per glucose unit and by subsequently removing the reaction salts.
A warp of diacetate silk of denier is continuously passed through an 8% aqueous solution of amylose acetate at a temperature of 60 C., whereupon the yarn is squeezed out. The water soluble amylose acetate is obtained by hydrolyzing a solution of amylose triacetate in the presence of water and a small amount of a catalyst until the amylose acetate has become fully water soluble.
For purposes of comparison sizing tests are likewise carried out with water soluble starch acetate and water soluble cellulose acetate, said products being prepared in a similar way from the tri-acetates. The treated yarn is dried on drums at 90 C.
The results of the tests are as follows:
Cone Elonsmoothness Sizing agent per- Sizing gation,
cent per cent lst 10th X amylose acetate 8 2 79. 4 17 l 9 2.1 starch acetate 8 13.4 12 2 7 5.2 cellulose acetate 8 1.2-5.0 15. 5 2 4 3. 7
Example 12 Cotton yarn is sized with a 10% aqueous solution of an amylose formaldehyde compound. The yarn thus sized is very suitable for weaving.
Example 13 A dry amylose ether to be used according to the invention having good properties may be prepared as follows: In an autoclave provided with a stirring apparatus 1000 grams of finely ground amylose (obtained by fractionating potato starch) is agitated with a solution of 170 grams of sodium hydroxide in 2000 cc. of water at a temperature of 50-60 C., until a smooth dispersion is obtained. Subsequently 350 cc. of dimethyl sulphate are added in a period of 45 minutes, whereupon the mass is allowed to react for another hour at the same temperature. The reaction mixture is subsequently dried in a thin layer on a heated drum at a steam pressure of 6 at. The amylose methyl ether obtained has an excellent solubility both in cold and in hot water. The ether has a degree of substitution of 0.53 and accordingly contains 1 methyl group per 1.88 anhydroglucose units.
We claim:
1. In a method for sizing textile yarns, the improvement of treating said yarns with an aqueous solution of a sizing agent selected from the group consisting of amylose ethers, amylose esters, and amylose acetals, and sub sequently drying the treated yarns.
2. The improvement described in claim 1, wherein said sizing agent is an alkyl ether of amylose, wherein each alkyl group has from 1 to 4 carbon atoms.
3. The improvement described in claim 2, wherein the sizing agent contains at least one alkyl group per 7 anhydroglucose units of the amylose.
4. The improvement described in claim 1, wherein said sizing agent is a hydroxyalkyl ether of amylose, wherein each hydroxyalkyl group has from 1 to 4 carbon atoms.
5. The improvement described in claim 4, wherein the sizing agent contains at least one hydroxyalkyl group per 7 anhydroglucose units of the amylose.
6. The improvement described in claim 1, wherein said sizing agent is a mixed alkyl hydroxyalkyl ether of amylose wherein each alkyl group has from 1 to 4 carbon atoms, and each hydroxy alkyl group has from 1 to 4 carbon atoms.
7. The improvement described in claim 1, wherein the textile yarns are hydrophobic yarns.
8. The improvement described in claim 7, wherein the sizing agent is a hydroxyalkyl ether of amylose containing at least one ether group per 2 /2 anhydroglucose units of the amylose.
9. The improvement described in claim 1, wherein the sizing agent is a mixed alkyl aryl ether of amylose.
10. The improvement described in claim 9, wherein the sizing agent is an ethyl benzyl ether of amylose.
11. The improvement described in claim 1, wherein the sizing agent is an ester of amylose and a fatty acid having from 2 to 4 carbon atoms.
12. The improvement described in claim 1, wherein said sizing agent is a carboxyalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
13. The improvement described in claim 1, wherein said sizing agent is a sulfoalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
14. The improvement described in claim 1, wherein said sizing agent is an aminoalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
15. The improvement described in claim 1, wherein said sizing agent is a substituted aminoalkyl ether of amylose, wherein the alkyl group has from 1 to 4 carbon atoms.
References Cited in the file of this patent UNITED STATES PATENTS 1,847,827 Gahlert Mar. 1, 1932 2,220,508 Bock et al. Nov. 5, 1940 2,412,213 Groen Dec. 10, 1946 2,570,830 McCarthy et al Oct. 9, 1951 2,786,833 Wurzburg et al Mar. 26, 1957 OTHER REFERENCES Potentional Industrial Use of Amylose, 1958.

Claims (1)

1. IN A METHOD FOR SIZING TEXTILE YARNS, THE IMPROVEMENT OF TREATING SAID YARNS WITH AN AQUEOUS SOLUTION OF A SIZING AGENT SELECTED FROM THE GROUP CONSISTING OF AMYLOSE ETHERS, AMYLOSE ESTERS, AND AMYLOSE ACETALS, AND SUBSEQUENTLY DRYING THE TREATED YARNS.
US800937A 1958-03-24 1959-03-23 Method of sizing textile yarns Expired - Lifetime US3036935A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1118151X 1958-03-24

Publications (1)

Publication Number Publication Date
US3036935A true US3036935A (en) 1962-05-29

Family

ID=9630356

Family Applications (1)

Application Number Title Priority Date Filing Date
US800937A Expired - Lifetime US3036935A (en) 1958-03-24 1959-03-23 Method of sizing textile yarns

Country Status (5)

Country Link
US (1) US3036935A (en)
DE (1) DE1118151B (en)
FR (2) FR1204376A (en)
GB (1) GB895429A (en)
NL (2) NL125708C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127392A (en) * 1964-03-31 Hydroxyalkylation of amylose suspen-
US3144351A (en) * 1961-10-18 1964-08-11 Penick & Ford Ltd Method of sizing hydrophobic synthetic yarns
US3265516A (en) * 1962-04-18 1966-08-09 Pittsburgh Plate Glass Co Glass fiber sizing composition
US3321324A (en) * 1963-06-20 1967-05-23 Staley Mfg Co A E Methylol amide adduct sizing composition
US3352705A (en) * 1961-01-31 1967-11-14 Scholten Chemische Fab Method of producing a water resistant pigmented coating on paper or paperboard, andthe paper or paperboard thus obtained
US3640756A (en) * 1967-10-31 1972-02-08 Scholten Research Nv Remoistenable pregummed products
US3887752A (en) * 1972-11-24 1975-06-03 Hubinger Co Textile treatment with amphoteric starch esters
US3979306A (en) * 1972-11-21 1976-09-07 Kao Soap Co., Ltd. Method and composition for finishing clothings to prevent yellowing
US4993490A (en) * 1988-10-11 1991-02-19 Exxon Production Research Company Overburn process for recovery of heavy bitumens
WO2005098121A1 (en) * 2004-04-01 2005-10-20 Basf Plant Science Gmbh Amylose starch products as sizing agents for textile yarns

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146841A3 (en) * 1983-12-17 1986-11-20 Consortium für elektrochemische Industrie GmbH Water soluble mixed ether of beta-cyclodextrin, and process for its preparation
DE3477929D1 (en) * 1983-12-17 1989-06-01 Hoechst Ag Beta-cyclodextrin and process for its preparation
CN101892566B (en) * 2009-05-18 2012-10-03 佳木斯三和亚麻纺织有限责任公司 High-count and high-density pure linen grey cloth warp sizing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1847827A (en) * 1927-05-30 1932-03-01 Gahlert Franz Josef Process for the treatment of artificial silk yarns after spinning
US2220508A (en) * 1939-04-11 1940-11-05 Rohm & Haas Improving the wash-fastness of sizes with aminomethylamide derivatives
US2412213A (en) * 1938-12-12 1946-12-10 Groen Martinus Gerardus Method of producing starch esters
US2570830A (en) * 1945-08-02 1951-10-09 Monsanto Chemicals Method of sizing textile warp yarns
US2786833A (en) * 1953-11-24 1957-03-26 Nat Starch Products Inc Sulfation of amylaceous materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE869030C (en) * 1943-09-25 1953-03-02 Sichel Werke A G Process for the production of water-soluble starch derivatives
DE921440C (en) * 1943-10-09 1954-12-16 Sichel Werke Ag Process for the production of water-soluble starch derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1847827A (en) * 1927-05-30 1932-03-01 Gahlert Franz Josef Process for the treatment of artificial silk yarns after spinning
US2412213A (en) * 1938-12-12 1946-12-10 Groen Martinus Gerardus Method of producing starch esters
US2220508A (en) * 1939-04-11 1940-11-05 Rohm & Haas Improving the wash-fastness of sizes with aminomethylamide derivatives
US2570830A (en) * 1945-08-02 1951-10-09 Monsanto Chemicals Method of sizing textile warp yarns
US2786833A (en) * 1953-11-24 1957-03-26 Nat Starch Products Inc Sulfation of amylaceous materials

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127392A (en) * 1964-03-31 Hydroxyalkylation of amylose suspen-
US3352705A (en) * 1961-01-31 1967-11-14 Scholten Chemische Fab Method of producing a water resistant pigmented coating on paper or paperboard, andthe paper or paperboard thus obtained
US3144351A (en) * 1961-10-18 1964-08-11 Penick & Ford Ltd Method of sizing hydrophobic synthetic yarns
US3265516A (en) * 1962-04-18 1966-08-09 Pittsburgh Plate Glass Co Glass fiber sizing composition
US3321324A (en) * 1963-06-20 1967-05-23 Staley Mfg Co A E Methylol amide adduct sizing composition
US3640756A (en) * 1967-10-31 1972-02-08 Scholten Research Nv Remoistenable pregummed products
US3979306A (en) * 1972-11-21 1976-09-07 Kao Soap Co., Ltd. Method and composition for finishing clothings to prevent yellowing
US3887752A (en) * 1972-11-24 1975-06-03 Hubinger Co Textile treatment with amphoteric starch esters
US4993490A (en) * 1988-10-11 1991-02-19 Exxon Production Research Company Overburn process for recovery of heavy bitumens
WO2005098121A1 (en) * 2004-04-01 2005-10-20 Basf Plant Science Gmbh Amylose starch products as sizing agents for textile yarns
US20070251021A1 (en) * 2004-04-01 2007-11-01 Basf Plant Science Gmbh Amylose Starch Products as Sizing Agents for Textile Yarns

Also Published As

Publication number Publication date
FR1207505A (en) 1960-02-17
NL125708C (en)
GB895429A (en) 1962-05-02
DE1118151B (en) 1961-11-30
FR1204376A (en) 1960-01-26
NL237283A (en)

Similar Documents

Publication Publication Date Title
US3036935A (en) Method of sizing textile yarns
US2422572A (en) Dressing fibrous and textile materials
US2137343A (en) Chemical process
JPH0140148B2 (en)
US4368324A (en) Sizing agent and process for the manufacture thereof
US4726809A (en) Textile size
US2200134A (en) Process for producing shrinkage effects in textiles
US2198660A (en) Treatment of textile and other materials
US2109295A (en) Textile fabric and process of making the same
US3503794A (en) Sizing of textile filament and yarn with mixture of hydroxy polymer and hydrolyzed starch
US2786258A (en) Cyanoethylated native cotton fibers and process of making the same
US2381587A (en) Treatment of textile materials
US1950664A (en) Treatment of textile and other material
US3719664A (en) Warp sizing agent
US3087775A (en) Production of alkali-soluble cellulosic textile materials by the nitric acid treatment of partially etherified cottons
EP0046645B1 (en) Use of heteropolysaccharide s-119 as a warp size
US2690427A (en) Textile composition
US4786530A (en) Finishing size composition and method for making and using same
US2343898A (en) Film forming composition, method, and article
US2116063A (en) Treatment of artificial materials
US2403515A (en) Sizing material
US2327912A (en) Dressing of fabrics and artificial structures
US2114669A (en) Treating textile material and product thereof
US3309223A (en) Treatment of shaped articles with a sulphonium compound and a reactive polymeric substance
US2041728A (en) Textile process