US3020431A - Ion source and plasma generator - Google Patents
Ion source and plasma generator Download PDFInfo
- Publication number
- US3020431A US3020431A US697679A US69767957A US3020431A US 3020431 A US3020431 A US 3020431A US 697679 A US697679 A US 697679A US 69767957 A US69767957 A US 69767957A US 3020431 A US3020431 A US 3020431A
- Authority
- US
- United States
- Prior art keywords
- gas
- wall
- permeable
- ion source
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H3/00—Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
- H05H3/06—Generating neutron beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/08—Ion sources; Ion guns using arc discharge
Definitions
- This invention relates to ion sources and to methods and devices for producing ions. More particularly it pertains to a novel process and device for producing a pulse of ions of high intensity for short periods of time which is simple, rugged, reliable and of relatively small dimensions.
- Ions of the type produced by this invention have many uses in pure applied research in connection with particle accelerators, reactor physics ⁇ and fusion vas well as practical applications in the iields of instrumentation, isotope separation, geophysical exploration and many others connected with nuclear physics and atomic energy.
- ion sources of the type covered by this invention utilize an electric arc or glow discharge to produce a plasma of ionized gas.
- conventional sourcesl of this type a lilament and electro-magnet are often used to maintain the are, necessitating considerable extra and troublesome
- beta emitting nuclear sources lare utilized but these either have a limitedrlifetime or are hazardous to use as Well as not easily controlled.
- existing devices moreover, either the intensity of the ion beam or the useful llife of the device is limited or else it must be of relatively large size. Devices such as these are covered by Crawford Patent 2,764,707 and Laurence Patent 2,785,311.
- lt is another object of my invention to provide an ion source which would 'produce a high intensity pulsed beam of ions having a relatively long useful life.
- an emitter the walls of which are permeable to the gas, at the same time that a pulsed electrical current is caused to iiow through the Walls of the emitter so that the heating action of the current aids the diffusion vof the gas through the walls.
- the opposite side of the chamber is surrounded by an evacuated vessel, the pressure in which s caused to increase by the leakage of gas through the walls of the chamber. The pressure close to the emitter rises until a voltage breakdown occurs, generating an arc plasma on the surface of the emitter.
- 11 is the body of the ion source which may be made of copper, stainless steel or other suitable metal and 12 is a reservoir containing a supply of the gas to be ionized, which may be hydrogen or one of its isotopes, deuterium or tritium, although other gases maybe used.
- the reservoir 12 connects by means of the gas tube 13 to the ion emitter 14.
- the latter is formed from a metal belonging to the so-called transition group such as palladium, zirconium, titanium, tantalum or others having the characteristic of being permeable to certain gases.
- the gas tube 13 is supported in the body 11 by the insulating tube ⁇ 15 which may 4be of magnesium oxide or other insulating and refractory material.
- One end of the emitter 14 is'V supported by the metal spider 16 while the tube 11 is joined to vacuum tank wall 17 to which'is attached also the ion duct 18.
- the latter two items may be components of a cyclotron, linear accelerator or other related devicef f All metallic joints are made by soldering, brazing,
- V weldingor otherv similar process adapted to ,the lmetals It is still another object of my invention to providev an 'l ion vsource which can be easily regulated and controlled without the use of elaborate electrical circuitry and magnetic fields.
- t is yet another object of my invention to provide an ion source which utilizes the permeability of some metals to certain gases sought to be ionized by supplying one of said gases from an external source to one surface of said permeable metal,'rnaintaining a vacuum on a second surfacev of said permeable metal, applying a high diierence of potential to said metal, therebycausing a diiusion of said gas through said metal, resulting in a decrease in vacuum on said second surface causing anlelectric arc discharge on said second surface, thereby producing ions of the said gas.
- FIG. 1 is a longitudinal section showing the complete assembly of one embodiment of the invention.
- FIG. 2 is an enlarged section and end view of the ion emission end of the device.
- FIG. 3 is a curve showing the relation'between breakdown potential and the product of pressure and gap distance for the embodiment shown in FIGURE 1 in accordance with Paschens Law.
- FIG. 4 is a longitudinal section showing an alternate embodiment for eecting the objectives of lthe invention.
- the gas to be ionized is caused to be compressed into a chamber or ele- A power supply Aconsisting of a source of high voltagel pulsed current is connected tov the gas tube ⁇ 13 and vacuum tank wall 17 as showni y v
- vthe embodiment shown 'on FlGfl, I have used a copper reservoir 12 of Ispherical shape approximately' 11/2 in diameter, a body 11 of copper 3/s" in diameter and 1%.” long, ⁇ and a palladium emitter .028 inside diameter by .032" outside diameter ⁇ by .125 effective length.
- the ion duct 18 is 11/2 in diameter and extends 2" beyond the'end of tube 18.
- the area reprmented by 22 is maintained under a vacuum of 10.5v mm. of mercury by a suitable p'ump not shown.
- deuterium gas 20 is supplied toreservoir 12 at a pressure. of 200 lbs.
- Vi have measured the ions produced by the arc Plasma 23 and found that they have average energies of 2 electron volts and arrive at the end of the Vion duct 1 microsecond before ,the gas moleculesl do. I have measured also the output of deuterons per microsecond pulse and found it to be 1015 ions.
- I have found still further that with the embodiment shown and described above I can produce 10 pulses per second and using the gas supply as shown, I can produce approximately 1,000,000 pulses, thus providing continuous operation of the device for well over 24 hours despite the fact that the greatest dimension of my device is not over 6".
- I introduce the gas to be ionized around the outside of an emitter chamber 14.
- I utilize a rod 41 of copper or other suitable conducting material to connect the emitter ⁇ 145 with the power supply through a special insulator 42, a bushing 43 and a seal 44.
- this alternate embodiment is very similar to that described above with the principal exception that the gas to be ionized diffuses from the outer to the inner surface of the emitter and the are plasma is consequently generated on the latter.
- the gas to be ionized diffuses from the outer to the inner surface of the emitter and the are plasma is consequently generated on the latter.
- An ion source comprising a chamber at least one wall of which is composed of a metal permeable to a gas sought to be ionized, means of directing said gas to one surface of said wall, means of maintaining a high vacuum at a second surface of said wall, means of applying a high difference of potential between two points on said second surface, said points being so spaced as to cause rapid diffusion of said gas through said wall and create a sudden increase in pressure at said second surface, thereby causing an electric arc discharge of short duration between the two said points on said second surface.
- the ion source of claim 1 wherein the gas sought to be ionized is an isotope of hydrogen selected from the group consisting of hydrogen, deuterium and tritium.
- the ion source of claim l wherein the metal permeable to a gas sought to be ionized is selected from the group consisting of palladium, zirconium, titanium and tantalum.
- a plasma generator comprising a chamber at least one wall of which is permeable to a gas sought to be ionized, means of directing said gas to one surface of said permeable wall, means of maintaining a vacuum on another surface of said wall, means of applying a difference of potential between two points on said wall, means of controlling said potential and said vacuum so that an arc plasma is formed on one surface.
- An ion source comprising a chamber at least one wall of which is permeable to gas sought to be ionized, means of directing said gas to one surface of said permeable Wall, means of maintaining a vacuum on another surface of said wall, means of applying a difference of potential between two points on said wall, means of controlling said potential and said vacuum so that an arc plasma is formed on one surface, means of removing the ions so formed.
- a plasma generator comprising a chamber at least one wall of which is permeable to a gas sought to be ionized, means of directing said gas to one surface of said permeable wall, means o f maintaining a vacuum on another surface of said permeable wall, means of applying a difference of potential between two points on said wall whereby diffusion of said gas through said wall produces an arc plasma on one surface of said wall.
- An ion source comprising a chamber at least one wall of which is permeable to a gas sought to be ionized, means of directing said gas to one surface of said permeable wall, means of maintaining a vaccurn on another surface of said permeable wall, means of applying a difference of potential between two points on said wall, whereby diffusion of said gas through said wall vproduces an arc plasma on one surface of said wall, means of removing the ions so formed.
- An ion source comprising a hollow chamber permeable to a gas sought to be ionized, an external source of said gas, means of directing said gas to one side of said hollow chamber, means of maintaining a vacuum on another side of said chamber, means of applying a difference of potential between two points on said chamber, so arranged that diffusion of said gas from said chamber produces an electrical discharge on onesurface of said chamber.
- the ion source of claim 8 in which the means of applying adilerence of potential between two points on a permeable chamber comprises a pulse forming network adapted to provide a source of high potential pulsed current to said chamber.
- a method of producing an are plasma comprising means of introducing a gas sought to be ionized to the surface of a wall of a chamber, said wall being composed of a material permeable to said gas, means of maintaining a vacuum on an opposite surface of said wall, means of applying a difference of potential between two points on said wall so that said gas is caused to diffuse through said wall and form an arc plasma on said opposite surface of said wall.
- a method of producing ions comprising means of introducing a gas ⁇ sought to be ionized to the surface of a Wall of a chamber, said wall being composed of a material permeable to said gas, means of maintaining a vacuum ⁇ on an 4Opposite surface of said wall, means of applying a difference of potential between two points on said wall so ⁇ that said gas is caused to diffuse through said wall and form an arc plasma on said lopposite surface of said wall and means for removing the ions so formed.
- a method for producing an arc plasma involving the diffusion of an ionizable gas through a permeable metal the improvement comprising an externalsource of supply of said gas, means of maintaing a vacuum on one surface of said metal, means of applying a difference of potential to said metal, means of controlling ⁇ said po tential and said vacuum so that an arc plasma is formed on said surface of said metal.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Electron Sources, Ion Sources (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US697679A US3020431A (en) | 1957-11-20 | 1957-11-20 | Ion source and plasma generator |
BE573103A BE573103A (fr) | 1957-11-20 | 1958-11-19 | Source d'ions et générateur de plasma |
FR1207999D FR1207999A (fr) | 1957-11-20 | 1958-11-20 | Source d'ions et générateur de plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US697679A US3020431A (en) | 1957-11-20 | 1957-11-20 | Ion source and plasma generator |
Publications (1)
Publication Number | Publication Date |
---|---|
US3020431A true US3020431A (en) | 1962-02-06 |
Family
ID=24802104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US697679A Expired - Lifetime US3020431A (en) | 1957-11-20 | 1957-11-20 | Ion source and plasma generator |
Country Status (3)
Country | Link |
---|---|
US (1) | US3020431A (fr) |
BE (1) | BE573103A (fr) |
FR (1) | FR1207999A (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3283193A (en) * | 1962-05-14 | 1966-11-01 | Ellison Company | Ion source having electrodes of catalytic material |
US3328960A (en) * | 1965-08-16 | 1967-07-04 | Thomas W Martin | Ion propulsion system employing lifecycle wastes as a source of ionizable gas |
US3436582A (en) * | 1962-04-18 | 1969-04-01 | Gen Electric | Plasma separator ion engine |
US3983695A (en) * | 1975-09-12 | 1976-10-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ion beam thruster shield |
US4296330A (en) * | 1980-04-16 | 1981-10-20 | The United States Of America As Represented By The Secretary Of The Army | Flowing gas discharge source of vacuum ultra-violet line radiation system |
US4821509A (en) * | 1985-06-10 | 1989-04-18 | Gt-Devices | Pulsed electrothermal thruster |
US4821508A (en) * | 1985-06-10 | 1989-04-18 | Gt-Devices | Pulsed electrothermal thruster |
WO1989010624A1 (fr) * | 1988-04-27 | 1989-11-02 | United States Department Of Energy | Procede et appareil electrique forçant l'ejection extrudee de jets de matiere a vitesse elevee |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2677061A (en) * | 1953-02-05 | 1954-04-27 | Atomic Energy Commission | Ion source |
US2817032A (en) * | 1954-03-05 | 1957-12-17 | Dwight W Batteau | Gaseous-discharge method and system |
US2826708A (en) * | 1955-06-02 | 1958-03-11 | Jr John S Foster | Plasma generator |
US2831996A (en) * | 1956-09-19 | 1958-04-22 | Eugene F Martina | Ion source |
-
1957
- 1957-11-20 US US697679A patent/US3020431A/en not_active Expired - Lifetime
-
1958
- 1958-11-19 BE BE573103A patent/BE573103A/fr unknown
- 1958-11-20 FR FR1207999D patent/FR1207999A/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2677061A (en) * | 1953-02-05 | 1954-04-27 | Atomic Energy Commission | Ion source |
US2817032A (en) * | 1954-03-05 | 1957-12-17 | Dwight W Batteau | Gaseous-discharge method and system |
US2826708A (en) * | 1955-06-02 | 1958-03-11 | Jr John S Foster | Plasma generator |
US2831996A (en) * | 1956-09-19 | 1958-04-22 | Eugene F Martina | Ion source |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3436582A (en) * | 1962-04-18 | 1969-04-01 | Gen Electric | Plasma separator ion engine |
US3283193A (en) * | 1962-05-14 | 1966-11-01 | Ellison Company | Ion source having electrodes of catalytic material |
US3328960A (en) * | 1965-08-16 | 1967-07-04 | Thomas W Martin | Ion propulsion system employing lifecycle wastes as a source of ionizable gas |
US3983695A (en) * | 1975-09-12 | 1976-10-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ion beam thruster shield |
US4296330A (en) * | 1980-04-16 | 1981-10-20 | The United States Of America As Represented By The Secretary Of The Army | Flowing gas discharge source of vacuum ultra-violet line radiation system |
US4821509A (en) * | 1985-06-10 | 1989-04-18 | Gt-Devices | Pulsed electrothermal thruster |
US4821508A (en) * | 1985-06-10 | 1989-04-18 | Gt-Devices | Pulsed electrothermal thruster |
WO1989010624A1 (fr) * | 1988-04-27 | 1989-11-02 | United States Department Of Energy | Procede et appareil electrique forçant l'ejection extrudee de jets de matiere a vitesse elevee |
US4888522A (en) * | 1988-04-27 | 1989-12-19 | The United States Of America As Represented By The Department Of Energy | Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets |
Also Published As
Publication number | Publication date |
---|---|
FR1207999A (fr) | 1960-02-19 |
BE573103A (fr) | 1959-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2809314A (en) | Field emission ion source | |
US3064153A (en) | High intensity light source | |
ES366386A1 (es) | Un aparato para generar reacciones de fusion. | |
US3020431A (en) | Ion source and plasma generator | |
US2798181A (en) | Pumping ion source | |
Choi et al. | Plasma formation in a pseudospark discharge | |
Gow et al. | A High‐Intensity Pulsed Ion Source | |
US2969480A (en) | Ion sources | |
GB1101293A (en) | High output duoplasmatron-type ion source | |
US2933611A (en) | Neutron source | |
US1863702A (en) | Gaseous conduction method and apparatus | |
US8311186B2 (en) | Bi-directional dispenser cathode | |
Grigor’ev et al. | Enhanced emission during submillisecond low-energy electron beam generation in a diode with grid-stabilized plasma cathode and open anode plasma boundary | |
Gundersen | Gas-phase pulsed power switches | |
US2873400A (en) | Ion switch | |
US3302026A (en) | Ion source neutron generator having magnetically stabilized plasma | |
US3031396A (en) | Stabilized pinch machine | |
US3241903A (en) | Method and apparatus for controlling a sealed atmosphere | |
JPS6078400A (ja) | プラズママイクロチヤンネルを用いた強いx線源 | |
Devyatkov et al. | Profile formation of emission current of grid plasma cathode in a longitudinal magnetic field | |
US2973444A (en) | Neutron source for well logging apparatus | |
GB862835A (en) | A device for producing energetic ions | |
US2967943A (en) | Gaseous discharge device | |
US3400290A (en) | Static atmosphere ion beam accelerator having a movable target | |
US3281617A (en) | Plasma ion source having apertured extractor cathode |