US3000958A - Polynitrodiols - Google Patents

Polynitrodiols Download PDF

Info

Publication number
US3000958A
US3000958A US675798A US67579857A US3000958A US 3000958 A US3000958 A US 3000958A US 675798 A US675798 A US 675798A US 67579857 A US67579857 A US 67579857A US 3000958 A US3000958 A US 3000958A
Authority
US
United States
Prior art keywords
aza
polynitro
dioxane
prepared
nitroalkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US675798A
Inventor
Marvin H Gold
Gustave B Linden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerojet Rocketdyne Inc
Original Assignee
Aerojet General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerojet General Corp filed Critical Aerojet General Corp
Priority to US675798A priority Critical patent/US3000958A/en
Application granted granted Critical
Publication of US3000958A publication Critical patent/US3000958A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine

Definitions

  • a and A are lower alkylene or lower nitroalkylene radicals, at least one A being a nitroalkylene radical.
  • polynitro diols of our invention find valuable use as intermediates in the preparation of high explosive compounds. They readily condense with the nitro isocyanate compounds such as 3,3,3-trinitropropyl isocyanates, according to the method disclosed in assignees copending United States patent application Serial No. 479,656, filed January 3, 1955, to form polyritro carbamate compositions which are useful as high explosives.
  • nitro isocyanate compounds such as 3,3,3-trinitropropyl isocyanates
  • 2,470,162 is to pack the crystalline explosive in powder form into the warhead of the missile.
  • the crystals can be first pelletized and then packed.
  • a charge thus prepared is sufliciently insensitive to withstand the shock entailed in the ejection of a shell from a gun barrel or from a rocket launching tube under the pressure developed from ignition of a propellant charge, and can be caused to explode on operation of an impactor timefuse mechanism firing a detonating explosive such as lead azide or mercury fulminate.
  • acyl halides may be reduced to their corresponding alcohols with reducing agents such as lithium aluminum hydride, and hydrogen in the presence of a catalyst.
  • reducing agents such as lithium aluminum hydride
  • these conventional reducing agents all possess such strong reducing properties that the destruction of functional groups, such as aliphatic nitro groups, usually accompanies the reduction of the carbonyl group.
  • This method is further complicated by the sensitivity of nitro groups to basic media, hence these reducing agents, although capable of effecting the reduction, nevertheless have many undesirable features making it advantageous to find some more convenient method.
  • a and A are lower alkylene or lower nitroalkylene radicals, at least one A being a nitroalkylene radical, and X is a halogen radical.
  • the reduction is efiected by adding a solution of a Intro-containing acyl halide to a suspension of sodium borohydride.
  • 1,4-dioxane is the preferred solvent due to its inert be havior and volatility. Any insert organic solvent can be used such as 2,4-dimethylsulfolane; however, dioxane is preferred since it can be separated from the product with greater ease.
  • the compounds thus produced are obtained in a relatively pure form from the reaction mixture by hydrolyzing the sodium borohydride and its oxidation products in the aqueous phase, with a mineral acid, and recovering the product by crystallization, extraction or distillation from the non-aqueous phase.
  • the polynitro diacyl halides used as starting materials in the practice of our invention are prepared from their corresponding acids by conventional means.
  • the acids for example, 4,4,6,8,8-hexanitro-6-aza-1,ll-undecanedioic acid, are prepared by hydrolysis of their corresponding esters which are prepared by the addition of a nitro-containing ester, having a labile hydrogen radical, to an unsaturated nitro-containing ester in accordance with the method disclosed in assignees ccpending application No. 337,211, filed February 16, 1953, now abandoned.
  • any member of this new class of polynitro diols can be prepared by reducing it with sodium borohydride in accordance with the teachings of our invention.
  • 4,6,6-trinitro-4-aza- 1,9-nonanediol is prepared by reducing 4,6,6-trinitro-4- aza-1,9-nonanedioyl chloride with sodium borohydride.
  • compositions of matter having the formula:
  • a and A are radicals selected from the group consisting of lower alkylene and lower nitroalkylene radicals, at least one being a nitroalkylene radical.
  • HOCHz-AN-ACH2OH which comprises reducing a polynitro diacyl halide having the formula:
  • a and A are radicals selected from the group consisting of lower alkylene and lower nitroalkylene radicals, at least one -A being a nitroalkylene radical and X is a halogen radical.
  • a method of preparing 4,4,6,8,8-pentanitro-6-aza- 1,11-undecanediol which comprises reducing 4,4,68,8- pentanitro-6-aza-1,1l-undecanedioyl chloride with sodium borohydn'de.
  • a method of preparing 4,6,6-trinitro-4-aza-1,9-nonanediol which comprises reducing 4,6,6-trinitro-4-aza-1,9- nonanedioyl chloride with sodium borohydride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

United States Patent 3,000,958 POLYNITRODIOLS Marvin H. Gold and Gustave B. Linden, Pasadena, Calif., assignors to Aerojet-General Corporation, Azusa, Calif., a corporation of Ohio No Drawing. Filed July 25, 1957, Ser. No. 675,798 8 Claims. (Cl. 260-584) This invention relates to new and useful polynitro diols and to a method for their preparation. In particular, this invention is directed to polynitro diols having the general formula:
wherein A and A are lower alkylene or lower nitroalkylene radicals, at least one A being a nitroalkylene radical.
The polynitro diols of our invention find valuable use as intermediates in the preparation of high explosive compounds. They readily condense with the nitro isocyanate compounds such as 3,3,3-trinitropropyl isocyanates, according to the method disclosed in assignees copending United States patent application Serial No. 479,656, filed January 3, 1955, to form polyritro carbamate compositions which are useful as high explosives. For example, 4,4,6,8,8-pentanitro 6 aza-1,ll-undecanediol condenses with 3,3,3-trinitropropyl isocyanate to form N,N'-bis-(3, 3,3-trinitropropyl) 4,4,6,8,8 pentanitro 6 aza 1,11- undecylene dicarbarnate. The compounds thus prepared are useful as high explosives and can be used in any conventional explosive missile, projectile, rocket, or the like, as the main explosive charge. An example of such a missile is disclosed in United States Patent No. 2,470,162 issued May 17, 1949. One way of using the high explosives in a device such as that disclosed in United States Patent No. 2,470,162 is to pack the crystalline explosive in powder form into the warhead of the missile. Alternatively, the crystals can be first pelletized and then packed. A charge thus prepared is sufliciently insensitive to withstand the shock entailed in the ejection of a shell from a gun barrel or from a rocket launching tube under the pressure developed from ignition of a propellant charge, and can be caused to explode on operation of an impactor timefuse mechanism firing a detonating explosive such as lead azide or mercury fulminate.
It is well known that acyl halides may be reduced to their corresponding alcohols with reducing agents such as lithium aluminum hydride, and hydrogen in the presence of a catalyst. However, these conventional reducing agents all possess such strong reducing properties that the destruction of functional groups, such as aliphatic nitro groups, usually accompanies the reduction of the carbonyl group. This method is further complicated by the sensitivity of nitro groups to basic media, hence these reducing agents, although capable of effecting the reduction, nevertheless have many undesirable features making it advantageous to find some more convenient method.
We have now found that polynitro diols can be prepared from their corresponding diacyl halides by reduction with sodium borchydride in accordance with the general reaction scheme set forth below:
0 N0 0 N0 H i! I XCA-NA-CX HOCH2ANACH2OH wherein A and A are lower alkylene or lower nitroalkylene radicals, at least one A being a nitroalkylene radical, and X is a halogen radical.
The reduction is efiected by adding a solution of a Intro-containing acyl halide to a suspension of sodium borohydride.
Optimum results are obtained using a suspension of 3,000,958 Patented Sept. 19, 1961 powdered sodium borohydride, about 200% excess, in an inert solvent such as dioxane.
1,4-dioxane is the preferred solvent due to its inert be havior and volatility. Any insert organic solvent can be used such as 2,4-dimethylsulfolane; however, dioxane is preferred since it can be separated from the product with greater ease.
The compounds thus produced are obtained in a relatively pure form from the reaction mixture by hydrolyzing the sodium borohydride and its oxidation products in the aqueous phase, with a mineral acid, and recovering the product by crystallization, extraction or distillation from the non-aqueous phase.
The following example is presented to more clearly illustrate our invention. This example is presented purely as a means of illustration and does not in any way define either the limits or the scope of our invention.
EXAMPLE 1 Preparation of 4,4,6,8,8-pentanitr0-6-aza-1,1]-
undecanediol A reactor was charged with 35 ordinary glass marbles, 150 gm. finely powdered sodium borohydride and 2 liters absolute dioxane. With stirring, 1500 ml. dioxane was removed by distillation at which time the distillate was no longer basic. After cooling to room temperature, a solution of 1.5 ml. glacial acetic acid in 15 ml. dioxane was added dropwise. A solution of .3 mole 4,4,6,8,8- pentanitro-6-aza-l,ll-undecanedioyl chloride was added dropwise over a period of about two hours. The temperature was maintained in the range of about 2226 C. The mixture became very viscous and 300 ml. dioxane was added at the mid-point. The cream colored mixture gradually became thinner, and after a total of 26 hours was cautiously poured into a stirred mixture of 400 ml. conc. hydrochloric acid and excess ice. During the hydrolysis a grey oil was isolated by filtration and the aqueous dioxane filtrate was extracted with ether and benzene and crystallized from methylene chloride. The product was dissolved in absolute ethanol, benzene and cyclohexane and treated with decolorizing carbon. The solution was cooled and the resultant crystals isolated, washed with a cold solvent mixture and dried. The yield was and the product 4,4,6,8,8-pentanitro-6-aza,1, ll-undecanediol had a melting point of 106108 C. The elemental analysis of the product was as follows:
Calculated: percent C, 28.99; percent H, 4.38; percent N, 20.29. Found: percent C, 29.24; percent H, 4.36; percent N, 20.68.
The polynitro diacyl halides used as starting materials in the practice of our invention are prepared from their corresponding acids by conventional means. The acids, for example, 4,4,6,8,8-hexanitro-6-aza-1,ll-undecanedioic acid, are prepared by hydrolysis of their corresponding esters which are prepared by the addition of a nitro-containing ester, having a labile hydrogen radical, to an unsaturated nitro-containing ester in accordance with the method disclosed in assignees ccpending application No. 337,211, filed February 16, 1953, now abandoned.
It is apparent that by merely selecting an appropriate polynitro substituted diacyl halide any member of this new class of polynitro diols can be prepared by reducing it with sodium borohydride in accordance with the teachings of our invention. For example, 4,6,6-trinitro-4-aza- 1,9-nonanediol is prepared by reducing 4,6,6-trinitro-4- aza-1,9-nonanedioyl chloride with sodium borohydride.
It will be appreciated by those skilled in the art that other members of this new class of compounds can be prepared in the same manner simply by reacting appropriate starting materials. It is preferred in the practice of our invention to utilize polynitro acid chlorides as starting materials for reasons of cost and convenience, how- 3 ever it should be understood that any of the acid halides can be used. It will also be appreciated that reaction temperatures are not critical in the practice of our invention, and that both higher and lower temperatures and conditions can be used if desired without affecting the course of the reaction.
This application is a continuation-in-part of our copending US. patent application Serial No. 392,471, filed November 16, 1953, now abandoned.
We claim:
1. As compositions of matter the polynitro diols having the formula:
wherein A and A are radicals selected from the group consisting of lower alkylene and lower nitroalkylene radicals, at least one being a nitroalkylene radical.
2. As a composition of matter 4,4,6,8,8-pentanitro-6- aza-1,l1-undecanediol having the structural formula:
3. As a composition of matter 4,6,6-trinitro-4-aza-1,9- nonanediol having the structural formula:
4 4. The method of preparing polynitro diols having the formula: V
HOCHz-AN-ACH2OH which comprises reducing a polynitro diacyl halide having the formula:
with sodium borohydride wherein A and A are radicals selected from the group consisting of lower alkylene and lower nitroalkylene radicals, at least one -A being a nitroalkylene radical and X is a halogen radical.
5. The method of claim 4 wherein the reaction is conducted in the presence of an inert organic solvent.
6. The method of claim 4 wherein the reaction is con ducted in the presence of 1,4-dioxane.
7. A method of preparing 4,4,6,8,8-pentanitro-6-aza- 1,11-undecanediol which comprises reducing 4,4,68,8- pentanitro-6-aza-1,1l-undecanedioyl chloride with sodium borohydn'de.
8. A method of preparing 4,6,6-trinitro-4-aza-1,9-nonanediol which comprises reducing 4,6,6-trinitro-4-aza-1,9- nonanedioyl chloride with sodium borohydride.
Hurd: Chemistry of the Hydrides, John Wiley and Sons, Inc., New York (1952), page 162.
Shechter etal: J.A.C.S., vol. 74 (1952), pages 3664-8.

Claims (1)

1. AS COMPOSITIONS OF MATTER OF POLYNITRO DIOLS HAVING THE FORMULA:
US675798A 1957-07-25 1957-07-25 Polynitrodiols Expired - Lifetime US3000958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US675798A US3000958A (en) 1957-07-25 1957-07-25 Polynitrodiols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US675798A US3000958A (en) 1957-07-25 1957-07-25 Polynitrodiols

Publications (1)

Publication Number Publication Date
US3000958A true US3000958A (en) 1961-09-19

Family

ID=24712015

Family Applications (1)

Application Number Title Priority Date Filing Date
US675798A Expired - Lifetime US3000958A (en) 1957-07-25 1957-07-25 Polynitrodiols

Country Status (1)

Country Link
US (1) US3000958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567296A (en) * 1984-06-29 1986-01-28 The United States Of America As Represented By The Secretary Of The Navy 1-Fluoro-1,1,5-trinitro-3-oxa-5-azahexane and method of preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731460A (en) * 1951-07-10 1956-01-17 Nitroglycerin Ab Process for producing ammonia derivatives of polynitroalcohols

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731460A (en) * 1951-07-10 1956-01-17 Nitroglycerin Ab Process for producing ammonia derivatives of polynitroalcohols

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567296A (en) * 1984-06-29 1986-01-28 The United States Of America As Represented By The Secretary Of The Navy 1-Fluoro-1,1,5-trinitro-3-oxa-5-azahexane and method of preparation

Similar Documents

Publication Publication Date Title
US5034072A (en) 5-oxo-3-nitro-1,2,4-triazole in gunpowder and propellant compositions
US2978453A (en) 3, 3, 5, 5-tetranitropiperidine
US3000958A (en) Polynitrodiols
US3000957A (en) Polynitro alcohols
US5387297A (en) 2,4-dinitroimidazole- a less sensitive explosive and propellant made by thermal rearrangement of molten 1,4 dinitroimidazole
US3000965A (en) Polynitro diols
US3000939A (en) N-nitro,n,n'-bis(trinitroalkyl)-urea
US3000942A (en) N,n'-(nitrazaalkyl) oxamides
US3101378A (en) Polyhydroxy nitro compounds
US2978485A (en) N-nitrocarbamates
US3020318A (en) Polynitro alcohols and their method of preparation
US3020317A (en) Polynitro alcohols and salts thereof
US2967199A (en) Nitramides
US2978494A (en) Polynitro esters
US2967198A (en) Polynitroamides
US2978452A (en) Pentanitropiperidine
US2934558A (en) Nitrazaalkylnitrates
US3000944A (en) N,n'-polynitroalky-oxamides
US3399235A (en) Polynitro trifluoromethyl amines
US3000931A (en) Process for the preparation of nitrocarbamates
US3109020A (en) Polynitro-nitraza-carbamates and method of preparing same
US3000928A (en) Polynitro nitrate compounds and method of preparation
US2901512A (en) Tetranitrodiethylamine salts
US2940997A (en) Gem-dinitro amino acids
US3000920A (en) Nitrazaisocyanates