US3000175A - Burning rate acceleration catalysts for solid propellant compositions - Google Patents

Burning rate acceleration catalysts for solid propellant compositions Download PDF

Info

Publication number
US3000175A
US3000175A US508314A US50831455A US3000175A US 3000175 A US3000175 A US 3000175A US 508314 A US508314 A US 508314A US 50831455 A US50831455 A US 50831455A US 3000175 A US3000175 A US 3000175A
Authority
US
United States
Prior art keywords
propellant
burning rate
rate acceleration
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US508314A
Inventor
Ralph W Lawrence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerojet Rocketdyne Inc
Original Assignee
Aerojet General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerojet General Corp filed Critical Aerojet General Corp
Priority to US508314A priority Critical patent/US3000175A/en
Application granted granted Critical
Publication of US3000175A publication Critical patent/US3000175A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating

Definitions

  • Solid, non-metallic propellant compositions are used for rocket and ordnance projection, as well as for assisted aircraft take-offsv
  • Such propellant compositions are composed essentially of two main components; namely, a combustible organic resin fuel and an oxidizing inaterial.
  • a combustible organic resin fuel and an oxidizing inaterial.
  • propellants are enclosed within a chamber and ignited whereby large quantities of gases are formed. These gases are exhausted through 'an orifice thereby giving propulsive force to the vehicle in the opposite direction.
  • the fuel component of the propellant needs only to be combustible and possess physical properties which permit it to be cast or molded into a propellant grain. ..,A wide variety of resins, such as -asphalt,.polyesters, polyalcohols, polynitroalkenes, andmixtures thereof, are useful for this purpose.
  • the oxidizing material is usually an inorganic oxidizing salt.
  • Metal salts such as potassium perchlorate, are often used; however, upon combustion they foim solid particles which create large quantifies of visible smoke. Smoke is highly undesirable for military purposes of concealment.
  • Metallic salts useful. in such formulations are considerably more expensive than the corresponding ammonium salts.
  • non-smoking, non-metallic,'inorganic oxidizing salts-such as hydrazine and ammonium salts are preferred in such applications.v
  • a i i I have now found that the burning rates of the highly desirable non-metallic propellants can be increased as much as 100% by incorporating small amounts: of lead chloride in the formulation.
  • Lead chloride is-used-in the compositions in such small amounts,'usual1y from about 0.05% to about 5% by weight of the composition, that the smoke formed by its combustion is negligible.
  • the catalyst of this invention is particularlfvaluabl'e when employed in combination with convehtionalxburning rate acceleration catalysts such as ammonium dichromate; however, its' use is not limited tothis particular embodiment of the invention.
  • Oxidizers useful in the practice of this invention are nonmetallic chlorate, perchlorate, and nitrate salts such as ammonium nitrate, ammonium-chlorate, ammonium perchlorate and hydrazine nitrate;
  • The-non-metallic nitrate salts are preferred: due" to availability; stability and the ease with which they can be handled;
  • the nitrate salts usually do not burn as rapidly as the chlorate or perchlorate-salts;
  • the oxidizer, im a finely divided condition, is dispersed throughout the fuel component of the'propellant.v .Ql'dl- :formamide and N,N-dimethyl vinyl carbamate.
  • the oxidizer is present in an amount of from about 45% to about by weight of the total composition. Optimum results are obtained when there is suliicient oxygen in the propellant to oxidize all of the carbon in the fuel to carbon monoxide and one-third of the hydrogen to water.
  • Combustible organic resinous fuels useful in propellant compositions of this invention include: asphalt, polymers and copolymers of alkenes, arylalkenes, alkynes, alkenyl diglycols, alkyl alkenoates, alkenyl alkanoates, alkenoamides, and amido alkenyls, and unsaturated alkyd resins heteropolymerized with the above compounds.
  • the asphalt-base propellant grains are prepared .by heating the asphalt untilsoft, ordinarilyabout350 F.,
  • Atypical formulationof a propellant compositionghaving a polyamide fuel component is as follows:
  • Propellant composition B Y Percent Ammonium nitra V 76.81 N,N-dimethyl acrylamide 22.94
  • the polyamide propellant grain can be preparedby mixing the amide, oxidizer and polymerization catalyst until a homogeneous mixture is obtained and curing the mixture at a temperature of from about 25 C. to about l-00.- C'.
  • Bolyalkenes useful as fuels are:. polyisobutylene, butadiene-styrene copolymers, butadiene-acrylonitrile copolymers, and isobutylene-isoprene copolymers: Suitable fuels of this type are more" fully disclosed iniassignees 3 copending application Serial No. 637,004, filed December 22, 1945.
  • a typical formulation of a propellant composition having a polyolefinic fuel component is as follows:
  • Propellant composition C Percent Ammonium perchlorate 7 6.0
  • the polyolefin-base propellant grain can be prepared by roll milling the oxidizer into the polyolefin until a homogeneous mixture is obtained and then pressing the material into sheets or discs.
  • Polyalkenoates useful as fuels include: polymers and copolymers of acrylic acid, acrylic acid esters, methacrylic acid and methacrylic acid esters. Suitable fuels of this type are more fully disclosed in assignees copending application Serial No. 321,943, filed November 21, 1952, now abandoned.
  • a typical formulation of a propellant composition having a polyester fuel component is as follows:
  • Propellant composition D Percent Hydrazine nitrat 60.00 Methyl acrylate 25.60 Allyl diglycol carbonate 3.60 Methyl methacrylate 10.40 t-Butyl peroxide (polymerization catalyst) 0.40
  • the polyester-base propellant grain is prepared by mixing the various monomers, oxidizer and polymerization catalyst until a homogeneousmixture is obtained, and then curing the mixture in a mold.
  • Alkyd resin fuels are usually polyesters prepared by the condensation of a polycarboxylic acid with a polyhydric alcohol, one or both of which contain olefinic linkages.
  • unsaturated polycarboxylic acids which are ordinarily used in the preparation of such polyesters are maleic, fumaric, citraconic, mesaconic, itaconic acids, etc.
  • Saturated acids found to be useful are such acids as oxalic, malonic, succinic and glutaric, etc.
  • the polyhydric alcohols useful are dihydric alcohols such as ethylene glycol, propylene glycol, glycol, etc.; as well as trihydric alcohols such as glycerol; tetrahydric alcohols such as the erythritols; pentahydric alcohols such as arabitol, etc.; or mixtures of any of these alcohols.
  • the olefinic component of the fuel can be, for example, styrene, vinyl acetate, acrylic acid esters, methacrylic acid esters, allyl compounds such as allyl diglycol carbonate, diallyl maleate, diallyl glycolate, and other olefinic components such as propylene and butadiene, as well as the acetylenes.
  • any unsaturated compound compatible with the resin, and which will polymerize with it, is suitable; this includes all unsubstituted olefins and, in addition, many substituted olefins.
  • Suitable fuels of this type are more fully disclosed in assignees copending application Serial No. 109,409, filed August 9, 1949.
  • Propellant composition E Percent Ammonium dichromate 1.99 Ammonium nitrate 72.79 Polyester, by wt. percent 9.79
  • the alkyd resin-base propellant grains are prepared by blending together the polyester and olefinic components of the fuel, the oxidizer and the burning rate acceleration catalyst. If desired, a polymerization catalyst can also be added. This mixture is cast into a mold and the fuel allowed to heteropolymerize at a temperature in the range of from about 25 C. to about C., and preferably at a temperature below 60 C.
  • the polymerization catalysts usually employed in such propellant compositions are organic peroxides such as benzoyl peroxide, lauryl peroxide, acetobenzoyl peroxide, ditertiary butyl peroxide, methyl ethyl ketone peroxide, l-hydroxy-cyclohexyl hydroperoxide, cumene hydroperoxide, and cycloalkane hydrocarbon peroxide, and peresters such as tertiary butyl perbenzoate and diperphthalate.
  • lecithin can be added to improve the castability of the uncured propellant.
  • t-Butyl catechol or cobalt 2-ethyl hexanoate is often added as a polymerization modifier.
  • the propellant grains prepared in the above described manner can withstand rough handling and will perform satisfactorily at temperatures in the range of from about 65 F. to about F.
  • this catalyst can be used in compositions utilizing fuel components such as polymers of nitroalkenes, nitroalkynes, nitro-containing acids and their esters, as well as other combustible organic polymeric materials.
  • the burning rate acceleration catalyst herein described is usually incorporated into the propellant compositions in finely divided form and is mixed with the fuel usually at the same time the oxidizer is mixed.
  • Table I results of a series of burning tests are shown in Table I. These tests were made using propellants E and F described above.
  • propellant B does not readily sustain combustion, therefore, as a matter of convenience in establishing a burning rate standard for comparative purposes, ammonium dichromate was incorporated in all of the sample grains. It is to be understood that these examples are presented merely as a means of illustration and are not intended to limit the scope of the invention in any way.
  • a solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45% to about 90% by weight solid, non-metallic, inorganic, oxidizing salt, from about toabout 35 by weight combustible organic resin, and the burning rate acceleration catalyst lead chloride.
  • composition of claim 2 wherein the burning rate acceleration catalyst is present in an amount of from about 0.05% to about 5.0% by weight of the total propellant composition.
  • composition of claim 2 wherein the combustible, organic resin is asphalt.
  • composition of claim 2 wherein the combustible, organic resin is an olefinic polymer.
  • composition of claim 2 wherein the combustible, organic resin is alkyl alkenoate heteropolymerized with an olefin.
  • composition of claim 2 wherein the combustible, organic resin is an unsaturated polyester resin consisting of the condensation product of a saturated polyhydric alcohol and polycarboxylic acid heteropolymerized with an unsaturated compound selected from the group consisting of lower alkenes, lower alkynes, phenyl substituted lower alkenes, lower alkyl dienes, lower alkenyl esters of lower alkanoic acids, lower alkyl esters of alkenoic acids, lower alkenyl esters of lower alkenoic acids, allyl diglycol carbonate, diallyl diglycolate, lower alkenoamide and mixtures thereof; and the burning rate acceleration catalyst, lead chloride.
  • unsaturated polyester resin consisting of the condensation product of a saturated polyhydric alcohol and polycarboxylic acid heteropolymerized with an unsaturated compound selected from the group consisting of lower alkenes, lower alkynes, phenyl substituted lower alkenes, lower alkyl dienes, lower alkenyl est
  • composition of claim 2 wherein the combustible, organic resin is an alkenoamide polymer.
  • composition of claim 2 wherein the non-metallic, inorganic, oxidizing salt is selected from the group consisting of nitrate, perchlorate, and chlorate salts of ammonia and hydrazine.
  • a solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight solid, non-metallic, inorganic oxidizing salt, from about 10% to about 35% by weight combustible, organic resin selected from the group con- 6 sisting .of asphalt, polymers and copolymers oi alkenes; arylalken'es, alkadienes, alk'ynes, alkyl ialkenoates, alkenyl alkanoates, alkenyl polyglycols, and unsaturated akyd resins heteropolymerized with the abovepolymerizable compounds, and mixtures thereof, and the burning rate acceleration catalyst, leaduchloride.
  • Th c mposi i n of claim lOHWh ein .theburning rate acceleration catalyst is present in an amountof from about 0.05% to about 5.0% .by weight of the total propellant composition.
  • a so1id, smokeless propellant composition con sisting of a cured intimate mixture of from about 45 to about by weight solid, inorganic, non-metallic, oxidizing salt, from about 10% to about 35% by weight polyester resin consistingof the condensation product of a saturated polyhydric alcoholand polycarboxylic acid heteropolymerized witha lower alkyl alkenoate, and from bout 0.05% to bou -0% by we ht of he t a pro: pellant composition of the burning rate acceleration catalyst, lead chloride.
  • a solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight ammonium nitrate; a fuel component in an amount of from about 10% to about 35 by weight comprising an unsaturated polyester resin consisting of the condensation product of diethylene glycol, adipic acid, and maleic anhydride heteropolymerized with a mixture of styrene and methyl acrylate; ammonium dichromate; and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
  • a solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight ammonium nitrate, from about 10% to about 35% by weight polymeric N,N-dimethyl acrylamide resin, and from about 0.05% to about 5.0% by weight of the total propellant composition of the buming rate acceleration catalyst, lead chloride.
  • a solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45% to about 90% by weight ammonium perchlorate, from about 10% to about 35 by weight resinous isobutylene-isoprene copolymer, and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
  • a solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight hydrazine nitrate, from about 10% to about 35 by weight polyester resin consisting of a mixture of methyl acrylate and methyl methacrylate heteropolymerized with allyl-diglycol carbonate, and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
  • a solid, smokeless, propellant composition com prising a cured intimate mixture of from about 45% to about 90% by weight ammonium perchlorate, from about 10% to about 35 by weight asphalt, and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst,
  • (0) a rubbery polymer selected from the group consisting of polyisobutylene, butadiene-styrene copolymers, butadiene-acrylonitrile copolymers, isobutylene isoprene copolymers and mixtures thereof;
  • heteropolymerized alkyd resins selected from the group consisting of unsaturated polyesters which are the condensation product of polycarboxylic acid and polyhydric alcohol heteropolymerized with phenyl alkenes, lower alkenyl alkanoates, lower alkyl alkenoates, lower alkenyl alkenoates, allyl diglycol carbonate, di-lower alkenyl esters of lower alkendioic acids, dially diglycollate, lower alkenes, lower alkadienes, lower alkynes and mixtures thereof; 7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

United States Patent BURNING RATE ACCELERATION CATALYSTS FOR SOLID PROPELLAN'E COMPOSITIONS Ralph W. Lawrence, Glendora, Calif., assignor to Aerojet-General Corporation, Azusa, Calif.,. a corporation of Ohio No Drawing. Filed May 13,1955,- Ser. No. 508,314 19 Claims. (Cl. 60-354) This invention relates to a new burning rateaeceleration catalyst for solid propellant compositions.
Solid, non-metallic propellant compositions are used for rocket and ordnance projection, as well as for assisted aircraft take-offsv Such propellant compositions are composed essentially of two main components; namely, a combustible organic resin fuel and an oxidizing inaterial. In use, such propellants are enclosed within a chamber and ignited whereby large quantities of gases are formed. These gases are exhausted through 'an orifice thereby giving propulsive force to the vehicle in the opposite direction.
The fuel component of the propellant needs only to be combustible and possess physical properties which permit it to be cast or molded into a propellant grain. ..,A wide variety of resins, such as -asphalt,.polyesters, polyalcohols, polynitroalkenes, andmixtures thereof, are useful for this purpose.
The oxidizing material is usually an inorganic oxidizing salt. Metal salts, such as potassium perchlorate, are often used; however, upon combustion they foim solid particles which create large quantifies of visible smoke. Smoke is highly undesirable for military purposes of concealment. Metallic salts useful. in such formulations are considerably more expensive than the corresponding ammonium salts. Hence, non-smoking, non-metallic,'inorganic oxidizing salts-such as hydrazine and ammonium salts are preferred in such applications.v
The desirability of rapid burning propellants for rocket and ordnance. projections is well, established. Metalcontai-ning oxidizers generally .providefastbu'rning compositions. Unfortunately, propellants utilizing the inexpensive, non-met-allic, inorganic oxidizing salts as the oxidizer have heretofore exhibited only relatively slow burning rates. For example, ammonium nitrate oxidized propellants have never been known to at rates in excess of 0.10 in./sec., even though combusted in the presence of burning rate acceleration catalysts such as ammonium dichromate. A i i I have now found that the burning rates of the highly desirable non-metallic propellants can be increased as much as 100% by incorporating small amounts: of lead chloride in the formulation. Lead chloride is-used-in the compositions in such small amounts,'usual1y from about 0.05% to about 5% by weight of the composition, that the smoke formed by its combustion is negligible. The catalyst of this invention is particularlfvaluabl'e when employed in combination with convehtionalxburning rate acceleration catalysts such as ammonium dichromate; however, its' use is not limited tothis particular embodiment of the invention.
Oxidizers useful in the practice of this invention are nonmetallic chlorate, perchlorate, and nitrate salts such as ammonium nitrate, ammonium-chlorate, ammonium perchlorate and hydrazine nitrate; The-non-metallic nitrate salts are preferred: due" to availability; stability and the ease with which they can be handled; The nitrate salts, however, usually do not burn as rapidly as the chlorate or perchlorate-salts;
The oxidizer, im a finely divided condition, is dispersed throughout the fuel component of the'propellant.v .Ql'dl- :formamide and N,N-dimethyl vinyl carbamate.
3,000,175. Patented Sept. 19, 1961 narily, the oxidizer is present in an amount of from about 45% to about by weight of the total composition. Optimum results are obtained when there is suliicient oxygen in the propellant to oxidize all of the carbon in the fuel to carbon monoxide and one-third of the hydrogen to water.
Combustible organic resinous fuels useful in propellant compositions of this invention include: asphalt, polymers and copolymers of alkenes, arylalkenes, alkynes, alkenyl diglycols, alkyl alkenoates, alkenyl alkanoates, alkenoamides, and amido alkenyls, and unsaturated alkyd resins heteropolymerized with the above compounds.
Asphalts having softening points of about180 F. to about 220 F., and penetration values of about 7 to 9 mm./5 see/ gm. at a temperature of 720 F., are usually preferred for rocket fuel due to their ballistic properties. -When castability and low expansion coefficien'ts are not essential, other grades of asphalt can be used. To improve the physical properties of the asphalt,
a condensation product of sebacic acid and a poly-hydric Propellam composition .4
Percent Ammonium perchlorate 75.0 Asphalt 10.5 Cetyl' .acetamid'e 3.0 Castor 7 8.0 Dibutyl seb 3.5
The asphalt-base propellant grains are prepared .by heating the asphalt untilsoft, ordinarilyabout350 F.,
stirring. inzthe oxidizers and additives, andthen permitting the mixture to harden in a mold. I
Polyalkenoamides and amidoalkenyls useful as fuels include: N,N-dimethyl 'acrylamide, N-methyl aci'ylamide, N-nitro'-N=methyl acrylarru'de, 'acrylami'de' N,N -dially1 Suitable fuelsfof this type 'aremore fully disclosed assignees copending application Serial No. 392,472, filed November 16, 1953. Atypical formulationof a propellant compositionghaving a polyamide fuel component is as follows:
Propellant composition B Y Percent Ammonium nitra V 76.81 N,N-dimethyl acrylamide 22.94
.Methyl .amyl;ketone peroxide (polymerizationcatalyst). 0.25
The polyamide propellant grain can be preparedby mixing the amide, oxidizer and polymerization catalyst until a homogeneous mixture is obtained and curing the mixture at a temperature of from about 25 C. to about l-00.- C'.
Bolyalkenes useful as fuels are:. polyisobutylene, butadiene-styrene copolymers, butadiene-acrylonitrile copolymers, and isobutylene-isoprene copolymers: Suitable fuels of this type are more" fully disclosed iniassignees 3 copending application Serial No. 637,004, filed December 22, 1945.
A typical formulation of a propellant composition having a polyolefinic fuel component is as follows:
Propellant composition C Percent Ammonium perchlorate 7 6.0
Copolymer 24.0
Isobutylene 98.5 Isoprene 1.5%
The polyolefin-base propellant grain can be prepared by roll milling the oxidizer into the polyolefin until a homogeneous mixture is obtained and then pressing the material into sheets or discs.
Polyalkenoates useful as fuels include: polymers and copolymers of acrylic acid, acrylic acid esters, methacrylic acid and methacrylic acid esters. Suitable fuels of this type are more fully disclosed in assignees copending application Serial No. 321,943, filed November 21, 1952, now abandoned. A typical formulation of a propellant composition having a polyester fuel component is as follows:
Propellant composition D Percent Hydrazine nitrat 60.00 Methyl acrylate 25.60 Allyl diglycol carbonate 3.60 Methyl methacrylate 10.40 t-Butyl peroxide (polymerization catalyst) 0.40
The polyester-base propellant grain is prepared by mixing the various monomers, oxidizer and polymerization catalyst until a homogeneousmixture is obtained, and then curing the mixture in a mold.
Alkyd resin fuels are usually polyesters prepared by the condensation of a polycarboxylic acid with a polyhydric alcohol, one or both of which contain olefinic linkages. Among the unsaturated polycarboxylic acids which are ordinarily used in the preparation of such polyesters are maleic, fumaric, citraconic, mesaconic, itaconic acids, etc. Saturated acids found to be useful are such acids as oxalic, malonic, succinic and glutaric, etc. The polyhydric alcohols useful are dihydric alcohols such as ethylene glycol, propylene glycol, glycol, etc.; as well as trihydric alcohols such as glycerol; tetrahydric alcohols such as the erythritols; pentahydric alcohols such as arabitol, etc.; or mixtures of any of these alcohols.
The olefinic component of the fuel can be, for example, styrene, vinyl acetate, acrylic acid esters, methacrylic acid esters, allyl compounds such as allyl diglycol carbonate, diallyl maleate, diallyl glycolate, and other olefinic components such as propylene and butadiene, as well as the acetylenes. In general, any unsaturated compound compatible with the resin, and which will polymerize with it, is suitable; this includes all unsubstituted olefins and, in addition, many substituted olefins. Suitable fuels of this type are more fully disclosed in assignees copending application Serial No. 109,409, filed August 9, 1949.
-A typical formulation of a propellant composition utilizing an alkyd resin fuel is as follows:
Propellant composition E Percent Ammonium dichromate 1.99 Ammonium nitrate 72.79 Polyester, by wt. percent 9.79
43.00% diethylene glycol 44.25% adipic acid 1.75% maleic anhydride The alkyd resin-base propellant grains are prepared by blending together the polyester and olefinic components of the fuel, the oxidizer and the burning rate acceleration catalyst. If desired, a polymerization catalyst can also be added. This mixture is cast into a mold and the fuel allowed to heteropolymerize at a temperature in the range of from about 25 C. to about C., and preferably at a temperature below 60 C.
The polymerization catalysts usually employed in such propellant compositions are organic peroxides such as benzoyl peroxide, lauryl peroxide, acetobenzoyl peroxide, ditertiary butyl peroxide, methyl ethyl ketone peroxide, l-hydroxy-cyclohexyl hydroperoxide, cumene hydroperoxide, and cycloalkane hydrocarbon peroxide, and peresters such as tertiary butyl perbenzoate and diperphthalate.
Various other ingredients can also be added for specific purposes without departing from the scope of the invention. For example, lecithin can be added to improve the castability of the uncured propellant. t-Butyl catechol or cobalt 2-ethyl hexanoate is often added as a polymerization modifier.
The propellant grains prepared in the above described manner can withstand rough handling and will perform satisfactorily at temperatures in the range of from about 65 F. to about F.
The particular fuel employed in the propellant composition does not affect the function of the burning rate acceleration catalyst of this invention. In addition to the propellant compositions described above, this catalyst can be used in compositions utilizing fuel components such as polymers of nitroalkenes, nitroalkynes, nitro-containing acids and their esters, as well as other combustible organic polymeric materials.
The burning rate acceleration catalyst herein described is usually incorporated into the propellant compositions in finely divided form and is mixed with the fuel usually at the same time the oxidizer is mixed. To illustrate the improvement in the burning rate brought about by incorporating this catalyst into a solid propellant, the results of a series of burning tests are shown in Table I. These tests were made using propellants E and F described above. In the absence of a catalyst, propellant B does not readily sustain combustion, therefore, as a matter of convenience in establishing a burning rate standard for comparative purposes, ammonium dichromate was incorporated in all of the sample grains. It is to be understood that these examples are presented merely as a means of illustration and are not intended to limit the scope of the invention in any way.
As can be seen from the data presented in Table I, a substantial increase in the burning rate of the propellant was effected by the catalyst of this invention. Increases in burning rate of the magnitude herein obtained are particularly valuable in rocketry and ordnance projection, for such projectiles are ordinaril'y guided only during the period of their launching. When the' full thrust. created by the propellant is available during this time, the projectile can be more effectively directed.
Due to the great increase in the burning rates of nonmetallic, smokeless propellant compositions induced by the above catalyst, and its applicability to propellants having a wide variety of fuel components, it is apparent that this catalyst will find extended and valuable use in the field of rocketry and ordnance propulsion.
I claim:
1. In a method of producing thrust for propulsion by burning a propellant composition, in a chamber wherein said propellant composition consists essentially of a cured intimate mixture of a solid inorganic oxidizing salt and a combustible organic resin, the improvement which comprises burning said propellant in the presence of the burning rate acceleration catalyst, lead chloride.
2. A solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45% to about 90% by weight solid, non-metallic, inorganic, oxidizing salt, from about toabout 35 by weight combustible organic resin, and the burning rate acceleration catalyst lead chloride.
3. The composition of claim 2 wherein the burning rate acceleration catalyst is present in an amount of from about 0.05% to about 5.0% by weight of the total propellant composition.
4. The composition of claim 2 wherein the combustible, organic resin is asphalt.
5. The composition of claim 2 wherein the combustible, organic resin is an olefinic polymer.
6. The composition of claim 2 wherein the combustible, organic resin is alkyl alkenoate heteropolymerized with an olefin.
7. The composition of claim 2 wherein the combustible, organic resin is an unsaturated polyester resin consisting of the condensation product of a saturated polyhydric alcohol and polycarboxylic acid heteropolymerized with an unsaturated compound selected from the group consisting of lower alkenes, lower alkynes, phenyl substituted lower alkenes, lower alkyl dienes, lower alkenyl esters of lower alkanoic acids, lower alkyl esters of alkenoic acids, lower alkenyl esters of lower alkenoic acids, allyl diglycol carbonate, diallyl diglycolate, lower alkenoamide and mixtures thereof; and the burning rate acceleration catalyst, lead chloride.
8. The composition of claim 2 wherein the combustible, organic resin is an alkenoamide polymer.
9. The composition of claim 2 wherein the non-metallic, inorganic, oxidizing salt is selected from the group consisting of nitrate, perchlorate, and chlorate salts of ammonia and hydrazine.
10. A solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight solid, non-metallic, inorganic oxidizing salt, from about 10% to about 35% by weight combustible, organic resin selected from the group con- 6 sisting .of asphalt, polymers and copolymers oi alkenes; arylalken'es, alkadienes, alk'ynes, alkyl ialkenoates, alkenyl alkanoates, alkenyl polyglycols, and unsaturated akyd resins heteropolymerized with the abovepolymerizable compounds, and mixtures thereof, and the burning rate acceleration catalyst, leaduchloride. Y
Th c mposi i n of claim lOHWh ein .theburning rate acceleration catalyst is present in an amountof from about 0.05% to about 5.0% .by weight of the total propellant composition.
12. A so1id, smokeless propellant composition con sisting of a cured intimate mixture of from about 45 to about by weight solid, inorganic, non-metallic, oxidizing salt, from about 10% to about 35% by weight polyester resin consistingof the condensation product of a saturated polyhydric alcoholand polycarboxylic acid heteropolymerized witha lower alkyl alkenoate, and from bout 0.05% to bou -0% by we ht of he t a pro: pellant composition of the burning rate acceleration catalyst, lead chloride.
13. A solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight ammonium nitrate; a fuel component in an amount of from about 10% to about 35 by weight comprising an unsaturated polyester resin consisting of the condensation product of diethylene glycol, adipic acid, and maleic anhydride heteropolymerized with a mixture of styrene and methyl acrylate; ammonium dichromate; and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
14. A solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight ammonium nitrate, from about 10% to about 35% by weight polymeric N,N-dimethyl acrylamide resin, and from about 0.05% to about 5.0% by weight of the total propellant composition of the buming rate acceleration catalyst, lead chloride.
15. A solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45% to about 90% by weight ammonium perchlorate, from about 10% to about 35 by weight resinous isobutylene-isoprene copolymer, and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
16. A solid, smokeless, propellant composition comprising a cured intimate mixture of from about 45 to about 90% by weight hydrazine nitrate, from about 10% to about 35 by weight polyester resin consisting of a mixture of methyl acrylate and methyl methacrylate heteropolymerized with allyl-diglycol carbonate, and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
17. A solid, smokeless, propellant composition com prising a cured intimate mixture of from about 45% to about 90% by weight ammonium perchlorate, from about 10% to about 35 by weight asphalt, and from about 0.05 to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst,
'7 acrylamide, acrylamide, N,N-diallyl formamide, N,N dimethyl vinyl carbamate and mixtures thereof;
(0) a rubbery polymer selected from the group consisting of polyisobutylene, butadiene-styrene copolymers, butadiene-acrylonitrile copolymers, isobutylene isoprene copolymers and mixtures thereof;
(d) the addition polymerization product of monomer selected from the group consisting of acrylic acid, acrylic acid esters, methacrylic acid and methacrylic acid esters and mixtures thereof;
(e) heteropolymerized alkyd resins selected from the group consisting of unsaturated polyesters which are the condensation product of polycarboxylic acid and polyhydric alcohol heteropolymerized with phenyl alkenes, lower alkenyl alkanoates, lower alkyl alkenoates, lower alkenyl alkenoates, allyl diglycol carbonate, di-lower alkenyl esters of lower alkendioic acids, dially diglycollate, lower alkenes, lower alkadienes, lower alkynes and mixtures thereof; 7
and from about 0.5% to about 5.0% by weight of the total propellant composition of lead chloride.
19. In a method for producing thrust for propulsion by burning a propellant composition in the combustion chamber of a rocket wherein said propellant composition consists essentially of a cured intimate mixture of a solid inorganic oxidizing salt and a combustible organic resin, the improvement which comprises burning said propellant in the presence of from about 0.05% to about 5.0% by weight of the total propellant composition of the burning rate acceleration catalyst, lead chloride.
References Cited in the file of this patent FOREIGN PATENTS

Claims (1)

1. IN A METHOD OF PRODUCING THUS FOR PROPULSION BY SAID PROPELLANT COMPOSITION, IN A CHAMBER WHEREIN SAID PROPELLANT COMPOSITION CONSISTS ESSENTIALLY OF A CURED INTIMATE MIXTURE OF A SOLID INORGANIC OXIDIZING SALT AND A COMBUSTIBLE ORGANIC RESIN, THE IMPROVEMENT WITH COMPRISES BURNING SAID PROPELLANT IN THE PRESENCE OF THE BURN ING RATE ACCELERATION CATALYST, LEAD CHLORIDE.
US508314A 1955-05-13 1955-05-13 Burning rate acceleration catalysts for solid propellant compositions Expired - Lifetime US3000175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US508314A US3000175A (en) 1955-05-13 1955-05-13 Burning rate acceleration catalysts for solid propellant compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US508314A US3000175A (en) 1955-05-13 1955-05-13 Burning rate acceleration catalysts for solid propellant compositions

Publications (1)

Publication Number Publication Date
US3000175A true US3000175A (en) 1961-09-19

Family

ID=24022249

Family Applications (1)

Application Number Title Priority Date Filing Date
US508314A Expired - Lifetime US3000175A (en) 1955-05-13 1955-05-13 Burning rate acceleration catalysts for solid propellant compositions

Country Status (1)

Country Link
US (1) US3000175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097120A (en) * 1961-08-11 1963-07-09 American Cyanamid Co Gelled ammonium nitrate explosive containing polyacrylamide and an inorganic cross-linking agent
US3097121A (en) * 1961-08-11 1963-07-09 American Cyanamid Co Powdered ammonium nitrate explosive containing polyacrylamide and an inorganic cross-linking agent
US3399087A (en) * 1962-06-08 1968-08-27 Aerojet General Co Castable propellant compositions containing isoolefin-diolefin copolymers
US3457726A (en) * 1966-07-26 1969-07-29 Thomson Houston Comp Francaise Incrementally controllable-thrust propulsion device
US10767967B2 (en) 2018-08-07 2020-09-08 Thomas Faudree, IV Device for controlling a rate of gas pressure increase in a gun barrel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB570211A (en) * 1942-11-06 1945-06-27 James Taylor Improvements in gas escape reaction propelled devices
GB655585A (en) * 1947-09-29 1951-07-25 Frans Tore Baltzar Bonell Improvements in or relating to methods for producing propellent charges for rockets and the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB570211A (en) * 1942-11-06 1945-06-27 James Taylor Improvements in gas escape reaction propelled devices
GB655585A (en) * 1947-09-29 1951-07-25 Frans Tore Baltzar Bonell Improvements in or relating to methods for producing propellent charges for rockets and the like

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097120A (en) * 1961-08-11 1963-07-09 American Cyanamid Co Gelled ammonium nitrate explosive containing polyacrylamide and an inorganic cross-linking agent
US3097121A (en) * 1961-08-11 1963-07-09 American Cyanamid Co Powdered ammonium nitrate explosive containing polyacrylamide and an inorganic cross-linking agent
US3399087A (en) * 1962-06-08 1968-08-27 Aerojet General Co Castable propellant compositions containing isoolefin-diolefin copolymers
US3457726A (en) * 1966-07-26 1969-07-29 Thomson Houston Comp Francaise Incrementally controllable-thrust propulsion device
US10767967B2 (en) 2018-08-07 2020-09-08 Thomas Faudree, IV Device for controlling a rate of gas pressure increase in a gun barrel
US11199383B2 (en) 2018-08-07 2021-12-14 Thomas Faudree, IV Device for controlling a rate of gas pressure increase in a gun barrel

Similar Documents

Publication Publication Date Title
US3257801A (en) Pyrotechnic composition comprising solid oxidizer, boron and aluminum additive and binder
US3898112A (en) Solid 5-aminotetrazole nitrate gas generating propellant with block copolymer binder
KR20180082997A (en) Improvements in or in energy materials
US3031347A (en) Slow burning solid composite propellant
US3734789A (en) Gas generating solid propellant containing 5-aminotetrazole nitrate
US3617403A (en) Ignition transfer composition comprising fuel, oxidizer and fluoroelastomer
US3006743A (en) Solid composite propellants containing decaborane
Bunyan et al. The degradation and stabilisation of solid rocket propellants
US3756874A (en) Temperature resistant propellants containing cyclotetramethylenetetranitramine
US3000175A (en) Burning rate acceleration catalysts for solid propellant compositions
US3068129A (en) Rocket propellant
US3000716A (en) Burning rate catalysts for solid propellant compositions
JPH07257985A (en) Solid pyrotechnic composition containing thermoplastic binder and polybutadiene silyl ferrocene plasticizer
US2969638A (en) Solid propellant and propellant burning rate catalyst system
US3653993A (en) Smokeless propellent compositions containing polyester resin
US3653994A (en) Propellant compositions containing a metal nitrite burning rate catalyst
US3026672A (en) Composite propellant containing burning rate depressant and method of use
US3123507A (en) Gas-generating compositions
US3031288A (en) Solid composite propellant containing crosslinked polyester resin
US3000715A (en) Propellant compositions
US3058858A (en) Composite polyester propellant containing a silicon compound as burning rate catalyst
US3464869A (en) Pyrotechnic compositions containing metal fuel,inorganic oxidizer salt,and a vinyl polymer in a solvent
US3962297A (en) High burning rate catalyst
US2995430A (en) Composite propellant reinforced with
US3000714A (en) Propellant compositions