US2999973A - Transformer apparatus - Google Patents

Transformer apparatus Download PDF

Info

Publication number
US2999973A
US2999973A US646429A US64642957A US2999973A US 2999973 A US2999973 A US 2999973A US 646429 A US646429 A US 646429A US 64642957 A US64642957 A US 64642957A US 2999973 A US2999973 A US 2999973A
Authority
US
United States
Prior art keywords
output
coils
current
control
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US646429A
Inventor
Lewis A Medlar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fox Products Co
Original Assignee
Fox Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fox Products Co filed Critical Fox Products Co
Priority to US646429A priority Critical patent/US2999973A/en
Priority to US132845A priority patent/US3249851A/en
Priority to US132846A priority patent/US3247450A/en
Priority to US132844A priority patent/US3247449A/en
Application granted granted Critical
Publication of US2999973A publication Critical patent/US2999973A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/04Regulating voltage or current wherein the variable is ac
    • G05F3/06Regulating voltage or current wherein the variable is ac using combinations of saturated and unsaturated inductive devices, e.g. combined with resonant circuit

Definitions

  • This invention relates to a transformer system for supplying power from an A.C. input to a load, and, more particularly to a transformer system for supplying a substantially constant current to a load subject to variations of impedance.
  • the transformer system of this invention is capable of supplying a large number of diierent characteristic outputs.
  • outputs are a characteristic rise of current output with increasing load, a characteristic droop of current output with increasing load, and a substantially constant current output with increasing load.
  • the invention will be more fully described in conjunction with the last-mentioned characteristic, which is preferred, but it will be understood that the invention is not limited to this characteristic.
  • the reactor may be a relatively simple one or may be a complex system utilizing shunts, partial air gaps, etc. This type of system, however, is relatively expansive, as well as being complex. Moreover, it has a lagging power factor.
  • a third general type of known constant current system is one using a resonance phenomenon.
  • This type of system has taken many forms, but the simpliest form is the series resonant circuit, including an inductive reactance and a capacitive reactance connected in series, the two reactances being adjusted to -be substantially equal, and the load being connected across one of the reactances. While this type of system provides quite good constancy of output current, it has been found necessary to provide auxiliary means to limit the voltage across the components on open circuit. Moreover, this type of system is not readily adjustable to change the level of output current which is to be maintained constant. In order to provide for such change, there must be a change in both the actual inductance and the actual capacity of the components.
  • the transformer system of the present invention provides a substantially constant current output at high efficiency, with no moving parts, with no need for auxiliary units to limit component voltages on open circuit, with relatively easy adjustment of the parts to change the level of output current to be maintained constant, and for a substantially lower cost than many of the previous systems.
  • transformer system of this invention draws a leading power factor current from the input, rather than the lagging power factor usually obtained with a transformer system.V
  • the apparatus of the present invention is capable of use wherever it is desired to ⁇ draw ⁇ a substantially constant current through a variable load, when a constant voltage input is provided.
  • One instance of such use is in lighting systems.
  • the apparatus of the present invention includes an input, an output and a control electrical circuit, each of these circuits including at least one coil which may be wound on a transformer core.
  • the coils of the input and output electrical circuits are so inductively related, wound and connected with respect to one another that two magnetic circuits, an input and an output, are formed.
  • the magnetic circuits have two common portions, in one of which the magneto-motive forces generated by the input and output currents aid, and in the other of which the magnetomotive forces generated by these currents oppose. As a result, there is no direct coupling of power between the input circuit and the output circuit.
  • the control electrical circuit includes a capacitor and is inductively coupled to one of the coils of the input and output circuits through one of the common portions of the magnetic circuits.
  • Current through the control circuit generates a magnetomotive force which is opposite in phase and of greater magnitude than the output magnetomotive force in the common portion through which the coupling takes place.
  • the control magnetomotive force in effect reverses the output magnetomotive force in said common portion of the magnetic circuit and hence couples power from the input to the output through the control electrical circuit.
  • FIGS. l-16 are directed to one general class of the various embodiments of the present invention, this class including at least three coils, one of the three coils being Wound on each of the three legs of the core.
  • this class including at least three coils, one of the three coils being Wound on each of the three legs of the core.
  • FIG. 1 is a schematic diagram of one connection of the apparatus, without the use of a separate control coil;
  • FIG. 2 is a schematic diagram of the electrical equivalent circuit of the apparatus of FIG. 1;
  • FIG. 3 is a ⁇ schematic diagram of the apparatus of FIG. 1, but with -a control coil added to the circuit;
  • FIGS. 4-6 are vector diagrams, to be used in explaining the operation of the apparatus of this general class of embodiments of the invention.
  • FIG. 7 is a graph of characteristic curves obtained with an apparatus similar to that shown in FIG. 3, for different levels of input voltage;
  • FIG. 8 is a further vector diagram showing the actual operation of the transformer yfor changing load
  • FIG. 9 is a graph of the ux density versus magnetic field intensity characteristic curve of the type of ferromagnetic material preferably though not necessarily used with the transformer, with a curve of static permeability of that material;
  • FIG. l0 is a schematic showing of the input ⁇ and output magnetic circuits of the transformer system of this class;
  • FIG. ll is -a schematic showing of the various embodiments of this invention as servo systems;
  • FIG. 12 is a schematic diagram similar to FIG. l, but showing the input and output connections reversed, so that the load is connected to what was formerly the input circuit, ⁇ and the input is connected to what was formerly the load circuit;
  • FIG. 13 is a schematic diagram showing a control coil and listing the various possible connections of the control circuit
  • FIG. 14 is a schematic showing one method for adjusting the effective capacity of the control circuit
  • FIG. 15 is a schematic diagram showing transformer coupling of the capacitor into the control system
  • FIG. 16 is a schematic diagram of an apparatus for adjusting the effective capacity of the control circuit through use of a saturable transformer.
  • FIGS. 17-27 are employed to show various embodiments of a second class of the invention, together with the theory of operation of such embodiments.
  • This class of the various embodiments of the present invention includes at least four coils wound on the transformer core, two coils being wound on each of two of the legs of the core, and with one of the coils from each of the two legs being connected in series with each other, and the two series combinations of the coils being connected into an input and an output circuit, respectively. With this connection, one leg of the transformer core is free of coils.
  • FIG. 17 is a schematic diagram of the basic connection of this class of the embodiments of the invention.
  • FIG. 18 is an equivalent electrical circuit of the apparatus of FIG. 17;
  • FIG. 19 is a schematic of an embodiment similar to that of FIG. 17, but including a separate control coil
  • FIG. 2O is a vector diagram showing the actual operation of the transformer of FIG. 19 for increasing loads
  • FIG. 21 is a graph of a series of characteristic output current versus output voltage curves of the apparatus of FIG. 19 for changing values of the capacitor;
  • FIG. 22 is a schematic of the magnetic input and output circuits of this class of embodiments of the invention.
  • IFIG. 23 is a schematic of a modification similar to that of FIG. 17, but with the input connected across wh-at were previously the load terminals, and the load connected across what were previously the input terminals;
  • FIG. 24 is a schematic showing the use of the control coil and listing its various possible connections
  • FIG. 25 is a schematic of a system providing for variation of effective capacity in the control circuit
  • FIG. 26 is a schematic showing transformer coupling of the capacitor into the control circuit
  • FIG. 27 is a schematic showing the use of a saturable transformer in the control circuit to vary the effective capacity of the capacitor in the control circuit. ⁇
  • FIGS l-l6 it will be evident that ⁇ all of the various embodiments shown in these figures have their magnetic paths linking the coils defined by a threelegged core.
  • the core has one coil wound on each of the three legs.
  • a core 1 of ferromagnetic n material is preferably employed.
  • Standard transformer iron embodied in stamped laminations may be used, but different core materials can be employed, depending upon the output characteristic and the general level of output current that is desired.
  • the core 1 includes three legs, the two outer legs being labelled 2 and 3, and the center leg 4. Reference letters have also been used to ⁇ further identify the configuration of the various legs.
  • the left outer leg 2 is a channel-shaped element including the arms e-f, fa, and a-b.
  • the center leg is an I-shaped element, labelled b-e
  • the right outer leg 3 is a complementary channel-shaped element having arms b-c, c-d, and d-e.
  • the portions a-j' and c--d of legs 2 and 3 are parallel to one another and to portion b--e of leg 4.
  • the structure described provides closed inductive or magnetic paths betwen portion a--f of leg 2 and portion c-d of leg 3, as well as between portions a--f and b-e and c-d of legs 2, 4 and 3, respectively. If a ferromagnetic core is employed, as is preferred, the permeability of such paths will be high in comparison with air.
  • legs of the core have been shown as co-planar and as having parallel portions :1 -f, b-e and c--d, neither of these conditions is necessary to operation of the system.
  • the legs of the core may be aligned so as to define different planes which may be parallel or intersecting, as desired, and the legs themselves need not be parallel, as long as there are three legs all coupled together by magnetic paths.
  • no air gaps have been shown in the core of FIG. l, it is evident that a core of sheet stampings, assembled in conventional manner, to form a core of the configuration of FIG. l, would have air gaps therein.
  • the core with an air or other non-magnetic gap in one or more of its legs for some special purpose, and such construction is within the scope of this invention. Further, it might be desirable to employ a non-ferromagnetic material for the core if the high reluctance of such a core is not important or is otherwise compensated for. to be considered limited to ferromagnetic cores.
  • the transformer system of FIG. 1 includes three elec-I trical circuits, an input, an output and a control circuit.
  • the input circuit includes a coil L1 wound on leg and the conductors 5 and 6 connected to the terminals of coil L1 and connecting the coil across an input source of A.C. voltage 7. In order to obtain constant current action, the input 7 must be of substantially constant voltage.
  • the output electrical circuit includes coil L2 wound on parallel portion a--f of leg 2, and coil L3 wound on parallel portion c--d of leg 3. Coils L2 and L3 are connected in series by conductor 8, and their distal ends are connected by conductors 9 and ⁇ 10, respectively, across a load 11.
  • Load 11 may be of any type, but most satisfactory constant current operation has been found to occur when the load is primarily resistive, rather than reactive. When a substantially unity power factor load is to absorb power from the input, the best constant current action is obtained.
  • Coils L2 and L3 are so wound on the transformer core with respect to the direction of primary liux and so connected in series by conductor 8 that their voltages induced by the primary fiuX oppose one another in the output circuit, with the result that the voltage across the load terminals is substantially zero at no load.
  • the control electrical circuit of FIG. l includes a capacitor K connected directly across the terminals of coil L3.
  • one of the output coils also acts as the control coil, the voltage induced across coil L3 driving the control current through capacitor K.
  • FIG. 2 a mathematical analysis of the operation of the apparatus of FIG. l will be performed, so that the operation of that apparatus can be better understood.
  • FIG. 2 is a schematic diagram of the equivalent electrical circuit of the apparatus of FIG. l, with the input voltage Ep applied across coil L1, I@ and L3 being shown connected in series but wound in opposite directions, and currents Ip, I0 and IL flowing in the input, out- Therefore, the invention is not fiut-Y and" control electrical circuits.
  • the mutual induct ances or inductive couplings between the various coils are shown as M2 between coils L1 and L2, M1 between coils lo and L3, and M3 between coils L1 and L3.
  • the output voltage is substantially zero (though it is shown in the lfigure), since Z equals zero, so that net E3 is substantially 90 from Basic E3, and net E3 and the net M.M.F. are substantially in phase with Basic E3.
  • the output current is of substantial magnitude and in phase with E3.
  • the new output current M.M.F. would be more nearly in phase with the control M.M.F., thus increasing the net and therefore the output voltages. With the increase in output voltage, the output current would return to its original value to cause the system to return to the steady state constant current condition of FIG. 4. Note in this frgure that the Net M.M.F. is substantially in phase with Basic E3 and the control and output currents are substantially out of phase.
  • FIG. 5 shows the same transformer, but with the output impedance Z' not equal to 0.
  • the output current irst decreased, causing the output current M.M.F. to decrease and the net M.M.F. to swing counter-clockwise toward the control current M.M.F.
  • the same action as described immediately above returns the system to the steady state condition of FIG. 4.
  • the output components of the coil voltages must be larger than before.
  • Nets E3 and E2 therefore rotate clockwise and counterclockwise, respectively, from their positions in FIG. 4, and, since the control M.M.F. must be 90 from net E3, the control rotates clockwise to the position of FIG. 5.
  • the net M.M.F. necessary to produce the increased output voltage is still negligible, so that the output current M.M.F. is substantially 180 .from the control current M.M.F., and the net is therefore substantially in phase with net E3, as shown in FIG. 5.
  • the output and control M.M.E .s are shown as substantially less than 180 apart, as if appreciable net is required, for clarity.
  • the vectors are also shown in FIG. 5 to indicate the action of the circuit of FIGS. l and 3 to maintain a constant current output.
  • the output current M.M.F. will tend to increase, as shown by the longer vector New Output Current M.M.F.
  • This action will unbalanee the M.M.F.s to rotate the net M.M.F. toward the output current M.M.F., yielding the .New Net M.M.F. of FIG.;.5,l .
  • This newnet will generate output voltages in coils L3 and L3 rotated clockwise from the original output voltages in those coils, as shown in FIG. 5. ⁇
  • the vector diagram of FIG. 6 is designed to give a complete picture of the action of the ideal transformer, showing all important component voltages and currents thereof, for increasing impedance. It will be noted that as the impedance increases continuously, the vector Net E3 will rotate clockwise, decreasing continuously. Since the control current IL is driven by net E3 (and the voltage across the control coil which is in phase with net E3) the control coil current must rotate and decrease continuously with net E3. Likewise, the control will decrease contiuously with net E3 and, En, being substantially behind net E3, will rotate clockwise. The output current is directly dependent upon the control current, so that, as the control current decreases, the output current likewise decreases continuously, describing a semi-circle of diameter equal to the original output current at zero impedance.
  • the primary current Ip is substantially in phase with the control coil current IL, and so leads the primary voltage This results in a leading power factor, ordinarily an advantageous condition.
  • FIG. 7 shows four different curves of the output current versus the output voltage obtained for four different input voltages. It will be noted that the output current is relatively constant over a very substantial range extendingupwardly from zero output voltagein'all cases, but that variations in the input voltage cause a substantial change in the output current. It will further be noted that the output current decreases from its value at zero output voltage when the impedance increases, reaches a minimum, and then increases again up to a peak. From this peak, the output current decreases continuously and the constant current action is no longer had. It has been found that this continuous decrease in output current occurs because of saturation of the core material.
  • FIG. 8 showing a vector diagram for an actual transformer core material, with the circuits of FIG. 3 in use.
  • I3 and IL must move toward each other to produce the larger net I moves counterclockwise to carry E3, and therefore E3, with it. Since Ii, must always be perpendicular to net E3, being produced by it, the net must move back toward Basic E3 as the output voltage increases and moves counterclock- Wise with I0. This movement causes net E3 to move back toward Basic E3 and increase, so that the control M.M.F. increases, and the net must increase. put current, being dependent on the net M.M.F., thus increases.
  • the action of the system of FIGS. l and 3 in producing constancy of current may be better understood by discussing it as a magnetic servo system, which it has been found to be.
  • the input to the conventional servo system is a reference or standard.
  • the control of the system of this invention fills the function of the reference or standard.
  • the Ireference or standard is referred to a differential in which it is compared with the output of a feedback loop, reflecting the action that the output of the system has taken.
  • the differential of this invention is the phaserelationship between the output and control M.M.F.s
  • the net or error between the reference or standard and the feedback loop information, represented by the net'V in the system of this invention, is supplied to an amplifier.
  • the function of the amplifier in the system of this invention is performed by the permeability of the core material.
  • the output of the amplifier, the amplifier error of the servo system is directed to a power device for influencing the output of the system.
  • the amplified error is equivalent to the circulating ux of the system of this invention, and the power device consists of the output coils which provide output E0.
  • the power device is the output current I3 in the system of this invention.
  • the output In is converted by the feedback amplifier (also the output coils) from the input to the amplifier, I0, into the output M.M.F. of the system of this invention.
  • FIG. 13 the only difference between FIG. 1 and FIG. 3, besides the increase of driving voltage available to the control coil circuit, and thus the increase in control M.M.F., is the possibility of different connections for the control coil circuit.
  • FIG. 12 the input is shown as connected across leads 9 and 10
  • the load is connected across leads and 6, thus putting the input across the series combination of coils L2 and L3, and the load across coil L1.
  • the action of the system of FIG. 12 is very similar to that of FIG. l, yielding very good constancy of current.
  • control coil L4 is shown connected in series with capacitor C, but the leads of this series circuit are not connected across L3, as in FIG. 3. Itis indicated that this control circuit may include any source of voltage, including L4 alone. In other words, the seriesY combination of L4 and C may be connected across thev coil L1, coil L2, coil L3, coils L2 and L3, any other source of voltage external to the system, or the two leads may be shorted together.
  • the control impedance be a capacitive reactance, no matter what its source of voltage. However, it has been found that when the source of voltage for the control impedance iszso related to the primary voltage that the control current and the primary voltage are substantially 90 out of phase at zero load, the greatest range of constancy for varying output voltage is obtained.
  • the control coil current may be changed to change the level of output current. This may be done by changing the value of the capacity, but it is more convenient, especially at such high voltages as may obtain with a system of this type, to change the effective value of capacity, rather than the actual value.
  • FIG. 14 One way of changing the effective value of the capacity is shown in FIG. 14, in which a variable inductance 15 is shown shunted directly across capacitor K. Variation of the magnitude of the inductance of 15 will change the effective capacity across coil L3, and thus the control coil current.
  • control capacity into the system by use of a transformer, rather than connecting a capacitor directly in series with the control coil.
  • a transformer T having capacitor C connected across its secondary, and its primary connected across coil L3.
  • the capacitor might be coupled into the control circuit through a variable transformer, or variac, thus enabling the effective capacitive reactance to be changed by change in the transformer turns ratio.
  • FIG. 16 Another way of coupling the capacitor into the system without direct connection of the capacitor to the control coil, and with the possibility of Variation of the effective capacity in the control coil circuit, is shown in FIG. 16.
  • capacitor C is connected across the secondary of a saturable transformer 21.
  • Two coils 22 and 23 wound on the outer legs of the three leg transformer 21 are provided with direct current through a source of variable D.C. voltage 24.
  • the coils are connected in series, and phased in such manner as to cause a D..C.
  • Secondary coil 20 is coupled through the center leg to primary coil 2S of the saturable transformer.
  • the primary coil 2S is connected directly across coil L3 ofthe constant current transformer system. Since the equivalentcircuit of a transformer includes an iron core inductance across an ideal transformer, thus shuntingthe capacity, an increase in direct current through coils 22 and 23 by increasing the saturattion of part of the magnetic path of the transformer, reduces this inductance, so as to decrease the effective capacity of the control circuit.
  • the M that is involved is that between the primary coil and oneof the secondary coils
  • the M that is involved is that between the two primary windings.
  • Tests have shown that the range ofvariation of capacity for which currentis. maintained constant is substantially unlimited for the second connection but limited for the rst connection.
  • the criterion is whether the M involved is between coils between which power is transferred, e.g., between the primary and control coils. -In the first connection, power is transferred between the single primary coil and the control coil, which is also one of theV secondary coils, and, since the M involved is that between these two coils, the range of variation is limited by leakage. between these coils.
  • the range of variation of the second connection (using two primary coils) is unlimited, so that the level of output current can be changed to any value desired by change in the effective capacitive reactance in the control circuit, and the current will be maintained constant at that value for changing load, without change in any other component.
  • the first connection (using only a single coil as primary)
  • the range of variation is limited by leakage.
  • Another surprising feature of all the embodiments of this invention is their independence of variation in frequency of the input, as far as keeping the circuit in resonance is concerned.
  • ordinary resonance systems are extremely dependent on frequency for maintenance of the resonant condition, but the resonant circuits described herein are completely independent of frequency, except that the output current level at which constancy is maintained is .changed with change in frequency. In other words, as input frequency is changed, the system is maintained in resonance, though the level of output current is changed.
  • Magnetic paths will be understood to define the courses of ux lines linking the coils referred to.
  • FIGS. 17 through 28 All of these g'ures have application to a transformer system including at least four coils, two coils in each of the output and input circuits connected in series, with one of the output and one of the input coils being wound on each of two of the legs of the trans former core.
  • the third leg of the core is unoccupied by a coil.
  • netic material so as to exhibit relatively low reluctance as compared with air, and stamped laminations of standard transformer iron may make up the core.
  • the core may be of non-ferromagnetic material, or air, as long as the high reluctance and leakage of such a core is compensated for by the other parameters of the system or is not too important.
  • FIG. 17 Such a system as described immediately above is shown in FIG. 17 in which the input source of A.C. voltage is connected across series-connected coils L1 and L2. These coils are wound on outer legs 31 and 32 of a shelltype transformer core 33.
  • the left outer leg includes portions b-a-f--e of the transformer, the center leg portion b--e, and the right outer leg includes portion b--c-d-e of the core.
  • the portions a-f, b-e, c-e of the three legs are substantially parallel to one another.
  • load '37 may be of any type, but if constancy of current is desired, it is preferred that the load be mostly resistive in character, and,vfor best constancy, the load should be substantially of unity power factor.
  • the output coil L2 has acapacitor K connected across its terminals.
  • the system of FIG. 17 thus is formed into three electrical circuits, an input, an output and a control circuit.
  • the input circuit includes coils L1 and L2 and is connected across input 30, while the output circuit includes coils L1' and L2' and is connected across load 37, and the control circuit includes capacitor K and coil L2.
  • the input and output coils must be so phased that the linx generated by current through one of the input and output circuits ows through the center leg, while flux generated by current through the other circuit bypasses the center
  • the core is preferably or 'advantageously of mag-v 14 leg. Obviously, the primary iluX, then, can bypass the center leg, or ilow through it.
  • FIG. 18 An equivalent electrical circuit for the system of FIG. 17 is shown in FIG. 18, in ywhich the input voltage Ep is applied across the series combination of the coils L1 and L2, causing primary current Ip to flow in the input circuit. Through the transfor action, control coil current I1, flows in the control circuit, and output current I0 tlows in the load circuit.
  • Mutual inductances, or inductive couplings, between the various coils are shown by M1 between coils L1 and L2, M2 between coils L1 and L1', M3 between coils L11 and L2', M5 between coils L1 and L1', M6 between coils f L1 and L11', and M9 between coils L1' and L1.
  • the load impedance is represented by Z, and the capacity by K.
  • the system adjusts itself automatically to remain in resonance by adjusting the sign and magnitude ofthe mutual coupling between coils on the two outer legs.
  • the mutual inductance M changes between a range of negative value through zero to a positive value. How great is the magnitude of the extremes is not known, but it is known that M swings through zero between positive and negative.
  • Thesystem of FIG. 17 does not use a separate. coil in the control circuit. That system is subject to modifica- ⁇ tion to obtain the transformer system of FIG'. 19 Vinwhich a fifth coil, L3, is wound on one of the outer legs, and the series combination of ,L3 and capacitor Cis connected across output coil L2'.
  • This system operates very similarly to the system of FIG. 17, the difference in operation being only that occasioned by the larger voltage available to drive control current IL through the capacitor. In effect, then, this increases or magn-ies the effect of the capacitor on the system.
  • FIG. 20 showing a vector diagram of the various currents, voltages, and magnetomotive forces, for increasing impedance, using an actual transformer core material.
  • the voltage across the coils L1 and L2 of the input electrical circuit is shown in the vector diagram as Epi, which is actually the vector resultant of two out of phase voltages.
  • This primary voltage generates a magnetomotive force which drives a primary iiux, the primary fluxgenerating voltages in the output circuit coils L1' and L2.
  • These two coils are so wound and connectedin series Iwith respect to the direction of primary flux that their voltages oppose in the output, or load, electrical circuit.
  • the two voltages generated in the output coils by the primary flux are shown as Basic Ef* and Basic ,E2f* and are in phase opposition.
  • the voltage Basic Ezv* combines Awith a similar voltage across the. control coilLs to provide a driving voltage for a control coil current In.A This current, because of the capacitor in the control circuit, is 90 out of phase with the driving voltage.
  • the control coil current generates a control magnetomotive force FL in phase with it, which in turn causes an initial circulating :linx to flow between the two outer legs of the magnetic circuits.
  • this circulating flux generates voltages in output coils L1' and L2' which add together to produce a net output voltage E0.
  • the output current first decreases, then increases to a peak, and then drops ofi continuously for increasing output impedance.
  • the action of the output current first decreasing and thenkincreasing can be explained by reference tothe equation for the output current, vas well as bythe theoretical analysis given for the first class of the invention.
  • one term in the numerator is directly dependent for its value on the difference between the inductances of the two coils on the two outside legs.
  • the range within which the transformer operates is shown in FIG. 9 for the embodiments of the first class, and the same range is used for the second class.
  • the magnetic circuits of the apparatus of FIGS. 17 and 19 include a rst and a second magnetic circuit.
  • One circuit includes portions a-bc-d ⁇ -ef-a of the core, this being the output magnetic circuit for the connections of FIGS. 17 and 19.
  • the other magnetic circuit includes portions g-b-cd-e-g and g-b-a-f-e-g of the core, this circuit being the input magnetic circuit for the connections of FIGS. 17 and 19.
  • the input magnetomotive force is shown as Fp in FIG. 22, while the output magnetomotive force is shown as F0.
  • the two magnetic circuits have two common portions, including parallel portions a--f and parallel portion c-d.
  • load could be connected across coils L1 and L2, and the input connected across coils L1' and L2', as shown in FIG. 23.
  • These connections yield the same results as obtained with the original connections shown in tFIG. 17.
  • ilthe input and output coils must be so phased that the primary flux and the output Jrl-ux follow two circuits having an uncommon portion-the center leg.
  • either ilux may be the one which follows the center leg.
  • the capacity K can be connected across L2 of FIG. 17, in place of L2', with the same results.
  • FIG. 24 shows the use of a separate contnol coil for the apparatus of the preceding iigures.
  • Control coil L3 is wound on the same leg Ywith coils L2 and L2, and the series combination of this coil and capacitor C may be connected across any appropriate source of voltage, as indicated in the ligure.
  • the series combination may be connected across L2', L2, L1, L1', L1
  • the constancy of output current can be maintained with connection of the control circuit across any source of voltage, but substantially similar phase relationships to those shown for FIGS.
  • the level of output current which is to be maintained constant may be adjusted.
  • the value of the capacitor may be directly changed, but, particularly at the high voltages at which a system of this type will probably -be operated, it is advantageous to adjust the effective value of the capacity, rather than the actual capacitance.
  • the system of FIG. 25 provides a variable inductance 40 shunted directly across the capacitor K. Adjustment of the inductance of the variable inductor will change the effective capacity in the control circuit.
  • FIG. 26 shows a circuit in which the capacity is coupled by means of a transformer T into a control circuit.
  • the capacitor C is shunted across the secondary coil of the transformer, while the primary of the transformer is connected across coil L2.
  • the capacitor might be coupled into the control circuit through a variable transformer, or variac, thus enabling the effective capacitive reactance to be changed by change in the transformer turns ratio.
  • FIG. 27 Another way of providing for variation or adjustment in the eiective capacity ofthe control circuit, without direct coupling between the capacity and the control circuit, is shown in FIG. 27, in which capacitor C is connected across the secondary coil 41 of a saturable transformer 42.
  • the level of saturation of the transformer is controlled -by direct current ilowing from a source of variable voltage 43 through series-connected coils 44 and 45 wound on opposite legs of the core of the transformer.
  • the primary coil 47 of the transformer couples the capacity into the control circuit by connection ofthe primary coil directly across coil L2' on the constant current transformer core. Change of the value of the D.C.
  • coil L2 of FIG. 17 could be omitted and one end of coil L2 connected to L1 while the other is connected to the side of the load remote from the connection of coil L1 thereto. With coils L1 and L2 phased to oppose in the secondary circuit, the apparatus would work in the same manner as that shown in FIG. 17.
  • the embodiments include two magnetic circuits, which have two common portions, in one of which common portions the input and output magnetomotive forces aid, and in the other of these two common portions the input and output magnetomotive forces oppose, so that there is no direct coupling between the input and the load.
  • the control magnetomotive force in eiect reverses the total or resultant magnetomotive force in its common portion from the direction of the output MMF, so as to couple power from the input to the load through the control electrical circuit.
  • a transformer system for supplying power to a load from an A.C. input comprising a core having at least three legs of such configuration and so aligned with each other that magnetic paths are formed between each of two legs and the third leg, at least three coils wound on said core, a first and a second of said coils being wholly wound on different legs of said core and connected in series; an input, an output, and a control electrical circuit, all passing current, the input circuit including one of (a) a third one of said coils and (b) the series com ⁇ bination of said first and second coils and being connected across said A.C.
  • the output circuit including the other of (a) said third coil and (b) the series combination of said rst and second coils and being connected across said load; said input and said output electrical circuits forming with said core an input and an output magnetic circuit having two common portions, one of said input and output magnetic circuits having a portion not common to both of said magnetic circuits and said input and output electrical circuits being soI inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said common portions and oppose in the other of said common portions; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to a first one of said common portions; whereby no power is directly coupled lbetween said input and output electrical circuits, but the control current producing a magnetomotive force in said first common portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first common portion and thereby to
  • a transformer system as defined in claim l for supplying a substantially constant current to a load over a range of Variation of said load upward from Zero from a substantially constant voltage input.
  • a transformer system for supplying power to a load from an A.-C. input comprising a core of ferro-magnetic material having at least three legs, said legs being of such configuration and so aligned with each other that substantially closed high permeability paths are formed between each of two legs and the third leg, at least three coils wound on said core, a first and a second of said coils being wholly wound on different legs of said core and connected in series; an input, an output, and a control electrical circuit, all passing current, the input circuit including one of (a) a third one of said coils and (b) the series combination of said first and second coils and being connected across said input, the output circuit including the other of (a) said third coil and (b) the series combination of said first and second coils and being connected across said load; said input and said output electrical circuits forming with said core an input and an output magnetic circuit having two common portions, one of said input and output magnetic circuits having a portion not common to both of said magnetic circuits and said input and output electrical circuits being so
  • a transformer system as defined in claim 4 for supplying a substantially constant current to a load over a range of variation of said load upward from zero from a substantially constant volt-age A.C. input.
  • a transformer system for supplying power to a load from an A.C. input comprising a three-legged core of ferro-magnetic material, the legs of Said core being of such configuration and so aligned with each other that substantially closed high permeability paths are formedl between all of the legs, at least four coils wound on Said core, a first ⁇ and a second of said coils being wholly wound on the first and second legs of said core, respectively, Iand connected in series, and a third and a fourth of said coils being wholly wound on the first and second of said legs, respectively, and connected in series; an input, an output, and a control electrical circuit, all passing current, the input circuit including one of the (a) series combination of said first and second coils and (b) the series combination of said third and fourth coils and being connected across said A.C.
  • the output circuit including the other of (a) the series combination of said -first and second coils and (b) the series combination of said third and fourth coils and being connected across the load; said input and output electrical circuits forming with said core an input and an output magnetic circuit, one including all three of said legs and the other including said first and second legs but bypassing at least the major portion of the third leg, said input and output electrical circuits being so inductively related to said first and second legs that the input and output magnetomotive forces generated by the input and output currents aid in one of said first and second legs and oppose in the other of said first and second legs, and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to said first leg; whereby no power is directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force in said first leg of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first leg and thereby to couple power
  • a transformer system as defined in claim 8 for supplying a substantially constant current to a load over a range of variation of said load upward from zero from a substantially constant voltage A.C. input.
  • control electrical circuit includes said first coil and said capacitive reactance is shunted across said first coil.
  • control electrical circuit includes a control coil wound on said first leg.
  • a transformer system for supplying power to a load from an A.C. input comprising at least three inductively coupled electrical coils, a first and a second of said coils being connected in series; an input, an output, and a control electrical circuit, all passing current, the input electrical circuit including one of (a) a third one of said coils and (b) the series combination of said first and second coils and being connected across said A.C.
  • the output electrical circuit including the other of (a.) said third coil and (b) the series combination of said first and second coils and being connected across said load; the coils of said input and said output electrical circuits being linked by magnetic paths forming an input and an output magnetic circuit having two common portions, one of said magnetic circuits having a portion not common to both of said circuits and said input and output electrical circuits being so inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said common portions and oppose in the other; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to a rst one of said common portions; whereby no power is directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force in said rst common portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first common portion and thereby to
  • a magnetic servo system for supplying controllable magnitude alternating current from an A.C. input to a load comprising at least three Iinductively coupled electrical coils, a first and a second of said coils being connected in series; an input, an ouput, and a control electrical circuit, all passing current, the input electrical circuit including one f (a) a third one of said coils and (b) the series combination 'of said first and second coils and being connected ⁇ across said A.-C.
  • the output electrical circuit including the other of (a) said third coil and (b) the series combination of said first and second coils and being connected across said load; the coils of said input and said output electrical circuits being linked by magnetic paths forming an input and an output magnetic circuit having two common portions, one of said magnetic circuits having a portion not common to both of said circuits and said input and output electrical circuits being so inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said comrn'on portions and oppose in the other; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to ya irst one of said common portions; whereby no power is directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force -in said first portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said rs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Description

Sept. 12, 1961 L. A. MEDLAR TRANsFoRMER APPARATUS 9 Sheets-Sheet 1 Filed March 15, 1957 INM" m, MM 1M, a v .w W M W a P C, Wr i ,"1 vl. J m E FP 1J y M A a /f/lixlqh l fof ATTORNEY SePt- 12, 1961 L. A. MEDLAR 2,999,973
TRANSFORMER APPARATUS Filed March l5, 1957 9 Sheets-Sheet 2 /UW- CURREM" MMF 60ML NMF aas/c ak- J;
MwaoWn/r MMF I Sept. 12, 1961 1 A. MEDLAR 2,999,973
TRANSFORMER APPARATUS Filed March l5, 1957 9 Sheets-Sheet 5 oar/707' caAwf/W [0 oaf/Uw' Vm 7465 E@ INVENTOR Ew/.s A. MEDL A?,
ATTORNEY Sept. l2, 1961 1 A. MEDLAR TRANSFORMER APPARATUS 9 Sheets-Sheet 4 Filed March l5, 1957 .IZZ
INVENTOR fh/s M-oma.
O O am? H ATTORNEY Sept. 12, 1961 1 A. MEDLAR 2,999,973
TRANSFORMER APPARATUS Filed March l5, 1957 9 Sheets-Sheet 5 Eli/A5 17. MEM/P,
M BY 4%@ ATTORNEY Sept. 12, 1961 l.. A. MEDLAR TRANSFORMER APPARATUS 9 Sheets-Sheet 6 Filed March l5, 1957 ATTORNEY Sept. l2, 1961 L. A. MEDLAR TRANSFORMER APPARATUS Filed March l5, 1957 9 Sheets-Sheet 7 ATTORNEY Sept. l2, 1961 l.. A. MEDLAR TRANSFORMER APPARATUS 9 Sheets-Sheet 8 Filed March 15, 1957 I NVE N TOR fnv/.5 i. 150.075
ATTORNEY sept. 12, v1961 I.. A. MEDLAR 2,999,973
TRANSFORMER APPARATUS Filed March l5, 1957 9 Sheets-Sheet 9 INVENTOR fw/ 5 AMEQMA,
BY MM ATTORNEY United States Patent() 2,999,973 TRANSFORMER APPARATUS Lewis A. Medlar, Oreland, Pa., assignor to Fox Products Company, Philadelphia, Pa., a corporation of Penn- Sylvania Filed Mar. 1'5, 19157, Ser. No. 646,429 17 Claims. (Cl. 323-60) This invention relates to a transformer system for supplying power from an A.C. input to a load, and, more particularly to a transformer system for supplying a substantially constant current to a load subject to variations of impedance. v
As will be understood after the following explanation, the transformer system of this invention is capable of supplying a large number of diierent characteristic outputs. Among such outputs are a characteristic rise of current output with increasing load, a characteristic droop of current output with increasing load, and a substantially constant current output with increasing load. The invention will be more fully described in conjunction with the last-mentioned characteristic, which is preferred, but it will be understood that the invention is not limited to this characteristic.
In the past, several different means of obtaining a substantially constant current output with changing load impedance have been evolved. Perhaps the earliest of these various systems is that using a movable coil, the coil being counter-balanced and automatically adjusted in accordance with changing load to vary the distance between the input and output sides of the transformer and thereby to vary the coupling. This system is still in use today for constant current lighting systems, but it is subject to several disadvantages, among which are poor speed of response, the substantial expense of the system, the bulkiness of the unit, and the use of moving parts subject to wear and eventual shutdown of the system.
Another past-suggested constant current apparatus uses a saturable core reactor. The reactor may be a relatively simple one or may be a complex system utilizing shunts, partial air gaps, etc. This type of system, however, is relatively expansive, as well as being complex. Moreover, it has a lagging power factor.
A third general type of known constant current system is one using a resonance phenomenon. This type of system has taken many forms, but the simpliest form is the series resonant circuit, including an inductive reactance and a capacitive reactance connected in series, the two reactances being adjusted to -be substantially equal, and the load being connected across one of the reactances. While this type of system provides quite good constancy of output current, it has been found necessary to provide auxiliary means to limit the voltage across the components on open circuit. Moreover, this type of system is not readily adjustable to change the level of output current which is to be maintained constant. In order to provide for such change, there must be a change in both the actual inductance and the actual capacity of the components.
Another adaptation of the resonant system is the socalled monocyclic square. This system is subject to several of the disadvantages enumerated above for the simple series resonant system.`
In contrast to `all of the above previously suggested systems, the transformer system of the present invention provides a substantially constant current output at high efficiency, with no moving parts, with no need for auxiliary units to limit component voltages on open circuit, with relatively easy adjustment of the parts to change the level of output current to be maintained constant, and for a substantially lower cost than many of the previous systems.
Patented Sept. 12, 1961 The transformer system of this invention is in the nature of a resonant phenomenon, but, as will be obvious from the theoretical analysis to follow, it is far from a simple resonant phenomenon. None of the various embodiments of the invention to be described uses a simple series resonant circuit, and all of the embodiments actually automatically adjust themselves ,to maintain a substantially resonant condition even with change of only one of the components, such as change in capacity. The system is not dependent for its operation upon leakage reactance or on saturation of the core or any of its components, and the system actually is limited and adversely affected in its operation by these ever-present effects.
One important advantage of the transformer system of this invention is the fact that it draws a leading power factor current from the input, rather than the lagging power factor usually obtained with a transformer system.V
The apparatus of the present invention is capable of use wherever it is desired to` draw `a substantially constant current through a variable load, when a constant voltage input is provided. One instance of such use is in lighting systems.
The apparatus of the present invention, generally described, includes an input, an output and a control electrical circuit, each of these circuits including at least one coil which may be wound on a transformer core. The coils of the input and output electrical circuits are so inductively related, wound and connected with respect to one another that two magnetic circuits, an input and an output, are formed. The magnetic circuits have two common portions, in one of which the magneto-motive forces generated by the input and output currents aid, and in the other of which the magnetomotive forces generated by these currents oppose. As a result, there is no direct coupling of power between the input circuit and the output circuit. The control electrical circuit includes a capacitor and is inductively coupled to one of the coils of the input and output circuits through one of the common portions of the magnetic circuits. Current through the control circuit generates a magnetomotive force which is opposite in phase and of greater magnitude than the output magnetomotive force in the common portion through which the coupling takes place. The control magnetomotive force in effect reverses the output magnetomotive force in said common portion of the magnetic circuit and hence couples power from the input to the output through the control electrical circuit.
'Ihe invention will now be described in conjunuction with the accompanying drawings, showing preferred embodiments thereof.
In the drawings:
FIGS. l-16 are directed to one general class of the various embodiments of the present invention, this class including at least three coils, one of the three coils being Wound on each of the three legs of the core. In these figures,
FIG. 1 is a schematic diagram of one connection of the apparatus, without the use of a separate control coil;
FIG. 2 is a schematic diagram of the electrical equivalent circuit of the apparatus of FIG. 1;
FIG. 3 is a `schematic diagram of the apparatus of FIG. 1, but with -a control coil added to the circuit;
FIGS. 4-6 are vector diagrams, to be used in explaining the operation of the apparatus of this general class of embodiments of the invention;
FIG. 7 is a graph of characteristic curves obtained with an apparatus similar to that shown in FIG. 3, for different levels of input voltage;
FIG. 8 is a further vector diagram showing the actual operation of the transformer yfor changing load;
FIG. 9 is a graph of the ux density versus magnetic field intensity characteristic curve of the type of ferromagnetic material preferably though not necessarily used with the transformer, with a curve of static permeability of that material;
FIG. l0 is a schematic showing of the input `and output magnetic circuits of the transformer system of this class; FIG. ll is -a schematic showing of the various embodiments of this invention as servo systems;
, FIG. 12 is a schematic diagram similar to FIG. l, but showing the input and output connections reversed, so that the load is connected to what was formerly the input circuit, `and the input is connected to what was formerly the load circuit;
FIG. 13 is a schematic diagram showing a control coil and listing the various possible connections of the control circuit;
FIG. 14 is a schematic showing one method for adjusting the effective capacity of the control circuit;
FIG. 15 is a schematic diagram showing transformer coupling of the capacitor into the control system;
Y FIG. 16 is a schematic diagram of an apparatus for adjusting the effective capacity of the control circuit through use of a saturable transformer; and
FIGS. 17-27 are employed to show various embodiments of a second class of the invention, together with the theory of operation of such embodiments. This class of the various embodiments of the present invention includes at least four coils wound on the transformer core, two coils being wound on each of two of the legs of the core, and with one of the coils from each of the two legs being connected in series with each other, and the two series combinations of the coils being connected into an input and an output circuit, respectively. With this connection, one leg of the transformer core is free of coils.
Of these figures,
FIG. 17 is a schematic diagram of the basic connection of this class of the embodiments of the invention;
FIG. 18 is an equivalent electrical circuit of the apparatus of FIG. 17;
FIG. 19 is a schematic of an embodiment similar to that of FIG. 17, but including a separate control coil;
FIG. 2O is a vector diagram showing the actual operation of the transformer of FIG. 19 for increasing loads;
FIG. 21 is a graph of a series of characteristic output current versus output voltage curves of the apparatus of FIG. 19 for changing values of the capacitor;
FIG. 22 is a schematic of the magnetic input and output circuits of this class of embodiments of the invention;
IFIG. 23 is a schematic of a modification similar to that of FIG. 17, but with the input connected across wh-at were previously the load terminals, and the load connected across what were previously the input terminals;
FIG. 24 is a schematic showing the use of the control coil and listing its various possible connections;
FIG. 25 is a schematic of a system providing for variation of effective capacity in the control circuit;
FIG. 26 is a schematic showing transformer coupling of the capacitor into the control circuit;
. FIG. 27 is a schematic showing the use of a saturable transformer in the control circuit to vary the effective capacity of the capacitor in the control circuit.`
Referring first to FIGS l-l6, it will be evident that `all of the various embodiments shown in these figures have their magnetic paths linking the coils defined by a threelegged core. The core has one coil wound on each of the three legs. In the system of FIG. l, representing the basic embodiment of this class of the invention, a core 1 of ferromagnetic n material is preferably employed. Standard transformer iron embodied in stamped laminations may be used, but different core materials can be employed, depending upon the output characteristic and the general level of output current that is desired. The core 1 includes three legs, the two outer legs being labelled 2 and 3, and the center leg 4. Reference letters have also been used to `further identify the configuration of the various legs. The left outer leg 2 is a channel-shaped element including the arms e-f, fa, and a-b. The center leg is an I-shaped element, labelled b-e, and the right outer leg 3 is a complementary channel-shaped element having arms b-c, c-d, and d-e. The portions a-j' and c--d of legs 2 and 3 are parallel to one another and to portion b--e of leg 4. These configurations have been used for simplicity in identifying core legs, and the core need not necessarily be so made up.
The structure described provides closed inductive or magnetic paths betwen portion a--f of leg 2 and portion c-d of leg 3, as well as between portions a--f and b-e and c-d of legs 2, 4 and 3, respectively. If a ferromagnetic core is employed, as is preferred, the permeability of such paths will be high in comparison with air.
Though the several legs of the core have been shown as co-planar and as having parallel portions :1 -f, b-e and c--d, neither of these conditions is necessary to operation of the system. The legs of the core may be aligned so as to define different planes which may be parallel or intersecting, as desired, and the legs themselves need not be parallel, as long as there are three legs all coupled together by magnetic paths. Moreover, though no air gaps have been shown in the core of FIG. l, it is evident that a core of sheet stampings, assembled in conventional manner, to form a core of the configuration of FIG. l, would have air gaps therein. Moreover, it is possible that it might be desirable to construct the core with an air or other non-magnetic gap in one or more of its legs for some special purpose, and such construction is within the scope of this invention. Further, it might be desirable to employ a non-ferromagnetic material for the core if the high reluctance of such a core is not important or is otherwise compensated for. to be considered limited to ferromagnetic cores.
The transformer system of FIG. 1 includes three elec-I trical circuits, an input, an output and a control circuit. The input circuit includes a coil L1 wound on leg and the conductors 5 and 6 connected to the terminals of coil L1 and connecting the coil across an input source of A.C. voltage 7. In order to obtain constant current action, the input 7 must be of substantially constant voltage.
The output electrical circuit includes coil L2 wound on parallel portion a--f of leg 2, and coil L3 wound on parallel portion c--d of leg 3. Coils L2 and L3 are connected in series by conductor 8, and their distal ends are connected by conductors 9 and `10, respectively, across a load 11. Load 11 may be of any type, but most satisfactory constant current operation has been found to occur when the load is primarily resistive, rather than reactive. When a substantially unity power factor load is to absorb power from the input, the best constant current action is obtained.
Coils L2 and L3 are so wound on the transformer core with respect to the direction of primary liux and so connected in series by conductor 8 that their voltages induced by the primary fiuX oppose one another in the output circuit, with the result that the voltage across the load terminals is substantially zero at no load.
The control electrical circuit of FIG. l includes a capacitor K connected directly across the terminals of coil L3. In this embodiment of the first class of the invention, one of the output coils also acts as the control coil, the voltage induced across coil L3 driving the control current through capacitor K.
Referring now to FIG. 2, a mathematical analysis of the operation of the apparatus of FIG. l will be performed, so that the operation of that apparatus can be better understood.
FIG. 2 is a schematic diagram of the equivalent electrical circuit of the apparatus of FIG. l, with the input voltage Ep applied across coil L1, I@ and L3 being shown connected in series but wound in opposite directions, and currents Ip, I0 and IL flowing in the input, out- Therefore, the invention is not fiut-Y and" control electrical circuits. The mutual induct ances or inductive couplings between the various coils are shown as M2 between coils L1 and L2, M1 between coils lo and L3, and M3 between coils L1 and L3. The
a-b-c--d-e-fa, this beingthe output magneticfo.
circuit for the systems in which the load is connected across the series combination of the two outer coils, and the second magnetic circuit being g-b-c--d-e-g and capacity of the capacitor in the control circuit is iden- 5 g-b-a-f-ethis circuit being the path of flux tied as K, and the load impedance is Z. driven by the primary magnetornotive force in the system Using p=jw, setting up mesh equations for the input, in which the input is applied to the coil wound on the output and control circuits, assuming one:one turns ratios, center leg. neglecting ohmic resistance of coils, leakage reactance When the connections of the input and the load are and core loss, and solving for the load current, we obreversed, as will be described, the magnetic circuits retain following equation: verse, but the function of the system is the same. In the (t1) M M -l-M L M M It is evident that the above equation is relatively comleg on which the control coil is wound, the right leg in plicated and not susceptible of easy analysis, but it will FIG. 10, the Output magnetomotve force and the Pfibe noted that the impedance value Z appears in only 2o mary or input magnetornotive force are shown as aiding. one term, that being in the denominator of the equation. This being S0, there iS 110 dleCt Coupling 0f the load into For the load current ID to be independent of the load, the Primary, S0 that the SYStem Would 110i transform the multiplier of the impedance Z must be 0, so we obtain: POWGI but fOr the control CrCuit- However, the c011- L trol coil magnetomotive force, FL, is opposite to the (2) p2K+L lM2=0 25 output current magnetomotive force and substantially 1 3- 3 equals twice the output magnetomotive force in the right This obviously is the condition for pure constancy of leg, so as to form a resultant of these two magnetornotive the load, or output current. Through simple algebraic forces reversed from the output and to reflect operatigns on the last equation, we obtain the follow. the load lback into the primary circuit through the center ing equation; r leg. This results in coupling of power between the input L L M2 l and the load through the control coil magnetornotive (3) ,[1 3I 3]= force produced by current in the control coil.
L1 WK To analyze the physical operation of the apparatus of vThis last equation is obviously ono for a resonant FIGS. l and 3, we now turn to FIG. 4, showing a vector condition, but it also is certainly not a simple resonance dlagl'aln for all deal transformer 0f the tvPe shown m the equation, foregoing figures, with the output shorted. For the We will now proceed to show how the ,general class purposebf this analysis, an. ideal transformer is taken as of embodiments of this invention represented by the elle Wllleh leqlllfes llegllgll-'fle magnetomotlve force to basic circuit of FIG. l achieves the constancy of curdllve the lllllf necessary t0 lllluee the voltages (that ls rent which required that the last two equations be sub- 40 llas sllbstalltlallv Zero rellletallee) The ltleal trans' stantially true. Before doing this, howevers We will drs former also has no saturation'etf'ects, and there is no lcuss the modification of FIG. 3, which, while operating leakege reaetallee between the Wmtllngs very similarly to FIG. 1, includes a separate control Wltll such a tv anslormel" and the eomleetlotl of FIGS- ,ooil LIl Wound on leg 3 with coil L3 of the output en l or 3, rst considering the control circuit open, the volti'cuit. In FIG. 3, the series combination of control coil 45 ages across cells L2 alle L3 ltl the eutPut Clrcllt appear -L4 and the capacitor, now called C, is connected directas equal and oppeslte voltages labelled lll FIG' 4 as 1y across output coil L3 on the same len at has been Basic E2 and Basic E3. These voltages cancel to produce :found that the only diierence in operation of the sys- Zero Output voltage' Tllls ls so because lll the usual tom or FIG. 3 over that of FIG. r is caused by the arrangement in the apparatus of FIGS. l and 3, the num- Ihigher voltage available to drive the current through the ber of turns ofthe eell L2 Wlll equel the number Ot'tmls :oapaoiton This higher voltage makes the control cnn of the other coil L3 of the output circuit. However, it'is trent larger, thus allowing the output current, as will be not necessary that the Dqmbel of turns of the two coils ,shown hereinafter ro achieve a higher lover. We nso be equal, because there is an equalizing action between the idorrtroarron C, rather thorn K, in FIG- 3 to in the two coils, so that the two voltages will cancel at dicate that an actual capacitor of value C is connected Short clrcml even though the numbers of mms o? the in this circuit The effect of using a Separate `Control con', two coils are unequal. Next consider the control circuit such as Wrrh the apparatus of FIG. 3 may be included closed, so that the control circuit voltage drives current in the mathematical analysis for FIG. 2 by substituting through the. capacllor' The vector dlagrams of lhls allfl for the term K in the above. equations 182C, ,whore the succeeding figures are shown for the output magnetic =1+oo and o=tho turns ratio between the control and oo circuit. In that circuit the current through the capacitor coil L3. It will be evident from these statements that leads the voltage .Whlch drives that current by 90' the only eilect of the control coil is to add the turns Since that Vltage is Substentlallv m phase (or 180g out thereof to the control circuit, and thereby to increase the of Phase) Wllh Basle Es Wlth shmted Output the control voltage across the onnaoiton current, and hence the control coil magnetornotive force The systems of FIGS. l through 16 produce magnetic 65 (MM'F') 1s 90 ahead of Basle E3' circuits as shown in FIG, 10. In that figure, the primary '.rhe Control. curfent produces an mit@ meu or input Current produces a primary magnetornotive latiiig ux which links coils L? and L3 to produce in phase force Fp which ronds to canso nun to now through tho induced voltages therein which lag by 90 the M.M.F. center leg and split to flow through the two outer legs. Predllelllg the llllX Consequently the voltages ln L2 The two output coils being opposed in the output circuit, and L3 no longer Cancel, but they Combine t0 PfOdUC a the output current F0 tends to cause llux to cir- Pet Eo- T1115 Het Eo dfVeS an Output Current in Phase With culate through the two outer legs and F0 therefore opposes It, and th@ Output Current in OOS L2 and La PTOdUCeS an the primary magnetomotive force in one leg and aids it Output current ill Phase With f- The Control in the other leg. There actually are two magnetic cirand output current M.M.F.s then combine vectorially to cuits, the rst magnetic circuit being traced by the letters produce a net or unbalance rotated clockwise from the control current This net generates a circulating tlux which links coils L2 and L3 to produce new induced voltages in the coils which are rotated clockwise from the original voltages therein. This procedure continues until the steady state condition of FIG. 4 is reached. In that figure, it will be noted that the output and control current M.M.F.s are shown as substantially less than 180 from each other, for clarity, though they are actually substantially 180 apart. This relationship obtains because negligible net M.M.F. is required to produce the iluxes necessary to induce the cemponent voltages. The net is also exaggerated in the ligure for ease of examination. Also, the output voltage is substantially zero (though it is shown in the lfigure), since Z equals zero, so that net E3 is substantially 90 from Basic E3, and net E3 and the net M.M.F. are substantially in phase with Basic E3. The output current is of substantial magnitude and in phase with E3.
To show how the system which produces the vector relationships of FIG. 4 operates to prevent changes in the output current, consider what happens if the output current should decrease. 'Decrease in the output current vector I of FIG. 4 would immediately unbalance the Net M.M.F., causing it to go toward the direction of the control coil M.M.F. The Net unbalanced M.M.F. would then generate voltages in coils L3 and L3 rotated counterclockwise from their positions as shown in FIG. 4. The voltages E3 in L3 and E3 in L3 would then combine to yield a net E3 also rotated counter-clockwise from the position shown in FIG. 4. This net E3 would drive an output current I0 in phase with it to produce an output current also in phase with Eo. The new output current M.M.F. would be more nearly in phase with the control M.M.F., thus increasing the net and therefore the output voltages. With the increase in output voltage, the output current would return to its original value to cause the system to return to the steady state constant current condition of FIG. 4. Note in this frgure that the Net M.M.F. is substantially in phase with Basic E3 and the control and output currents are substantially out of phase.
The vector diagram of FIG, 4 is shown for the ideal transformer at the impedance Z=0. FIG. 5 shows the same transformer, but with the output impedance Z' not equal to 0. When resistance is introduced into the load circuit, the output current irst decreased, causing the output current M.M.F. to decrease and the net M.M.F. to swing counter-clockwise toward the control current M.M.F. The same action as described immediately above returns the system to the steady state condition of FIG. 4. In this case, however, since an appreciable output voltage is required t-o drive the output current through the appreciable impedance in the load circuit, the output components of the coil voltages must be larger than before. Nets E3 and E2 therefore rotate clockwise and counterclockwise, respectively, from their positions in FIG. 4, and, since the control M.M.F. must be 90 from net E3, the control rotates clockwise to the position of FIG. 5. In this ideal case, the net M.M.F. necessary to produce the increased output voltage is still negligible, so that the output current M.M.F. is substantially 180 .from the control current M.M.F., and the net is therefore substantially in phase with net E3, as shown in FIG. 5. However, the output and control M.M.E .s are shown as substantially less than 180 apart, as if appreciable net is required, for clarity.
The vectors are also shown in FIG. 5 to indicate the action of the circuit of FIGS. l and 3 to maintain a constant current output. Referring aagin to FIG. 5, if the load impedance decreases, the output current M.M.F. will tend to increase, as shown by the longer vector New Output Current M.M.F. This action will unbalanee the M.M.F.s to rotate the net M.M.F. toward the output current M.M.F., yielding the .New Net M.M.F. of FIG.;.5,l .This newnet will generate output voltages in coils L3 and L3 rotated clockwise from the original output voltages in those coils, as shown in FIG. 5.`
These output voltages combine to produce a new net En also rotated clockwise, and, assuming the impedance is resistive, an output current and output current M.M.F. which are likewise rotated clockwise from the original. This output current M.M.F., labelled correcting in FIG. 5, being more out of phase with the control M.M.F., will reduce the net M.M.F., reducing the output coil voltages and therefore the output current back toward its original magnitude. original condition, shown in full lines in FIG. 5.
The vector diagram of FIG. 6 is designed to give a complete picture of the action of the ideal transformer, showing all important component voltages and currents thereof, for increasing impedance. It will be noted that as the impedance increases continuously, the vector Net E3 will rotate clockwise, decreasing continuously. Since the control current IL is driven by net E3 (and the voltage across the control coil which is in phase with net E3) the control coil current must rotate and decrease continuously with net E3. Likewise, the control will decrease contiuously with net E3 and, En, being substantially behind net E3, will rotate clockwise. The output current is directly dependent upon the control current, so that, as the control current decreases, the output current likewise decreases continuously, describing a semi-circle of diameter equal to the original output current at zero impedance.
It will also be noted that the primary current Ip is substantially in phase with the control coil current IL, and so leads the primary voltage This results in a leading power factor, ordinarily an advantageous condition.
lt will be observed from the vector diagram of FIG. 6 that the ideal transformer tends toward a continuously decreasing output current with increasing load impedance, rather than a constant output current. However, an ideal transformer has been stipulated, in which negligible M.M.F. is required to drive the fluxes necessary to produce the voltages in the system, that is, the core material has zero reluctance. The inductances of the coils would be infinite but the mutual inductance between the coils, due to their physical separation, would be finite. Therefore the second term of Equation 2 would be Zero so that it could never balance the rst term. Hence the impedance would play a very large part in the operation of the system and the output current would vary inversely therewith.
In actual practice, however, the inductances of the coils are never infinite and it has been found that the coupling, as represented by M in Equation 2, automatically adjusts itself in correspondence with the value of capacity to make the equation substantially true.
To bring out this compensating feature of practical transformers in which the coupling is not perfect and in which the core has appreciable reluctance, consider next a different ideal core material having appreciably less than perfect coupling and constant reluctance, but not subject to saturation etfects. With such a core material, the net M.M.F. must be appreciable to drive the circulating ux which links coils L3 and L3. There must be relative rotation between the control and output M.M.F.s toward Basic E3 to produce this appreciable net from the condition of FIG. 4. In other words the control and output M.M.F.s are no longer substantially at to each other, `and the net M.M.F. must therefore rotate back toward Basic E3 from the phase relationship of FIG. 4, where it was substantially in phase with net E3.
For this new ideal core material, the relative rotation between the control and output M.M.F.s required to produce the linearly increasing net M.M.F. with increasing output voltage will tend to maintain the output current constant. If the reluctance is of proper value, the net M. l\/I .F ,W i ll st ay midway between Basic E3 andnet The system then returns to the- B3 despite increasing output voltage and clockwise rotation of net E3. The output current then would be perfectly constant over a range of output voltage limited only by leakage between the windings. If the reluctance was too high, of course, the required net would be so high that it would be closer to Basic E3 than to net E3 and the output current would rise with increasing voltage. If the reluctance was too low, the system would approach the first ideal core having negligible reluctance, and the current would drop off. However, it is the apparent reluctance, as represented by the coupling, rather than the physical reluctance, that is important. The value of this apparent reluctance relative to the other parameters of the system, then, determines the characteristic of output current versus output voltage.
In contrast to the above ideal core materials is a practical ferromagnetic material having changing reluctance and permeability and saturation characteristics. The performance of the system with such a core material will now be examined, referring first to FIG. 7, showing curves obtained with an actual core material having the windings and circuitry of FIG. 3.
FIG. 7 shows four different curves of the output current versus the output voltage obtained for four different input voltages. It will be noted that the output current is relatively constant over a very substantial range extendingupwardly from zero output voltagein'all cases, but that variations in the input voltage cause a substantial change in the output current. It will further be noted that the output current decreases from its value at zero output voltage when the impedance increases, reaches a minimum, and then increases again up to a peak. From this peak, the output current decreases continuously and the constant current action is no longer had. It has been found that this continuous decrease in output current occurs because of saturation of the core material. It will be appreciated, then, rather than being dependent upon saturation of core material, the various embodiments of this invention are limited, as far as their constancy of current is concerned, by saturation of the core material. It is further evident that the apparent reluctance of the core material is too low at first, resulting in the current decrease, but it then increases to cause the current to rise back to its original value.
In order to explain the action of the output current in first decreasing, then increasing to a peak, then decreasing continuously as saturation enters into the picture, We refer next to FIG. 8 showing a vector diagram for an actual transformer core material, with the circuits of FIG. 3 in use.
It will be noted in FIG. 8 that the vector E0 in L3 rotates clockwise from its original position perpendicular to Basic E3 at zero impedance and that net E3 decreases continuously at first. The control M.M.F., being dependent on net E3, follows this action, likewise decreasing and rotating clockwise. The output current I0, being dependent upon the control M.M.F., likewise rotates clockwise at first Iand decreases. At low levels of net M.M.F., the control and output currents are substanitally 180 out of phase with each other and the net M.M.F. is in phase with E3, so that the system behaves like the ideal core discussed in conjunction with FIG. 6. However, at higher levels of net M.M.F., required to produce the higher output voltages for increasing E3 (in contrast to the ideal core system), I3 and IL must move toward each other to produce the larger net I moves counterclockwise to carry E3, and therefore E3, with it. Since Ii, must always be perpendicular to net E3, being produced by it, the net must move back toward Basic E3 as the output voltage increases and moves counterclock- Wise with I0. This movement causes net E3 to move back toward Basic E3 and increase, so that the control M.M.F. increases, and the net must increase. put current, being dependent on the net M.M.F., thus increases.
The out- This increase in the output current obtains for a con- It will 1 siderab-le extent of increase of output Jvoltage. be noted, however, that net E2 increases continuously in the first portion of its locus, though net E3 does not'. As the output voltage increases-continuously the ux density in the leg carrying L2 rises, being proportional to net E2, so that this leg becomes substantially saturated.
As the needed net further increases, E0 in L3 and E0 in L3 reverse their clockwise rotation to cause the output current to swing more and more toward the volt# age basic E3, thus increasing net E. When net E3 reaches? a value such that the leg carrying coil L3 becomes satu- Hence,. saturation is first caused in the core leg carrying coil L3, and this effect causes unbalance to set up saturation in.
rated, the output current decreases continuously.
the leg carrying coil L3, the control leg.
in approaching saturation.
same material.
meability drops with the levelling off of the flux density curve.
static permeability of the core material.
graph and the point marked B on the graph of flux density',y for the basic flux density of the core (that is, the density of flux caused by primary current), furnishes the best action for constancy of current, since the permeability of the core lmaterial changes the Ileast over this area.
The action of the system of FIGS. l and 3 in producing constancy of current may be better understood by discussing it as a magnetic servo system, which it has been found to be. Referring to FIG. ll, the input to the conventional servo system is a reference or standard. The control of the system of this invention fills the function of the reference or standard. In the servo system, the Ireference or standard is referred to a differential in which it is compared with the output of a feedback loop, reflecting the action that the output of the system has taken. The differential of this invention is the phaserelationship between the output and control M.M.F.s
The net or error between the reference or standard and the feedback loop information, represented by the net'V in the system of this invention, is supplied to an amplifier. The function of the amplifier in the system of this invention is performed by the permeability of the core material. The output of the amplifier, the amplifier error of the servo system, is directed to a power device for influencing the output of the system. The amplified error is equivalent to the circulating ux of the system of this invention, and the power device consists of the output coils which provide output E0. the power device is the output current I3 in the system of this invention. The output In is converted by the feedback amplifier (also the output coils) from the input to the amplifier, I0, into the output M.M.F. of the system of this invention. and the output being continuously compared to produce a net This net M.M.F., through the permeability of the core, is amplified and produces a circulating flux which induces output voltages in the two coils. These output voltages add together algebraically to produce an output current. is carefully regulated by the control to be maintained in substantial agreement therewith. If the control is changed, the output current will be correspondingly changed.
It will be appreciated that the apparatus of this invention is actually a magnetic servo system. The various em' bodiments to be explained later herein also behave vin:
In the area following the beginning of the de crease in permeability, there is a gradual reduction in the It has been` found that the area between the point marked A on the:
The regulated output ofv This system results in the control M.M.F.
The output current, then,
1 1 tiresamemanner, so that the servo expanation applies: to them, also.
The foregoing expanation has been directed to the form ofthe invention shown in FIG. 3, but it has been emphasized that it applies also to the embodiment of FIG. 1. Actually, the only difference between FIG. 1 and FIG. 3, besides the increase of driving voltage available to the control coil circuit, and thus the increase in control M.M.F., is the possibility of different connections for the control coil circuit. Various connections possible for this circuit will he shown in FIG. 13, but first refer to FIG. 12 in which it is illustrated that the positions of the load and input in the system may be reversed from those shown in FIG. 1. In FIG. 12, the input is shown as connected across leads 9 and 10, and the load is connected across leads and 6, thus putting the input across the series combination of coils L2 and L3, and the load across coil L1. The action of the system of FIG. 12 is very similar to that of FIG. l, yielding very good constancy of current.
Now referring to FIG. 13, control coil L4 is shown connected in series with capacitor C, but the leads of this series circuit are not connected across L3, as in FIG. 3. Itis indicated that this control circuit may include any source of voltage, including L4 alone. In other words, the seriesY combination of L4 and C may be connected across thev coil L1, coil L2, coil L3, coils L2 and L3, any other source of voltage external to the system, or the two leads may be shorted together. The important thing is that the control impedance be a capacitive reactance, no matter what its source of voltage. However, it has been found that when the source of voltage for the control impedance iszso related to the primary voltage that the control current and the primary voltage are substantially 90 out of phase at zero load, the greatest range of constancy for varying output voltage is obtained.
With these various connections of the control coil circuit shown in FIG. 13, many different types of output respcnse may be obtained.
In commercial use of the embodiments of this class of the invention, it is advantageous to provide some means for controlling the level of output current which is to be maintained constant. Since the output current is directly dependent upon the control coil current, the control coil current may be changed to change the level of output current. This may be done by changing the value of the capacity, but it is more convenient, especially at such high voltages as may obtain with a system of this type, to change the effective value of capacity, rather than the actual value. One way of changing the effective value of the capacity is shown in FIG. 14, in which a variable inductance 15 is shown shunted directly across capacitor K. Variation of the magnitude of the inductance of 15 will change the effective capacity across coil L3, and thus the control coil current. v
It is also possible to couple the control capacity into the system by use of a transformer, rather than connecting a capacitor directly in series with the control coil. This is exemplified in FIG. 15 by use of a transformer T, having capacitor C connected across its secondary, and its primary connected across coil L3. Moreover, the capacitor might be coupled into the control circuit through a variable transformer, or variac, thus enabling the effective capacitive reactance to be changed by change in the transformer turns ratio.
Another way of coupling the capacitor into the system without direct connection of the capacitor to the control coil, and with the possibility of Variation of the effective capacity in the control coil circuit, is shown in FIG. 16. In that figure, capacitor C is connected across the secondary of a saturable transformer 21. Two coils 22 and 23 wound on the outer legs of the three leg transformer 21 are provided with direct current through a source of variable D.C. voltage 24. The coils are connected in series, and phased in such manner as to cause a D..C.
M.M.F'. to direct ux through the outer legs of trans,-y
former 21 only. An increase in direct current through these coils increasesl the magnetomotive force and hence the magnetic field intensity in the outer leg portions of the transformer so as to increase the saturation of these portions of the core material. Secondary coil 20 is coupled through the center leg to primary coil 2S of the saturable transformer. The primary coil 2S is connected directly across coil L3 ofthe constant current transformer system. Since the equivalentcircuit of a transformer includes an iron core inductance across an ideal transformer, thus shuntingthe capacity, an increase in direct current through coils 22 and 23 by increasing the saturattion of part of the magnetic path of the transformer, reduces this inductance, so as to decrease the effective capacity of the control circuit.
It was stated in the beginning of this specification that the action of the system in maintaining the output current constant is independent of the value of the capacity in the control coil circuit. This is a very surprising thing, for it is evident from a consideration of the second equation of column 5 that the only quantity that could possibly vary automatically with changing C to maintain the equality is the mutual inductance, and, more specifically, the coeicient of coupling forming one factor of the mutual inductance. The coefficient of coupling of the two output coils has. actually been found to vary automatically to compensate for changing C to maintain the system substantially in the resonant condition defined by this equation. Naturally, however, there are theoretical limits to variation in this coeicient, depending upon the physical spacing of the coils, for the coefficient can. never reach unity, and the higher the percentage of leakage flux the lower the coefcient. For the connection of the apparatus in which the single coil on the center leg is the primary of the transformer, the M that is involved is that between the primary coil and oneof the secondary coils, while, for the connection of the apparatus in which the two coils on the outer legs constitute the primary, the M that is involved is that between the two primary windings. Tests have shown that the range ofvariation of capacity for which currentis. maintained constant is substantially unlimited for the second connection but limited for the rst connection. Apparently the criterion is whether the M involved is between coils between which power is transferred, e.g., between the primary and control coils. -In the first connection, power is transferred between the single primary coil and the control coil, which is also one of theV secondary coils, and, since the M involved is that between these two coils, the range of variation is limited by leakage. between these coils.
In the second connection, power is not transferred be,-
tween the two primary coils, which are the coils betweenv which theM involved exists, so that leakage between these two coils does not limit the range of variation.
Hence, for practical purposes, the range of variation of the second connection (using two primary coils) is unlimited, so that the level of output current can be changed to any value desired by change in the effective capacitive reactance in the control circuit, and the current will be maintained constant at that value for changing load, without change in any other component. In contrast, for the first connection (using only a single coil as primary),` the range of variation is limited by leakage.
It will be further evident from the above that, though the apparatus described functions to maintain constancy of current through some sort of resonance, the resonant circuit is not of any simple type. Further, exact equality of capacitive and inductiveV terms of Equation 2 is not necessary for independence of load, so that the system need operate only near pure resonance. Moreover, the characteristics of an iron core usually employed for regulating purposes, such as non-linearity and saturability are not necessary to operation of the apparatus of this invention and are actually limiting to its operation. Actually anair` accepta 1acore, or some non-magnetic core, could be used, thus avoiding problems with saturation, though the high reluctance of the magnetic paths linking the several coils and the high leakage would be undesirable for many purposes. l
Another surprising feature of all the embodiments of this invention is their independence of variation in frequency of the input, as far as keeping the circuit in resonance is concerned. Of course, ordinary resonance systems are extremely dependent on frequency for maintenance of the resonant condition, but the resonant circuits described herein are completely independent of frequency, except that the output current level at which constancy is maintained is .changed with change in frequency. In other words, as input frequency is changed, the system is maintained in resonance, though the level of output current is changed.
It will be understood that the use of the term magnetic paths in the accompanying claims does not restrict such claims to ferromagnetic cores forming such paths, since air or non-magnetic material might form the paths. Magnetic paths will be understood to define the courses of ux lines linking the coils referred to.
To explain the second class of embodiments of the present invention, reference is now made to FIGS. 17 through 28. All of these g'ures have application to a transformer system including at least four coils, two coils in each of the output and input circuits connected in series, with one of the output and one of the input coils being wound on each of two of the legs of the trans former core. The third leg of the core is unoccupied by a coil. netic material, so as to exhibit relatively low reluctance as compared with air, and stamped laminations of standard transformer iron may make up the core. Actually, the core may be of non-ferromagnetic material, or air, as long as the high reluctance and leakage of such a core is compensated for by the other parameters of the system or is not too important.
Such a system as described immediately above is shown in FIG. 17 in which the input source of A.C. voltage is connected across series-connected coils L1 and L2. These coils are wound on outer legs 31 and 32 of a shelltype transformer core 33. The left outer leg includes portions b-a-f--e of the transformer, the center leg portion b--e, and the right outer leg includes portion b--c-d-e of the core. The portions a-f, b-e, c-e of the three legs are substantially parallel to one another.
As indicated in connection with the first class of ernbodiments, it is not necessary that the legs of the core be co-planar, or parallel, as shown in the drawings, or that the core be free of air gaps. It is only necessary that closed magnetic paths be formed between all coils of the core. Y
Wound on the same leg 31 with coil L1 is a second coil L1', and a similar arrangement obtains for leg 32, on which coil L2', is wound. Coils L1' and L2 are connected in series by lead 34, and their distal ends are connected by leads 35 and 36 to a load 37. As with the various embodiments of the rst class of embodiments of this invention, load '37 may be of any type, but if constancy of current is desired, it is preferred that the load be mostly resistive in character, and,vfor best constancy, the load should be substantially of unity power factor.
v The output coil L2 has acapacitor K connected across its terminals.
The system of FIG. 17 thus is formed into three electrical circuits, an input, an output and a control circuit. The input circuit includes coils L1 and L2 and is connected across input 30, while the output circuit includes coils L1' and L2' and is connected across load 37, and the control circuit includes capacitor K and coil L2. The input and output coils must be so phased that the linx generated by current through one of the input and output circuits ows through the center leg, while flux generated by current through the other circuit bypasses the center The core is preferably or 'advantageously of mag-v 14 leg. Obviously, the primary iluX, then, can bypass the center leg, or ilow through it.
An equivalent electrical circuit for the system of FIG. 17 is shown in FIG. 18, in ywhich the input voltage Ep is applied across the series combination of the coils L1 and L2, causing primary current Ip to flow in the input circuit. Through the transfor action, control coil current I1, flows in the control circuit, and output current I0 tlows in the load circuit. Mutual inductances, or inductive couplings, between the various coils are shown by M1 between coils L1 and L2, M2 between coils L1 and L1', M3 between coils L11 and L2', M5 between coils L1 and L1', M6 between coils f L1 and L11', and M9 between coils L1' and L1. The load impedance is represented by Z, and the capacity by K.
Using p=i, setting up mesh equations for the input, output and control circuits, and solving for the load current, we obtain the following equation:
Iol-
have further assumed M2=L1 and M3=L2, because, the` coils being wound on the same legs, there will be substantially perfect coupling between these coils. We have there are only two legs carrying the coils.
It is noted that the impedance Z appears in this equation only in one term of the denominator. For the output current to be independent of the impedance, the multiplier of the impedance must be (l, so that We obtain the following equation:
This obviously is the condition for pure constancy of the load, or output, current. Through simple arithmetical operations on the last equation, we obtain the following equation:
It will be noted that this equation is similar to one for a parallel resonant condition.
-From actual operation of the system of FIG. 17, it is known that the output current is substantially constant for a range of variation of load impedance upwards from zero. Therefore, this last equation must be substantially true in the system. However, also for the system of FIG. 17, it has been found that changes in the capacity of the control circuit make no change in the constancy of current obtained with the system, only changing the. value of the output current. This is of course in extreme contrast with the operation of the conventional parallel resonantcircuit, because if one of the reactances of such a circuit -is changed, the opposite sign reactance -must be. correspondingly changed to compensate and maintain resonance. Evidently, the system adjusts itself automatically to remain in resonance by adjusting the sign and magnitude ofthe mutual coupling between coils on the two outer legs. In other words, over a range of variation of the effective capacity K of the system of FIG. 17, the mutual inductance M changes between a range of negative value through zero to a positive value. How great is the magnitude of the extremes is not known, but it is known that M swings through zero between positive and negative.
assaut/s It will further be noted that theoutput current I is directly dependent upon the capacity of thecontrol circuit capacitor K, so that increase in the effective capacity K causes a direct increase in the output current. Y t
Thesystem of FIG. 17 does not use a separate. coil in the control circuit. That system is subject to modifica- `tion to obtain the transformer system of FIG'. 19 Vinwhich a fifth coil, L3, is wound on one of the outer legs, and the series combination of ,L3 and capacitor Cis connected across output coil L2'. This system operates very similarly to the system of FIG. 17, the difference in operation being only that occasioned by the larger voltage available to drive control current IL through the capacitor. In effect, then, this increases or magn-ies the effect of the capacitor on the system. The use of this separate control coil L3 may be interpretedinto the equations above by substitution of the actual value of the capacity C in the equation using the equivalency K= -C, where =1+a and a equals the turns ratio between the control coil L3 and the secondary coil L3. y
The actual operation of the system of FIG. 17 and FIG. 19 is best explained by reference to FIG. 20, showing a vector diagram of the various currents, voltages, and magnetomotive forces, for increasing impedance, using an actual transformer core material. The voltage across the coils L1 and L2 of the input electrical circuit is shown in the vector diagram as Epi, which is actually the vector resultant of two out of phase voltages. This primary voltage generates a magnetomotive force which drives a primary iiux, the primary fluxgenerating voltages in the output circuit coils L1' and L2. These two coils are so wound and connectedin series Iwith respect to the direction of primary flux that their voltages oppose in the output, or load, electrical circuit. The two voltages generated in the output coils by the primary flux are shown as Basic Ef* and Basic ,E2f* and are in phase opposition. The voltage Basic Ezv* combines Awith a similar voltage across the. control coilLs to provide a driving voltage for a control coil current In.A This current, because of the capacitor in the control circuit, is 90 out of phase with the driving voltage. The control coil current generates a control magnetomotive force FL in phase with it, which in turn causes an initial circulating :linx to flow between the two outer legs of the magnetic circuits. As described in conjunction with the first class of embodiments, this circulating flux generates voltages in output coils L1' and L2' which add together to produce a net output voltage E0. This net voltage drives an output current I0 here shown in phase with the output Voltage, because we are assuming that the load is highly resistive. The output current through the two coils L1' and L2 generates an output magnetomotive force F0 in phase with it, and the output magnetomotive force and the control magneto-motive force, substantially 180 out of phase, as shown in the vector diagram, combine to produce a net magnetomotive force. l l
The net magnetomotive force generates a circulating flux linking the two coils of the output circuit and producing voltages therein shown as E0 in L1 and E0 and L2. These voltages again combine to produce the net output voltage E0. From the `vector diagram it will be noted that as the impedance increases, the output voltage E0 increases continuously, but changes its phase. The output current first decreases slightly, while rotating clock# wise, then reverses its rotation and increases to 'a peak, until it reaches a` level at which it begins to decrease continuously with further increase in output voltage. `This action ofthe output current with increasing impedance isshown in FIG. 21, illustrating the output current versus output voltage for three different values of effective capacity in the control circuit. For the highest `curve particularly, it will be noted that the output current first decreases, then increases to a peak, and then drops ofi continuously for increasing output impedance. The action of the output current first decreasing and thenkincreasing can be explained by reference tothe equation for the output current, vas well as bythe theoretical analysis given for the first class of the invention. In the equation, it will be noted that one term in the numerator is directly dependent for its value on the difference between the inductances of the two coils on the two outside legs. The finductances of such coils are of course dependent directly upon the voltages across these coils, so that they are equal at E0:=0, and, at relatively high levels of magnetic tield intensity at which transformer systems of this type are operated, an increase in voltage causes a decrease in inductance of a coil. From FIG. 20, it is obvious that the voltage across coil L2 decreases at first with increasing impedance, while the voltage across L1 increases. Therefore, it is obvious that the inductance L2 increases as the voltage net E2' decreases, while the opposite actiontakes place for the other coil in the output circuit. From the equationfor the loador output current, the output current thus decreases at first. However, net E2', after decreasing for a time, then increases, while net E1' decreases: This reverses the direction of change of the inductance, Vso that the output current increases till it reaches a peak. This peak apparently is the region in which saturation of the magnetic core material takes place, As saturation `enters into the picture (occurring tirst in the leg not carrying the control coil and then affecting the other outside leg), it requires more and more magnetic field intensity to obtain even a slight increase in flux density in the core material. The output current then drops off continuously with increasing load. This sequence yemphasizes the disadvantageous action of saturation Von the system. If there were no saturation, the range of constancy would only be limited by leakage.
The range within which the transformer operates is shown in FIG. 9 for the embodiments of the first class, and the same range is used for the second class.
It would be possible to go through a vector analysis similar to that of FIGS. 4 and 6, for this second class of embodiments, but, since the operation of this class of embodiments of the invention in achieving current constancy is quite similar to that of the first class of embodilments, the vector analysis will not be repeated.
Referring now to FIG. 22, the magnetic circuits of the apparatus of FIGS. 17 and 19 include a rst and a second magnetic circuit. One circuit includes portions a-bc-d`-ef-a of the core, this being the output magnetic circuit for the connections of FIGS. 17 and 19. The other magnetic circuit includes portions g-b-cd-e-g and g-b-a-f-e-g of the core, this circuit being the input magnetic circuit for the connections of FIGS. 17 and 19. The input magnetomotive force is shown as Fp in FIG. 22, while the output magnetomotive force is shown as F0. It will be noted that the two magnetic circuits have two common portions, including parallel portions a--f and parallel portion c-d. In parallel portion a-f the two magnetomotive forces are in opposition, while in parallel portion c-d the two magnetomotive forces are aiding. This condition would result in failure to couple power between the input and the load, if there were no control circuit in the system. However, the control circuit, because o f the phase change caused by the use of the capacity in the system, generates a control magnetomotive force FL which 'is larger than and in phase opposition with the output magnetomotive force. The control magnetomotive force in this leg is thus reversed from F0, and power is coupled between the input and the load through the control circuit.
In FIG. 11 above, the operation of the embodiments of the tirst class of this invention has been further described as that of a servo system. The same description applies to the embodiments of this second class of the invention. I i
It will be obvious that load could be connected across coils L1 and L2, and the input connected across coils L1' and L2', as shown in FIG. 23. These connections yield the same results as obtained with the original connections shown in tFIG. 17. As noted above, ilthe input and output coils must be so phased that the primary flux and the output Jrl-ux follow two circuits having an uncommon portion-the center leg. However, either ilux may be the one which follows the center leg. Further, the capacity K can be connected across L2 of FIG. 17, in place of L2', with the same results.
FIG. 24 shows the use of a separate contnol coil for the apparatus of the preceding iigures. Control coil L3 is wound on the same leg Ywith coils L2 and L2, and the series combination of this coil and capacitor C may be connected across any appropriate source of voltage, as indicated in the ligure. For instance, the series combination may be connected across L2', L2, L1, L1', L1|L2, LILI-L2', any other source of voltage, or the leads for this control circuit may Vbe shorted on each other, so that the driving voltage for the control current is obtained only from control coil L2. The constancy of output current can be maintained with connection of the control circuit across any source of voltage, but substantially similar phase relationships to those shown for FIGS. 17 and v19 are preferable for best range of constancy. In other words, when the source voltage for the control impedance is so related to the primary voltage that the control current and the primary voltage are 90 out of phase at zero load, the range of output voltage during which the current is maintained constant is the greatest.
For commercial use of the circuits of the preceding figures it will be desirable that the level of output current which is to be maintained constant may be adjusted. In order to provide for such adjustment, the value of the capacitor may be directly changed, but, particularly at the high voltages at which a system of this type will probably -be operated, it is advantageous to adjust the effective value of the capacity, rather than the actual capacitance. In order to permit this, the system of FIG. 25 provides a variable inductance 40 shunted directly across the capacitor K. Adjustment of the inductance of the variable inductor will change the effective capacity in the control circuit.
It will also be evident that the capacity need not be directly coupled into the control coil circuit, but may be coupled in any appropriate manner. FIG. 26 shows a circuit in which the capacity is coupled by means of a transformer T into a control circuit. The capacitor C is shunted across the secondary coil of the transformer, while the primary of the transformer is connected across coil L2. Moreover, the capacitor might be coupled into the control circuit through a variable transformer, or variac, thus enabling the effective capacitive reactance to be changed by change in the transformer turns ratio.
Another way of providing for variation or adjustment in the eiective capacity ofthe control circuit, without direct coupling between the capacity and the control circuit, is shown in FIG. 27, in which capacitor C is connected across the secondary coil 41 of a saturable transformer 42. The level of saturation of the transformer is controlled -by direct current ilowing from a source of variable voltage 43 through series-connected coils 44 and 45 wound on opposite legs of the core of the transformer. The primary coil 47 of the transformer couples the capacity into the control circuit by connection ofthe primary coil directly across coil L2' on the constant current transformer core. Change of the value of the D.C. voltage from source 43` causes a change in current through coils 44 and 45, resulting in a change in the satuyration of the outer legs of the core and a corresponding change in the primary exciting current. Thereby, a change in the elective capacity in the control circuit is 18 obtained in the manner described in conjunction with FIG. 16.
As explained above, all of these classes of embodiments of the invention, have a substantially unlimited constancy action with variation in capacity of the control circuit capacitor. When leakage reactance is neglected, all units described herein have unlimited constancy,. This surprising result is achieved 4by automatic variation in the mutual inductance of coils on separate legs to compensate for changes in capacity, so that resonance is substantially maintained. As far as is known, the action of such systems in varying mutual inductance automatically without adjustment of parts, is novel. Also as explained above, a ferromagnetic core is not essential to the operation of this invention and some of its characteristics actually limit the range of operation. An air core version of one of the classes of embodiments was tested at high frequency and it was found that the range of constancy was much greater than that indicated by iron core results, thus proving that saturation limits the range. The range in an air core embodiment appears limited by leakage, rather than saturation.
As will be evident, autotransformer arrangements, rather than those using unconnected primary and secondary coils, may be used. For instance, coil L2 of FIG. 17 could be omitted and one end of coil L2 connected to L1 while the other is connected to the side of the load remote from the connection of coil L1 thereto. With coils L1 and L2 phased to oppose in the secondary circuit, the apparatus would work in the same manner as that shown in FIG. 17.
It will be obvious that many minor variations could be made in the elements of the various embodiments of this invention shown and described Without departure from the spirit ofthe invention. For instance, the positions of the various coils on the respective legs of the transformer core could be changed about and the characteristics fundamental to the system still be maintained. From the description of the various embodiments, it will be evident that all of these embodiments have the following in common:
The embodiments include two magnetic circuits, which have two common portions, in one of which common portions the input and output magnetomotive forces aid, and in the other of these two common portions the input and output magnetomotive forces oppose, so that there is no direct coupling between the input and the load. The control magnetomotive force in eiect reverses the total or resultant magnetomotive force in its common portion from the direction of the output MMF, so as to couple power from the input to the load through the control electrical circuit. From the above, it will be obvious that this invention is not to be considered limited to the various embodiments shown and described, 'but rather only by the scope of the appended claims.
I claim:
1. A transformer system for supplying power to a load from an A.C. input, comprising a core having at least three legs of such configuration and so aligned with each other that magnetic paths are formed between each of two legs and the third leg, at least three coils wound on said core, a first and a second of said coils being wholly wound on different legs of said core and connected in series; an input, an output, and a control electrical circuit, all passing current, the input circuit including one of (a) a third one of said coils and (b) the series com` bination of said first and second coils and being connected across said A.C. input, the output circuit including the other of (a) said third coil and (b) the series combination of said rst and second coils and being connected across said load; said input and said output electrical circuits forming with said core an input and an output magnetic circuit having two common portions, one of said input and output magnetic circuits having a portion not common to both of said magnetic circuits and said input and output electrical circuits being soI inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said common portions and oppose in the other of said common portions; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to a first one of said common portions; whereby no power is directly coupled lbetween said input and output electrical circuits, but the control current producing a magnetomotive force in said first common portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first common portion and thereby to couple power from the input to the load through said control electrical circuit.
2. A transformer system as defined in claim l, for supplying a substantially constant current to a load over a range of Variation of said load upward from Zero from a substantially constant voltage input.
3. The apparatus of claim 1 in which said legs and said coils are so aligned that substantial magnetic coupling takes place between all of said coils.
4. A transformer system for supplying power to a load from an A.-C. input comprising a core of ferro-magnetic material having at least three legs, said legs being of such configuration and so aligned with each other that substantially closed high permeability paths are formed between each of two legs and the third leg, at least three coils wound on said core, a first and a second of said coils being wholly wound on different legs of said core and connected in series; an input, an output, and a control electrical circuit, all passing current, the input circuit including one of (a) a third one of said coils and (b) the series combination of said first and second coils and being connected across said input, the output circuit including the other of (a) said third coil and (b) the series combination of said first and second coils and being connected across said load; said input and said output electrical circuits forming with said core an input and an output magnetic circuit having two common portions, one of said input and output magnetic circuits having a portion not common to both of said magnetic circuits and said input and output electrical circuits being so inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said common portions and oppose in the other of said common portions; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to a first one of said common portions; whereby no power is `directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force in said first common portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first common portion and thereby to couple power from the input to the load throughv said control electrical circuit.
5. A transformer system as defined in claim 4, for supplying a substantially constant current to a load over a range of variation of said load upward from zero from a substantially constant volt-age A.C. input.
6. The apparatus of claim 4 in which said legs are also of such configuration and so aligned with each other that a high permeability path is formed between said two legs.
7. The apparatus of claim 5 in which said legs are also of such configuration and so aligned with each other that a high permeability path is formed between said two legs.
8. A transformer system for supplying power to a load from an A.C. input comprising a three-legged core of ferro-magnetic material, the legs of Said core being of such configuration and so aligned with each other that substantially closed high permeability paths are formedl between all of the legs, at least four coils wound on Said core, a first `and a second of said coils being wholly wound on the first and second legs of said core, respectively, Iand connected in series, and a third and a fourth of said coils being wholly wound on the first and second of said legs, respectively, and connected in series; an input, an output, and a control electrical circuit, all passing current, the input circuit including one of the (a) series combination of said first and second coils and (b) the series combination of said third and fourth coils and being connected across said A.C. input, the output circuit including the other of (a) the series combination of said -first and second coils and (b) the series combination of said third and fourth coils and being connected across the load; said input and output electrical circuits forming with said core an input and an output magnetic circuit, one including all three of said legs and the other including said first and second legs but bypassing at least the major portion of the third leg, said input and output electrical circuits being so inductively related to said first and second legs that the input and output magnetomotive forces generated by the input and output currents aid in one of said first and second legs and oppose in the other of said first and second legs, and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to said first leg; whereby no power is directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force in said first leg of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first leg and thereby to couple power from the input to the load through said control electrical circuit.
9. A transformer system as defined in claim 8 for supplying a substantially constant current to a load over a range of variation of said load upward from zero from a substantially constant voltage A.C. input.
l0. The apparatus of claim 8 in which said control electrical circuit includes said first coil and said capacitive reactance is shunted across said first coil.
ll. The apparatus of claim 8 in which said control electrical circuit includes a control coil wound on said first leg.
l2. The apparatus of claim ll in which the series combination of said control coil and `said capacitor is connected across a source of voltage.
13. The apparatus of claim 12 in which the series combination of said control coil and said capacitive reactance is connected across at least one of said first, second, third, and fourth coils.
14. The apparatus of claim l1 in which the series combination of said control coil and said capacitive reactance is connected across said first coil.
15. The apparatus of claim ll in which the capacitive reactance is shunted -across said control coil.
16. A transformer system for supplying power to a load from an A.C. input, comprising at least three inductively coupled electrical coils, a first and a second of said coils being connected in series; an input, an output, and a control electrical circuit, all passing current, the input electrical circuit including one of (a) a third one of said coils and (b) the series combination of said first and second coils and being connected across said A.C. input, the output electrical circuit including the other of (a.) said third coil and (b) the series combination of said first and second coils and being connected across said load; the coils of said input and said output electrical circuits being linked by magnetic paths forming an input and an output magnetic circuit having two common portions, one of said magnetic circuits having a portion not common to both of said circuits and said input and output electrical circuits being so inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said common portions and oppose in the other; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to a rst one of said common portions; whereby no power is directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force in said rst common portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said first common portion and thereby to couple power from the input to the load through said control electrical circuit.
17. A magnetic servo system for supplying controllable magnitude alternating current from an A.C. input to a load comprising at least three Iinductively coupled electrical coils, a first and a second of said coils being connected in series; an input, an ouput, and a control electrical circuit, all passing current, the input electrical circuit including one f (a) a third one of said coils and (b) the series combination 'of said first and second coils and being connected `across said A.-C. input, the output electrical circuit including the other of (a) said third coil and (b) the series combination of said first and second coils and being connected across said load; the coils of said input and said output electrical circuits being linked by magnetic paths forming an input and an output magnetic circuit having two common portions, one of said magnetic circuits having a portion not common to both of said circuits and said input and output electrical circuits being so inductively related to said common portions that the input and output magnetomotive forces generated by the input and output currents aid in one of said comrn'on portions and oppose in the other; and a capacitive reactance, said control electrical circuit including said capacitive reactance and being inductively coupled to ya irst one of said common portions; whereby no power is directly coupled between said input and output electrical circuits, but the control current producing a magnetomotive force -in said first portion of the magnetic circuits of phase and magnitude to produce a resultant of the control and output magnetomotive forces opposite to the output magnetomotive force in said rst common portion and thereby to couple power from the input to the load through said control eelctrical circuit; the control magnetomotive force functioning as the standard `and being automatically compared in said magnetic circuits with said output magnetomotive force to Afurnish a net magnetomotive force equal in magnitude and phase to their vector difference, said net magnetomotive force operating as the error and being automatically translated in the magnetic circuits into a circulating ilux which produces an output voltage in said output electrical circuit, and the output voltage being operative to drive the output current which is the regulated quantity and which generates the output magnetomotive force, the feedback quantity.
References Cited in the lile of this patent UNITE-D STATES PATENTS 1,599,570 Lucas Sept. 14, 1926 2,195,969 Minor Apr. 2, 1940 2,207,234 Bohm July 9, 1940 2,212,198 Sola Aug. 20, 1940 2,305,153 Fries Dec. 15, 1942 2,403,393 Peterson July 2, 1946 2,512,976 Smeltzly June 27, 1950 2,605,457 Peterson July 29, 1952 2,811,689 Balint Oct. 29, 1957
US646429A 1957-03-15 1957-03-15 Transformer apparatus Expired - Lifetime US2999973A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US646429A US2999973A (en) 1957-03-15 1957-03-15 Transformer apparatus
US132845A US3249851A (en) 1957-03-15 1961-08-21 Transformer apparatus
US132846A US3247450A (en) 1957-03-15 1961-08-21 Transformer apparatus
US132844A US3247449A (en) 1957-03-15 1961-08-21 Transformer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US646429A US2999973A (en) 1957-03-15 1957-03-15 Transformer apparatus

Publications (1)

Publication Number Publication Date
US2999973A true US2999973A (en) 1961-09-12

Family

ID=24593031

Family Applications (1)

Application Number Title Priority Date Filing Date
US646429A Expired - Lifetime US2999973A (en) 1957-03-15 1957-03-15 Transformer apparatus

Country Status (1)

Country Link
US (1) US2999973A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571699A (en) * 1969-10-13 1971-03-23 Nasa Voltage regulator
US3904954A (en) * 1973-11-16 1975-09-09 Hughey And Phillips Voltage regulating transformer for series coupled loads
DE2809836A1 (en) * 1978-03-07 1979-09-20 Frequency Technology Inc Ferro-resistant, voltage regulating transformer - keeps flux variations in two cores continuously out of phase to maintain constant level
US4353014A (en) * 1981-04-20 1982-10-05 Rca Corporation Television receiver ferroresonant load power supply with reduced saturable reactor circulating current
US4446405A (en) * 1980-12-29 1984-05-01 Rca Corporation Television receiver ferroresonant load power supply

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1599570A (en) * 1922-08-12 1926-09-14 Union Switch & Signal Co Transformer
US2195969A (en) * 1937-02-12 1940-04-02 Roland R Miner Current regulator for alternating current power circuits
US2207234A (en) * 1938-03-14 1940-07-09 Suddeutsche App Fabrik G M B H Voltage regulating device
US2212198A (en) * 1940-03-25 1940-08-20 Sola Electric Co Transformer of the constant or limited current type
US2305153A (en) * 1938-11-26 1942-12-15 Fries Eduard Adjustable transformer with high reactance
US2403393A (en) * 1943-04-16 1946-07-02 Gen Electric Regulator
US2512976A (en) * 1948-01-14 1950-06-27 Modern Controls Inc Means for producing constant current from constant potential
US2605457A (en) * 1951-08-08 1952-07-29 Gen Electric Current regulator
US2811689A (en) * 1955-04-27 1957-10-29 Anthony T Balint Magnetic transformer apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1599570A (en) * 1922-08-12 1926-09-14 Union Switch & Signal Co Transformer
US2195969A (en) * 1937-02-12 1940-04-02 Roland R Miner Current regulator for alternating current power circuits
US2207234A (en) * 1938-03-14 1940-07-09 Suddeutsche App Fabrik G M B H Voltage regulating device
US2305153A (en) * 1938-11-26 1942-12-15 Fries Eduard Adjustable transformer with high reactance
US2212198A (en) * 1940-03-25 1940-08-20 Sola Electric Co Transformer of the constant or limited current type
US2403393A (en) * 1943-04-16 1946-07-02 Gen Electric Regulator
US2512976A (en) * 1948-01-14 1950-06-27 Modern Controls Inc Means for producing constant current from constant potential
US2605457A (en) * 1951-08-08 1952-07-29 Gen Electric Current regulator
US2811689A (en) * 1955-04-27 1957-10-29 Anthony T Balint Magnetic transformer apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571699A (en) * 1969-10-13 1971-03-23 Nasa Voltage regulator
US3904954A (en) * 1973-11-16 1975-09-09 Hughey And Phillips Voltage regulating transformer for series coupled loads
DE2809836A1 (en) * 1978-03-07 1979-09-20 Frequency Technology Inc Ferro-resistant, voltage regulating transformer - keeps flux variations in two cores continuously out of phase to maintain constant level
US4446405A (en) * 1980-12-29 1984-05-01 Rca Corporation Television receiver ferroresonant load power supply
US4353014A (en) * 1981-04-20 1982-10-05 Rca Corporation Television receiver ferroresonant load power supply with reduced saturable reactor circulating current

Similar Documents

Publication Publication Date Title
US2403393A (en) Regulator
US2730574A (en) Magnetic amplifier
US2725549A (en) Circuit means for selecting the highest or lowest of a plurality of signals
US3253212A (en) Ferro-resonant control elements and variable voltage power source incorporating same
US3361956A (en) Voltage regulating transformer systems
US2999973A (en) Transformer apparatus
US2704823A (en) Magnetic amplifier system
US3247449A (en) Transformer apparatus
US3247450A (en) Transformer apparatus
US2040684A (en) Electric circuit control means
US2754473A (en) Half-wave bridge magnetic amplifier
US2792547A (en) Magnetic amplifier for control purposes
US2854620A (en) Power regulating system
US2809241A (en) Two-stage magnetic amplifier
US2434493A (en) Voltage stabilizing transformer
US1835209A (en) Electrical translating apparatus
US2738458A (en) Alternating current regulating device
US2723373A (en) Magnetic amplifier for power transmission
US2915645A (en) Magnetic amplifier
US2688724A (en) Magnetic amplifier
US2807754A (en) Power transmission
US2897296A (en) Magnetic amplifier
US2725518A (en) Voltage error sensing device
US2960646A (en) Voltage control device
US2965835A (en) Magnetic amplifier