US2993641A - Compressor lubrication system - Google Patents

Compressor lubrication system Download PDF

Info

Publication number
US2993641A
US2993641A US750930A US75093058A US2993641A US 2993641 A US2993641 A US 2993641A US 750930 A US750930 A US 750930A US 75093058 A US75093058 A US 75093058A US 2993641 A US2993641 A US 2993641A
Authority
US
United States
Prior art keywords
compressor
pump
shaft
pistons
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US750930A
Inventor
Roy T Chew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US750930A priority Critical patent/US2993641A/en
Application granted granted Critical
Publication of US2993641A publication Critical patent/US2993641A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • F16N7/40Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems in a closed circulation system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0261Hermetic compressors with an auxiliary oil pump

Definitions

  • the main objects of this invention are to provide an improved pump-pressured lubricating system for the various rotating and reciprocating parts of certain types of machine; to provide an improved lubricating system of this kind particularly adapted for use with high speed compressors; to provide a compressor lubricating system having an improved built-in arrangement of pressured oil distribution incorporated in the compressor housing structure and wherein the oil pump unit is a removable, externally accessible, component powered directly from the main compressor shaft; to provide such a compressor lubricating system wherein the oil pump unit may be removed and replaced without in any way disturbing the compressor assembly or installation; and to provide an improved pump-pressured lubricating system of this kind which is simple in construction, economical to manufacture, efficient in operation, and more easily maintained.
  • FIGURE 1 is a schematic, partly phantom perspective view, partly broken away, of a particular type of compressor equipped with pump-pressured lubricating system constructed in accordance with this invention
  • FIG. 2 is a top plan view of the same, a portion being broken away to more clearly illustrate interior arrangement thereof;
  • FIG. 3 is a vertical sectional view of the construction shown in FIGS. 1 and 2;
  • FIG. 4 is a vertical sectional view taken on the plane of the line 44 of FIG. 3;
  • FIG. 5 is a perspective view of the Scotch yoke drive for the compressor pistons as viewed from the plane of the line 5-5 of FIG. 3;
  • FIG. 6 is a sectional view of the same as taken on the line 6-6 of FIG. 5.
  • the essential concept of this invention involves a geartype oil pump mounted externally on the side wall of the oil-reservoir portion of a compressor housing in which housing is formed a conduit leading to the drive shaft and communicating therethrough with an arrangement of interconnecting channels extending to all relatively moving surfaces of the compressor assembly, the oil pump having direct communication internally of the compressor with both the reservoir portion thereof and the said conduit, whereby the pump unit, as an individual component, may be readily removed and replaced without dismantling the compressor structure.
  • a compressor lubricating system embodying the foregoing concept comprises a compressor housing 5, a main drive shaft 6, opposed reciprocating pistons 7 and 8, and an oil pump 9 operated to feed lubricating oil to a system 10 of intercommunicating channels formed in the several moving parts of the compressor assembly.
  • the several figures show these parts in a more or less diagrammatic form and relationship to indicate a conventional compressor and illustrate one manner of embodying this improved lubricating system in a machine involving a series of relatively-moving parts requiring constant lubrication. Therefore no attempt is made to show and describe a complete compressor unit, only the elements requiring pressure lubrication being referred to.
  • the housing 5 here shown is of hollow generally rectangular form mounting the drive shaft 6 on bearings 11 pump 9.
  • One side wall 5.1 of the housing 5 is formed with an opening 13 (FIG. 3) for the reception of the pump 9 and from one side of this opening 13 and oil conduit 14 leads upwardly to an annular pocket 15, embracing the shaft 6, to feed oil to the channel system 10, as presently will be explained more fully.
  • the conduit 14 is formed within a boss or rib 14.1 integrally on the inner surface of the wall 5.1, which boss or rib extends from the opening 13 to an annular portion 14.2 through which the shaft 6 passes, the pocket 15 in the portion 14.2 opening to and surrounding the shaft periphery.
  • the conduit 14 opens to an inlet 14.3 which is located to meet and communicate with the discharge outlet 24 of the
  • the conduit 14 and pocket 15 may be contained within a separable member, suitably secured to the wall 5.1, or formed as an open channel in the inner wall surface which is merely enclosed by a suitable cover plate.
  • the conduit 14 and pocket 15 are a part of the wall structure, however they may be enclosed, and are fixed and permanent internal elements of the compressor assembly providing constant communication between the pump outlet 24 and the drive shaft 6.
  • the pistons 7 and '8 of conventionally different diameters, are opposedly supported in cylinders 21 and 22 at diametrically opposite sides of the shaft 6 and are connected rigidly to opposite sides of the yoke frame 18 in a conventional manner by brackets 7.1 and 8.1 integral on the yoke 18.
  • the pump 9 here is shown as a conventional gear type. It is so mounted in the housing opening 13 that its inlet 23 (FIG. 4) is in direct communication with the oil in the reservoir 12 and its outlet 24 registers with the inlet end 14.3 of the housing conduit 14.
  • the body of the pump 9 is peripherally flanged, as at 25, and is secured to the outside of the housing wall 5.1 by suitable removable fasteners 25.1 which pass through the flange.
  • the body of the pump, inwardly of the flange may be received in the opening 13 and the mounting sealed by means of a suitable gasket disposed beneath the flange. With such a mounting the pump may be readily removed for inspection, repair, or replacement at any time and the compressor, itself, need not be disturbed.
  • the system of channels 10 initiates with a primary axially extending channel 26 in the shaft 6, oppositely terminating at intersecting radial branches 27 in the area of the bearings 11 and having an intermediate intersecting radial branch 28 in the plane of the eccentric or crank 16.
  • the branch 28 extends diametrically through the eccentric 16 and opens into an annular channel 29 formed in the surface of the bore of the slide block 17 in which the eccentric or crank 16 is journaled.
  • the annular channel 29 has oppositely extending branches 30 which lead to the sides of the slide block which engage the inner walls of the yoke 18 and, as shown in FIGS. 5 and 6, the side surfaces of the slide block 17 are provided with elongate, vertically extending slots or pockets 31 into which the branches 30 open.
  • pockets or slots 31 are located medially of the slide block 17, between its top and bottom ends, and extend a sufiicient vertical distance so as to be in continuous open communication with passages 32 which extend axially of the pistons 7 and 8 from the inner wall of the yoke 18, through the connecting arms or brackets 7.1 and 7.2 to the in- 4:3 terior of the pistons.
  • passages 32 which extend axially of the pistons 7 and 8 from the inner wall of the yoke 18, through the connecting arms or brackets 7.1 and 7.2 to the in- 4:3 terior of the pistons.
  • lateral branch passages 33 which open to the. periphery of the pistons and the respective cylinder walls.
  • the initiating shaft channel 26 is supplied by an intersecting radial branch 3'6v located in the plane of the annular pocket 15 in the enlarged portion 14.2 of the conduit boss 14.1.
  • This branch 36 is thus in constant communication with the oil supply conduit 14 leading from the pump 9.
  • the shaft 6 is driven from a suitable source of power (not here shown) to operate the compressor and is connected by gears 37 and 38 to drive the pump 9.
  • a suitable source of power not here shown
  • the speed of the pump will always be proportional to the speed of the compressor and the quantity and pressure of the lubricant supplied to the compressor will be in direct relation to the friction load.
  • the shaft 6, drives the pump 9 in the direction of the arrow 39 (FIG. 1) and causes oil to be drawn from the reservoir 12 through the pump inlet 23 (FIG. 4) and be pressured in the direction of the arrow 40 up through the housing conduit 14, to the pocket 15, through the passage 36 and into the axial channel 26 in the shaft 6.
  • Flowing to opposite ends of the channel 26, under constant pressure, oi] emerges from the radial branches 27 to lubricate the bearings 11, and from the medial radial branch 28 in the crank 16 to the slide block 17 and the pockets 31 in the outer side surfaces thereof.
  • the pockets 31 are of such length as to be somewhat longer than the stroke of the slide block, as it moves up and down in the yoke 18 under the influence of the eccentric or crank 16 on the shaft 6, and since these pockets are centered on the axes of the pistons when the slide block is in a medial position the passages 32 leading into the pistons will be continuously supplied with lubricant for lubricating the cylinder walls.
  • the speed of the pump 9 will, of course, be determined by the compressor speed and the ratio of the gears 37 and 38.
  • the pump will be operated at a lesser speed than the compressor, particularly when the compressor is a component in an automotive air conditioning system and is driven by a power take-ofl? from the vehicle motor.
  • the pressure of the lubricant will be directly proportional to the lubrication requirements of the system.
  • the pump being an externally mounted component of the compressor unit can be readily removed and replaced whenever required and dismantling or disconnecting the compressor from the system in which it is incorporated is unnecessary in case of pump failure.
  • a compressor comprising, a housing having an oil reservoir therein, a rotatable drive shaft extending into the housing through one wall thereof, bearing to journal the said shaft, a pair of opposed pistons and cylintiers therefor within said housing, and eccentric means of circular configuration on said shaft operatively connected by a Scotch yoke to reciprocate the pistons in said cylinders; said Scotch yoke comprising a rectangular yoke element having parallel side members, each directly and rigidly connected to a respective one of said pistons, and a rectangular slide block mounted between said side members in sliding engagement therewith, said slide block having an annular central opening receiving and slidably fit ting the periphery of said eccentric; a lubricating system comprising an axially extending passage in said drive shaft having a radial branch passage leading to the periphery of said eccentric, a continuous peripheral channel in the wall of said slide block opening in the plane of said branch passage, a pocket in each of the outer walls of said slide block which

Description

July 25, 1961 CHEW 2,993,641
COMPRESSOR LUBRICATION SYSTEM Filed July 25, 1958 3 Sheets-Sheet l INVENTOR: R OY T. C H EW July 25, 1961 R. T. CHEW COMPRESSOR LUBRICATION SYSTEM 5 Sheets-Sheet 3 Filed July 25, 1958 M K .Y m w n m E V H m C 1+ T. VI m R I Y B \n w a .[II wl l hl n 1H WI IHH i z m w a 6 m F Patented July 25, 1961 2,993,641 COMPRESSOR LUBRICATION SYSTEM Roy T. Chew, 11322 S. Michigan, Ave., Chicago 28, Ill. Filed July 25, 1958, Ser. No. 750,930 1 Claim. (Cl. 230-206) This invention relates to oil-pressured lubrication systems for high speed reciprocating compressors of gaseous fluid.
The main objects of this invention are to provide an improved pump-pressured lubricating system for the various rotating and reciprocating parts of certain types of machine; to provide an improved lubricating system of this kind particularly adapted for use with high speed compressors; to provide a compressor lubricating system having an improved built-in arrangement of pressured oil distribution incorporated in the compressor housing structure and wherein the oil pump unit is a removable, externally accessible, component powered directly from the main compressor shaft; to provide such a compressor lubricating system wherein the oil pump unit may be removed and replaced without in any way disturbing the compressor assembly or installation; and to provide an improved pump-pressured lubricating system of this kind which is simple in construction, economical to manufacture, efficient in operation, and more easily maintained.
A specific embodiment of this invention is shown in the accompanying drawings in which:
FIGURE 1 is a schematic, partly phantom perspective view, partly broken away, of a particular type of compressor equipped with pump-pressured lubricating system constructed in accordance with this invention;
FIG. 2 is a top plan view of the same, a portion being broken away to more clearly illustrate interior arrangement thereof;
FIG. 3 is a vertical sectional view of the construction shown in FIGS. 1 and 2;
FIG. 4 is a vertical sectional view taken on the plane of the line 44 of FIG. 3;
FIG. 5 is a perspective view of the Scotch yoke drive for the compressor pistons as viewed from the plane of the line 5-5 of FIG. 3; and
FIG. 6 is a sectional view of the same as taken on the line 6-6 of FIG. 5.
The essential concept of this invention involves a geartype oil pump mounted externally on the side wall of the oil-reservoir portion of a compressor housing in which housing is formed a conduit leading to the drive shaft and communicating therethrough with an arrangement of interconnecting channels extending to all relatively moving surfaces of the compressor assembly, the oil pump having direct communication internally of the compressor with both the reservoir portion thereof and the said conduit, whereby the pump unit, as an individual component, may be readily removed and replaced without dismantling the compressor structure.
A compressor lubricating system embodying the foregoing concept comprises a compressor housing 5, a main drive shaft 6, opposed reciprocating pistons 7 and 8, and an oil pump 9 operated to feed lubricating oil to a system 10 of intercommunicating channels formed in the several moving parts of the compressor assembly. The several figures show these parts in a more or less diagrammatic form and relationship to indicate a conventional compressor and illustrate one manner of embodying this improved lubricating system in a machine involving a series of relatively-moving parts requiring constant lubrication. Therefore no attempt is made to show and describe a complete compressor unit, only the elements requiring pressure lubrication being referred to.
The housing 5 here shown is of hollow generally rectangular form mounting the drive shaft 6 on bearings 11 pump 9.
in the upper portion of the housing whereby the lower portion thereof constitutes an oil reservoir 12. One side wall 5.1 of the housing 5 is formed with an opening 13 (FIG. 3) for the reception of the pump 9 and from one side of this opening 13 and oil conduit 14 leads upwardly to an annular pocket 15, embracing the shaft 6, to feed oil to the channel system 10, as presently will be explained more fully.
.As shown the conduit 14 is formed within a boss or rib 14.1 integrally on the inner surface of the wall 5.1, which boss or rib extends from the opening 13 to an annular portion 14.2 through which the shaft 6 passes, the pocket 15 in the portion 14.2 opening to and surrounding the shaft periphery. At the lower end of the boss or rib 14.1 the conduit 14 opens to an inlet 14.3 which is located to meet and communicate with the discharge outlet 24 of the It will be understood, however, that the conduit 14 and pocket 15 may be contained within a separable member, suitably secured to the wall 5.1, or formed as an open channel in the inner wall surface which is merely enclosed by a suitable cover plate. In any event the conduit 14 and pocket 15 are a part of the wall structure, however they may be enclosed, and are fixed and permanent internal elements of the compressor assembly providing constant communication between the pump outlet 24 and the drive shaft 6.
The shaft 6, medially of the bearings 11, mounts an eccentric crank or drive member 16 journaled in a slide block 17 slidingly supported in a rectangular flame 18 and constituting a more or less conventional Scotch-yoke drive 19for the reciprocating pistons 7 and 8.
The pistons 7 and '8, of conventionally different diameters, are opposedly supported in cylinders 21 and 22 at diametrically opposite sides of the shaft 6 and are connected rigidly to opposite sides of the yoke frame 18 in a conventional manner by brackets 7.1 and 8.1 integral on the yoke 18.
The pump 9 here is shown as a conventional gear type. It is so mounted in the housing opening 13 that its inlet 23 (FIG. 4) is in direct communication with the oil in the reservoir 12 and its outlet 24 registers with the inlet end 14.3 of the housing conduit 14. Preferably the body of the pump 9 is peripherally flanged, as at 25, and is secured to the outside of the housing wall 5.1 by suitable removable fasteners 25.1 which pass through the flange. Thus the body of the pump, inwardly of the flange may be received in the opening 13 and the mounting sealed by means of a suitable gasket disposed beneath the flange. With such a mounting the pump may be readily removed for inspection, repair, or replacement at any time and the compressor, itself, need not be disturbed.
The system of channels 10 initiates with a primary axially extending channel 26 in the shaft 6, oppositely terminating at intersecting radial branches 27 in the area of the bearings 11 and having an intermediate intersecting radial branch 28 in the plane of the eccentric or crank 16. The branch 28 extends diametrically through the eccentric 16 and opens into an annular channel 29 formed in the surface of the bore of the slide block 17 in which the eccentric or crank 16 is journaled. The annular channel 29 has oppositely extending branches 30 which lead to the sides of the slide block which engage the inner walls of the yoke 18 and, as shown in FIGS. 5 and 6, the side surfaces of the slide block 17 are provided with elongate, vertically extending slots or pockets 31 into which the branches 30 open. These pockets or slots 31 are located medially of the slide block 17, between its top and bottom ends, and extend a sufiicient vertical distance so as to be in continuous open communication with passages 32 which extend axially of the pistons 7 and 8 from the inner wall of the yoke 18, through the connecting arms or brackets 7.1 and 7.2 to the in- 4:3 terior of the pistons. Inside the pistons, and extending diametrically through the hub portion thereof which is not shown, are lateral branch passages 33 which open to the. periphery of the pistons and the respective cylinder walls.
From the foregoing it will now be seen that the several oil passages are at all times in communication with the main supply passage 26 extending axially in the shaft 6, and that the various passages lead to every surface which engages and moves relative to another surface, so that all friction areas are under a continuous supply of lubricant from the main shaft passage 26.
The initiating shaft channel 26 is supplied by an intersecting radial branch 3'6v located in the plane of the annular pocket 15 in the enlarged portion 14.2 of the conduit boss 14.1. This branch 36 is thus in constant communication with the oil supply conduit 14 leading from the pump 9.
The shaft 6 is driven from a suitable source of power (not here shown) to operate the compressor and is connected by gears 37 and 38 to drive the pump 9. Thus the speed of the pump will always be proportional to the speed of the compressor and the quantity and pressure of the lubricant supplied to the compressor will be in direct relation to the friction load.
In the operation of my improved compressor lubricating system the shaft 6, through the gears 37 and 38, drives the pump 9 in the direction of the arrow 39 (FIG. 1) and causes oil to be drawn from the reservoir 12 through the pump inlet 23 (FIG. 4) and be pressured in the direction of the arrow 40 up through the housing conduit 14, to the pocket 15, through the passage 36 and into the axial channel 26 in the shaft 6. Flowing to opposite ends of the channel 26, under constant pressure, oi] emerges from the radial branches 27 to lubricate the bearings 11, and from the medial radial branch 28 in the crank 16 to the slide block 17 and the pockets 31 in the outer side surfaces thereof.
The pockets 31 are of such length as to be somewhat longer than the stroke of the slide block, as it moves up and down in the yoke 18 under the influence of the eccentric or crank 16 on the shaft 6, and since these pockets are centered on the axes of the pistons when the slide block is in a medial position the passages 32 leading into the pistons will be continuously supplied with lubricant for lubricating the cylinder walls.
The speed of the pump 9 will, of course, be determined by the compressor speed and the ratio of the gears 37 and 38. Preferably the pump will be operated at a lesser speed than the compressor, particularly when the compressor is a component in an automotive air conditioning system and is driven by a power take-ofl? from the vehicle motor. However in any case the pressure of the lubricant will be directly proportional to the lubrication requirements of the system. Also the pump, being an externally mounted component of the compressor unit can be readily removed and replaced whenever required and dismantling or disconnecting the compressor from the system in which it is incorporated is unnecessary in case of pump failure.
Although but one specific embodiment of this invention is herein shown and described it will be understood that numerous details of the construction shown may be altered or omitted without departing from the spirit of the invention as defined by the following claim.
I claim:
In a compressor comprising, a housing having an oil reservoir therein, a rotatable drive shaft extending into the housing through one wall thereof, bearing to journal the said shaft, a pair of opposed pistons and cylintiers therefor within said housing, and eccentric means of circular configuration on said shaft operatively connected by a Scotch yoke to reciprocate the pistons in said cylinders; said Scotch yoke comprising a rectangular yoke element having parallel side members, each directly and rigidly connected to a respective one of said pistons, and a rectangular slide block mounted between said side members in sliding engagement therewith, said slide block having an annular central opening receiving and slidably fit ting the periphery of said eccentric; a lubricating system comprising an axially extending passage in said drive shaft having a radial branch passage leading to the periphery of said eccentric, a continuous peripheral channel in the wall of said slide block opening in the plane of said branch passage, a pocket in each of the outer walls of said slide block which engage the side members of said yoke element, passages connecting said peripheral channel with each of said pockets, an axial passage in each of said pistons leading to the inner surface of the respective side member of said yoke element, said pistons each having radial passages leading from its axial passage to the outer piston wall, and means for supplying oil under pressure from said reservoir to the axial passage of said drive shaft adjacent one end of the shaft, each of said slide block pockets extending in the direction of slide block movement relative to said yoke element and being of such length and so disposed as to be in constant communication with the respective axial passage of said pistons.
References Cited in the file of this patent UNITED STATES PATENTS 1,616,913 McCallum Feb. 8, 1927 1,961,451 Phillips et al. June 5, 1934 2,025,187 Werner et al. Dec. 24, 1935 2,071,913 Bentley Feb. 23, 1937 2,257,707 Sladky Sept. 30, 1941 2,504,528 Hume Apr. 18, 1950 2,751,145 Olcott June 19, 1956
US750930A 1958-07-25 1958-07-25 Compressor lubrication system Expired - Lifetime US2993641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US750930A US2993641A (en) 1958-07-25 1958-07-25 Compressor lubrication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US750930A US2993641A (en) 1958-07-25 1958-07-25 Compressor lubrication system

Publications (1)

Publication Number Publication Date
US2993641A true US2993641A (en) 1961-07-25

Family

ID=25019722

Family Applications (1)

Application Number Title Priority Date Filing Date
US750930A Expired - Lifetime US2993641A (en) 1958-07-25 1958-07-25 Compressor lubrication system

Country Status (1)

Country Link
US (1) US2993641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456874A (en) * 1967-08-01 1969-07-22 Eaton Yale & Towne Cam driven compressor
US20090304532A1 (en) * 2006-12-22 2009-12-10 Paolo Tabanelli Multiple membrane pump for food liquids and the like

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1616913A (en) * 1925-12-14 1927-02-08 Climax Engineering Co Force-feed lubrication from compressor blade
US1961451A (en) * 1932-01-15 1934-06-05 Continental Equipment Company Pump construction and lubrication thereof
US2025187A (en) * 1934-07-14 1935-12-24 Gen Motors Corp Lubricating system
US2071913A (en) * 1935-12-07 1937-02-23 B F Sturtevant Company Inc Lubrication system
US2257707A (en) * 1940-08-19 1941-09-30 Nash Kelvinator Corp Oil pump
US2504528A (en) * 1944-09-06 1950-04-18 Philco Corp Refrigeration apparatus
US2751145A (en) * 1952-10-21 1956-06-19 Gen Motors Corp Refrigerating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1616913A (en) * 1925-12-14 1927-02-08 Climax Engineering Co Force-feed lubrication from compressor blade
US1961451A (en) * 1932-01-15 1934-06-05 Continental Equipment Company Pump construction and lubrication thereof
US2025187A (en) * 1934-07-14 1935-12-24 Gen Motors Corp Lubricating system
US2071913A (en) * 1935-12-07 1937-02-23 B F Sturtevant Company Inc Lubrication system
US2257707A (en) * 1940-08-19 1941-09-30 Nash Kelvinator Corp Oil pump
US2504528A (en) * 1944-09-06 1950-04-18 Philco Corp Refrigeration apparatus
US2751145A (en) * 1952-10-21 1956-06-19 Gen Motors Corp Refrigerating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456874A (en) * 1967-08-01 1969-07-22 Eaton Yale & Towne Cam driven compressor
US20090304532A1 (en) * 2006-12-22 2009-12-10 Paolo Tabanelli Multiple membrane pump for food liquids and the like

Similar Documents

Publication Publication Date Title
US2583583A (en) Compressor pump
US2113691A (en) Compressor
US4456437A (en) Refrigerant compressor
US2472647A (en) Double-acting reciprocating pump
US4019342A (en) Compressor for a refrigerant gas
US3836290A (en) Motor compressor unit
CN104314813A (en) Horizontal compressor
US2993641A (en) Compressor lubrication system
US3618712A (en) Differential pinion bearing lube pump
ES346059A1 (en) Pedestal-supported encapsulated refrigerant motor-compressor unit
US2246272A (en) Rotary pump
US3586456A (en) Compressors for fluids
US2094323A (en) Compressor
US2623365A (en) Refrigerator pump
US2038131A (en) Lubricating system for compressors
GB1090079A (en) Oil lubrication system for refrigeration apparatus
US1895602A (en) Diaphragm compressor
US2264847A (en) Refrigerating apparatus
CA1108012A (en) Oilroom
US1974421A (en) Compressor
US2300973A (en) Compressor
US2246273A (en) Rotary pump
US2513547A (en) Compressor
US3160229A (en) Compresors
US1410129A (en) Valveless pump