US2992097A - Methods and apparatus for desulphurization of ferrous metals - Google Patents

Methods and apparatus for desulphurization of ferrous metals Download PDF

Info

Publication number
US2992097A
US2992097A US748031A US74803158A US2992097A US 2992097 A US2992097 A US 2992097A US 748031 A US748031 A US 748031A US 74803158 A US74803158 A US 74803158A US 2992097 A US2992097 A US 2992097A
Authority
US
United States
Prior art keywords
molten
bath
mixture
caustic
caustic soda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US748031A
Inventor
Harry R Spence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US748031A priority Critical patent/US2992097A/en
Application granted granted Critical
Publication of US2992097A publication Critical patent/US2992097A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising

Definitions

  • Sulphur in any substantial amount is recognized as an undesirable impurity producing hot shortness and other undesirable qualities. It is accordingly necessary to remove the sulphur below certain recognized acceptable levels in order to produce iron and steel satisfactorily for most purposes. This is particularly true in alloy steels and special steels such as the stainless steels.
  • ferrous metals can be more effectively desulphurized by introducing into the molten bath of ferrous metal a stream of molten caustic soda together with an adjuvant agent.
  • an adjuvant agent in addition to desulphurizing the molten ferrous metal I have found that my practice imparts improved physical properties and particularly greatly improved tensile strengths.
  • I employ the steps of forming a bath of molten mixture of caustic soda and adjuvant, delivering a stream of the molten mixture into the body of the molten ferrous bath beneath the surface thereof preferably at or adjacent to the bottom, permitting the mixture of caustic soda and adjuvant to difiiuse into the bath upwardly through the molten metal to react with the sulphur to form sulphur products which go into the slag.
  • the adjuvant agents which I employ are calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar.
  • the adjuvant agent should appear in an effective amount up to about 20% with the balance of the mixture being caustic soda.
  • Caustic soda and adjuvant are fused in a gas fired boiler on the operating floor of the production shop to form a liquid mixture which is pumped from the boiler by a caustic pump through a high temperature alloy lance into the bottom of molten bath.
  • the mixture is held at a temperature between about 850 F. to 1500 F. depending upon the nature of the adjuvant being used.
  • the amounts of adjuvant agent are between about 0.05% to 12%.
  • the caustic soda fraction of the mixture may be substantially pure or it may contain the usual impurities found in commercial caustic soda. For example, small amounts of sodium chloride and sodium nitrate may be present in the caustic soda and may be even advantageously added in small amounts in order to reduce the melting point of the mixture.
  • the method of this invention has the advantage that the molten caustic passing through the metal lance acts as a coolant for the lance.
  • the lance may be used for a considerable period of time without destruction in the bath.
  • I preferably add the mixture of fused caustic soda and adjuvant by the device illustrated in the accompanying figure.
  • the pit 10 is made up of .an inner steel shell 11 and an outer unit insulator 12 between which are placed strip heaters 13 used to heat and hold the fused caustic at the desired temperature.
  • the fused mixture is delivered from the pit 10 through an outlet valve 14 and nozzle 15 into a delivery capsule 16 made up of an inner steel sheel 17 surrounded by strip heaters 18, all enclosed by unit insulation 19.
  • the molten caustic is delivered from the nozzle 15 of the pit through an inlet tube 20 and valve 21 on the capsule 16.
  • the capsule 16 is suspended on a ring 22 fixed to the shell .17.
  • the ring 22 is suspended on a hook 23 from a weighing device 24.
  • An air pressure inlet line 25 communicates through a valve 26 to the interior of the capsule 16.
  • a pressure gauge is provided in the line 25 to indicate the pressure within-the capsule 16.
  • a relief valve 28 is provided to vent the casule in the event that excess pressures are built up.
  • a pyrometer well 29 extends vertically from the shell 17 into the interior of the capsule 16.
  • An outlet line 30 is provided in the bottom of the capsule 16 communicating with the interior of the shell 17. This outlet line 30 is provided with a high speed clip valve 31 and a quick opening flange 32.
  • Asteel lance 33 provided with a mating quick opening flange 34 is attached to flange .32.
  • an outer protective shell 35 of carbon or other refractory material covers the lance 33. The lance is adapted tosextend into a ladle 36 or furnace in which the ferrous metal to be treated is held.
  • the capsule 16 is loaded from the pit 10 to inlet line 20 and valve 21. Air is applied to the interior of the capsule through the line 25 until a desired pressure is achieved. The capsule is then transferred to the area of the molten bath to be treated. The lance 33 is inserted in the molten bath, .valve 31 is opened and the air pressure forces the fused mixture of caustic and adjuvant into the bath until a desired amount as indicated by the scale 24 has been delivered to the bath at which point valve 31 is closed and lance 33 removed from the molten bath.
  • a method of desulphurizing a molten ferrous bath comprising the steps of delivering a stream of a molten mixture of caustic soda and an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesiumoxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten bath beneath the surface thereof maintaining the bath molten while the caustic mixture diffuses through the body of the molten steel bath to react with the sulfur and separating the remaining molten metal from the slag formed by the caustic mixture-sulfur reaction.
  • an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesiumoxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar
  • a method of desulphurizing a molten ferrous bath comprising the steps of forming a bath of molten caustic soda, pumping a stream of a molten mixture of caustic 4 soda and an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten ferrous bath through a hollow .isteel lance beneath the surface thereof, maintaining thejbath molten while the canstic mixture diffuses through the body of the molten bath to react with the sulfur, permitting the resulting caustic mixture-sulfur reaction product to enter into a slag layer on the molten bath and separating the remaining molten metal from the resulting slag.
  • an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten
  • a method of desulphurizing a molten .stee'l bath in an open-hearth furnace comprising the steps of delivering a stream of a molten mixtureofcaustic soda and up to about 720% of an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar equal in amount to about 4 to 9 /2 pounds per ton of molten steel into the body of the molten bath adjacent the bottom beneath the surface thereof, maintaining the bath molten while the caustic mixture diffuses through the body of the molten steel bath to react with sulfur and separating the remaining molten metal from the slag formed by the caustic mixture-sulfur reaction.
  • an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar equal in amount to about 4 to 9 /2 pounds per ton of molten steel into
  • a method of desulphurizing a molten steel bath in an open-hearth furnace comprising the steps of delivering a stream of a molten mixture of caustic soda and up to about 20% of an adjuvant agent selected from the group consisting ofcalcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, cal cium cyanamide and fluorspar equal in amount to about 5 pounds per ton of molten steel into the body of the molten bath adjacent the bottom beneath the surface thereof, maintaining the bath molten while the caustic mixture diffuses through the body of the molten steel bath to react with the sulfur and separating the remain ing molten metal from the slagformed by the caustic mixture-sulfur reaction.
  • an adjuvant agent selected from the group consisting ofcalcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, cal cium cyanamide and fluorspar equal in amount to about 5 pounds per ton of molten steel into the
  • a method ,of desulphurizing a molten steel bath comprising the steps of forming a bath of molten caustic soda, pumping a stream of molten mixture of caustic soda and up to about 20% of an adjuvant agent selected from the group consisting of ,calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten steel bath through a hollow steel lance until about 4 to 9 /2 pounds of caustic soda per ton of molten metal has been introduced into the bath beneath the surface thereof, maintaining the bath molten while the caustic mixture diffuses through the body of the molten bath to react with the sulfur, permitting the resulting caustic mixture-sulfur reaction product to enter into a slag layer on the molten bath and separating the remaining .molten metal from the resulting slag.
  • an adjuvant agent selected from the group consisting of ,calcium carbide, manganese dioxide, magnesium

Description

July 11, 1961 H. R. SPENCE 2,992,097
METHODS AND APPARATUS FOR DESULPHURIZATION 0F FERROUS METALS Filed July 11, 1958 mum INVENTOR. Hurry Spence His Atfornevs United States Patent O 2,992,097 METHODS AND APP TUS FOR DESULPHU- RIZATION F FERROUS METALS Harry R. Spence, P.0. Box 15, Riverton, Va. Filed July 11, 1958, Ser. No. 748,031 5 Claims. (Cl. 7555) This invention relates to the desulphurization of ferrous metals and particularly to the desulphunzation of iron and steel in furnaces. This application is a continuation in part of my application Serial No. 380,365, filed September 15, 1953, now abandoned. The problem of desulphurizing ferrous metals has become of increasing importance to the iron and steel industry by reason of the increased use of lower grade ores and lower grade fuel supplies. As a result the production of iron and steel has shown a gradual increase in sulphur content over that of the past practices.
Sulphur in any substantial amount is recognized as an undesirable impurity producing hot shortness and other undesirable qualities. It is accordingly necessary to remove the sulphur below certain recognized acceptable levels in order to produce iron and steel satisfactorily for most purposes. This is particularly true in alloy steels and special steels such as the stainless steels.
Many methods of desulphurization have been heretofore proposed. For example, it has been heretofore proposed to desulphurize steel by pouring the steel through several different slags containing desulphun'zing agents such as caustic soda. These practices have been expensive, time consuming and in many cases not entirely satisfactory.
I have found that ferrous metals can be more effectively desulphurized by introducing into the molten bath of ferrous metal a stream of molten caustic soda together with an adjuvant agent. In addition to desulphurizing the molten ferrous metal I have found that my practice imparts improved physical properties and particularly greatly improved tensile strengths. In a preferred practice of my invention I employ the steps of forming a bath of molten mixture of caustic soda and adjuvant, delivering a stream of the molten mixture into the body of the molten ferrous bath beneath the surface thereof preferably at or adjacent to the bottom, permitting the mixture of caustic soda and adjuvant to difiiuse into the bath upwardly through the molten metal to react with the sulphur to form sulphur products which go into the slag. Preferably the adjuvant agents which I employ are calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar. The adjuvant agent should appear in an effective amount up to about 20% with the balance of the mixture being caustic soda.
Caustic soda and adjuvant are fused in a gas fired boiler on the operating floor of the production shop to form a liquid mixture which is pumped from the boiler by a caustic pump through a high temperature alloy lance into the bottom of molten bath. Preferably the mixture is held at a temperature between about 850 F. to 1500 F. depending upon the nature of the adjuvant being used. Preferably the amounts of adjuvant agent are between about 0.05% to 12%. The caustic soda fraction of the mixture may be substantially pure or it may contain the usual impurities found in commercial caustic soda. For example, small amounts of sodium chloride and sodium nitrate may be present in the caustic soda and may be even advantageously added in small amounts in order to reduce the melting point of the mixture.
I have found that the method of this invention has the advantage that the molten caustic passing through the metal lance acts as a coolant for the lance. As a Patented July 11 1961 result the lance may be used for a considerable period of time without destruction in the bath.
The method of this invention will be more clearly understood by reference to the following examples:
Eight heats of cupola iron were made in a SOD-pound reduction furnace. These heats were treated, some with molten caustic soda and some with a mixture of 90% caustic soda and 10% calcium carbide. The results of these tests are tabulated in Table I hereinbelow:
Table I Percent Sulphur Percent NaOH Heat No. Additive S. Reper S.
moved Removed At At Start Finish 154 .007 93. 5 10. 3 184 .014 87.0 7. 2 178 .005 97. 2 9.0 188 .009 95.0 10.2 097 .006 93. 1 5. 56 152 .006 94. 9 7. 7 NaOH+CaC,. 136 .005 96. 0 7. 20 NaOH-l-CML... .187 .008 95. 4 8.1
It will be apparent from the foregoing table that the presence of the calcium; carbide adjuvant greatly increased the efficiency of sulphur removal with a reduced amount of caustic soda.
Similar results have been achieved by mixtures of adjuvant agents. For example basic cupola iron was treated as in the foregoing example with a mixture of caustic soda, 7% manganese dioxide and 3% calcium carbide. The mixture was lanced into the molten metal at 950. The sulfur reductions were similar to those achieved in Table I above. A very significant increase in tensile strength has been achieved by this practice. For example the iron treated with the foregoing mixture of caustic soda, manganese dioxide and calcium carbide gave the following results:
Comparison of these tensile strengths shows an increase of several hundred percent when the mixture of this invention was used over the tensile strength without treatment or when causticsoda was used alone.
Similar results were obtained by using 10% manganese dioxide and 90% caustic soda and lancing the fused mixture at temperatures between 850 F. to 1100 F. into cupola iron. Like results were also obtained with caustic soda admixed with magnesium oxide, calcium boride, rare earth oxide, calcium cyanamide, fiuorspar and with mixtures thereof. In every case the amount of caustic sod-a necessary to'give a particular sulphur-removal Was greatly reduced and the tensile strength of the resulting iron materially increased. Along with the increase in tensile strength there was a general physical improvement overall in the final iron.
These desirable results have been obtained in plain steels, alloy steels including stainless steel, silicon steel, zirconium steel and boron stainless steels used for hydrogen fused equipment and atomic fission. Comparative tests of such materials show that a low grade high sulphur steel may be upgraded by this treatment to the equivalent in quality of an electric furnace steel of low sulphur content.
I preferably add the mixture of fused caustic soda and adjuvant by the device illustrated in the accompanying figure.
In the accompanying drawing, 1 have illustrated a salt melting and storage pit in which the mixture of caustic soda and adjuvant are fused and held. The pit 10 is made up of .an inner steel shell 11 and an outer unit insulator 12 between which are placed strip heaters 13 used to heat and hold the fused caustic at the desired temperature. The fused mixture is delivered from the pit 10 through an outlet valve 14 and nozzle 15 into a delivery capsule 16 made up of an inner steel sheel 17 surrounded by strip heaters 18, all enclosed by unit insulation 19. The molten caustic is delivered from the nozzle 15 of the pit through an inlet tube 20 and valve 21 on the capsule 16. The capsule 16 is suspended on a ring 22 fixed to the shell .17. Preferably the ring 22 is suspended on a hook 23 from a weighing device 24. An air pressure inlet line 25 communicates through a valve 26 to the interior of the capsule 16. A pressure gauge is provided in the line 25 to indicate the pressure within-the capsule 16. A relief valve 28 is provided to vent the casule in the event that excess pressures are built up. A pyrometer well 29 extends vertically from the shell 17 into the interior of the capsule 16. An outlet line 30 is provided in the bottom of the capsule 16 communicating with the interior of the shell 17. This outlet line 30 is provided with a high speed clip valve 31 and a quick opening flange 32. Asteel lance 33 provided with a mating quick opening flange 34 is attached to flange .32. Preferably, an outer protective shell 35 of carbon or other refractory material covers the lance 33. The lance is adapted tosextend into a ladle 36 or furnace in which the ferrous metal to be treated is held.
Inoperation, the capsule 16 is loaded from the pit 10 to inlet line 20 and valve 21. Air is applied to the interior of the capsule through the line 25 until a desired pressure is achieved. The capsule is then transferred to the area of the molten bath to be treated. The lance 33 is inserted in the molten bath, .valve 31 is opened and the air pressure forces the fused mixture of caustic and adjuvant into the bath until a desired amount as indicated by the scale 24 has been delivered to the bath at which point valve 31 is closed and lance 33 removed from the molten bath.
While I have illustrated and described a present preferred embodiment .of my invention it will be understood that the invention may be otherwise practiced and embodied within the scope of the following claims.
I claim: 7
1. A method of desulphurizing a molten ferrous bath comprising the steps of delivering a stream of a molten mixture of caustic soda and an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesiumoxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten bath beneath the surface thereof maintaining the bath molten while the caustic mixture diffuses through the body of the molten steel bath to react with the sulfur and separating the remaining molten metal from the slag formed by the caustic mixture-sulfur reaction.
2. A method of desulphurizing a molten ferrous bath comprising the steps of forming a bath of molten caustic soda, pumping a stream of a molten mixture of caustic 4 soda and an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten ferrous bath through a hollow .isteel lance beneath the surface thereof, maintaining thejbath molten while the canstic mixture diffuses through the body of the molten bath to react with the sulfur, permitting the resulting caustic mixture-sulfur reaction product to enter into a slag layer on the molten bath and separating the remaining molten metal from the resulting slag.
3. A method of desulphurizing a molten .stee'l bath in an open-hearth furnace comprising the steps of delivering a stream of a molten mixtureofcaustic soda and up to about 720% of an adjuvant agent selected from the group consisting of calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar equal in amount to about 4 to 9 /2 pounds per ton of molten steel into the body of the molten bath adjacent the bottom beneath the surface thereof, maintaining the bath molten while the caustic mixture diffuses through the body of the molten steel bath to react with sulfur and separating the remaining molten metal from the slag formed by the caustic mixture-sulfur reaction.
4. A method of desulphurizing a molten steel bath in an open-hearth furnace comprising the steps of delivering a stream of a molten mixture of caustic soda and up to about 20% of an adjuvant agent selected from the group consisting ofcalcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, cal cium cyanamide and fluorspar equal in amount to about 5 pounds per ton of molten steel into the body of the molten bath adjacent the bottom beneath the surface thereof, maintaining the bath molten while the caustic mixture diffuses through the body of the molten steel bath to react with the sulfur and separating the remain ing molten metal from the slagformed by the caustic mixture-sulfur reaction.
5. A method ,of desulphurizing a molten steel bath, comprising the steps of forming a bath of molten caustic soda, pumping a stream of molten mixture of caustic soda and up to about 20% of an adjuvant agent selected from the group consisting of ,calcium carbide, manganese dioxide, magnesium oxide, calcium boride, rare earth oxides, calcium cyanamide and fluorspar into the body of the molten steel bath through a hollow steel lance until about 4 to 9 /2 pounds of caustic soda per ton of molten metal has been introduced into the bath beneath the surface thereof, maintaining the bath molten while the caustic mixture diffuses through the body of the molten bath to react with the sulfur, permitting the resulting caustic mixture-sulfur reaction product to enter into a slag layer on the molten bath and separating the remaining .molten metal from the resulting slag.
References Cited in the file of this patent UNITED STATES PATENTS 598,037 Wainwright Jan. 25, 1898 603,330 Hartman May 3, 1898 754,566 Hulin Mar. 15, 1904 2,741,556 Schwartz Apr. 10, 1956 2,750,280 Perrin et al June 12, 1956 2,866,703 Goss Dec. 30, .1958
FOREIGN PATENTS 740,784 France June 7, 19.43

Claims (1)

1. A METHOD OF DESULPHURIZING A MOLTEN FERROUS BATH COMPRISING THE STEPS OF DELIVERING A STREAM OF A MOLTEN MIXTURE OF CAUSTIC SODA AND AN ADJUVANT AGENT SELECTED FROM THE GROUP CONSISTING OF CALCIUM CARBIDE, MANGANESE DIOXIDE, MAGNESIUM OXIDE, CALCIUM BORIDE, RARE EARTH OXIDES, CALCIUM CYANAMIDE AND FLUORSPAR INTO THE BODY OF THE MOLTEN BATH BENEATH THE SURFACE THEREOF MAINTAINING THE BATH MOLTEN WHILE THE CAUSTIC MIXTURE DIFFUSES THROUGH THE BODY OF THE MOLTEN STEEL BATH TO REACT WITH THE SULFUR AND SEPARATING THE REMAINING MOLTEN METAL FROM THE SLAG FORMED BY THE CAUSTIC MIXTURE-SULFUR REACTION.
US748031A 1958-07-11 1958-07-11 Methods and apparatus for desulphurization of ferrous metals Expired - Lifetime US2992097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US748031A US2992097A (en) 1958-07-11 1958-07-11 Methods and apparatus for desulphurization of ferrous metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US748031A US2992097A (en) 1958-07-11 1958-07-11 Methods and apparatus for desulphurization of ferrous metals

Publications (1)

Publication Number Publication Date
US2992097A true US2992097A (en) 1961-07-11

Family

ID=25007685

Family Applications (1)

Application Number Title Priority Date Filing Date
US748031A Expired - Lifetime US2992097A (en) 1958-07-11 1958-07-11 Methods and apparatus for desulphurization of ferrous metals

Country Status (1)

Country Link
US (1) US2992097A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208117A (en) * 1962-03-28 1965-09-28 Reisholz Stahl & Roehrenwerk Casting method
US3350196A (en) * 1964-07-20 1967-10-31 Bot Brassert Oxygen Technik A Basic steelmaking
US3473917A (en) * 1966-08-25 1969-10-21 Bot Brassert Oxygen Technik Ag Basic steelmaking process
US3884679A (en) * 1973-05-24 1975-05-20 Sueddeutsche Kalkstickstoff Method of preparing a stable mixture of calcium with a compound yielding water at elevated temperature
USRE31676E (en) * 1982-09-29 1984-09-18 Thyssen Aktiengesellschaft vorm August Thyssen-Hutte AG Method and apparatus for dispensing a fluidizable solid from a pressure vessel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598037A (en) * 1898-01-25 Machine for exhausting molten metal
US603330A (en) * 1898-05-03 hartman
US754566A (en) * 1902-12-29 1904-03-15 Paul Leon Hulin Process of treating matters in fusion.
FR740784A (en) * 1932-07-12 1933-02-01 Double action spring device for motor trucks or trailers
US2741556A (en) * 1952-02-05 1956-04-10 Allied Chem & Dye Corp Method of desulfurizing molten ferrous metal
US2750280A (en) * 1951-02-01 1956-06-12 Electro Chimie Metal Process for rapidly desulfurizing steel
US2866703A (en) * 1956-05-28 1958-12-30 Diamond Alkali Co Treated molten metal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598037A (en) * 1898-01-25 Machine for exhausting molten metal
US603330A (en) * 1898-05-03 hartman
US754566A (en) * 1902-12-29 1904-03-15 Paul Leon Hulin Process of treating matters in fusion.
FR740784A (en) * 1932-07-12 1933-02-01 Double action spring device for motor trucks or trailers
US2750280A (en) * 1951-02-01 1956-06-12 Electro Chimie Metal Process for rapidly desulfurizing steel
US2741556A (en) * 1952-02-05 1956-04-10 Allied Chem & Dye Corp Method of desulfurizing molten ferrous metal
US2866703A (en) * 1956-05-28 1958-12-30 Diamond Alkali Co Treated molten metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208117A (en) * 1962-03-28 1965-09-28 Reisholz Stahl & Roehrenwerk Casting method
US3350196A (en) * 1964-07-20 1967-10-31 Bot Brassert Oxygen Technik A Basic steelmaking
US3473917A (en) * 1966-08-25 1969-10-21 Bot Brassert Oxygen Technik Ag Basic steelmaking process
US3884679A (en) * 1973-05-24 1975-05-20 Sueddeutsche Kalkstickstoff Method of preparing a stable mixture of calcium with a compound yielding water at elevated temperature
USRE31676E (en) * 1982-09-29 1984-09-18 Thyssen Aktiengesellschaft vorm August Thyssen-Hutte AG Method and apparatus for dispensing a fluidizable solid from a pressure vessel

Similar Documents

Publication Publication Date Title
US2837790A (en) Process for degassing ferrous metals
US3046107A (en) Decarburization process for highchromium steel
US3230074A (en) Process of making iron-aluminum alloys and components thereof
US2992097A (en) Methods and apparatus for desulphurization of ferrous metals
JP7060113B2 (en) Method of adding Ca to molten steel
US2848317A (en) Desulfurizing of steel
US2800631A (en) Method of carrying out melting processes
US2819956A (en) Addition agent for and method of treating steel
US2369213A (en) Method of degasifying and decarburizing molten metal baths, and improved agent therefor
US3305352A (en) Process of producing alloys
US2967768A (en) Process for desulphurising pig. and cast-iron melts
US3089767A (en) Method and apparatus of treating ingots of iron or steel
EP0073274B1 (en) Method of preliminary desiliconization of molten iron by injecting gaseous oxygen
US3929458A (en) Process for the elaboration of chrome steels
US2937084A (en) Process for production of high-grade cast-iron
US3933477A (en) Method of producing ferro-nickel or metallic nickel
EP0170900B1 (en) Process for the removal of contaminating elements from pig- iron, steel, other metals and metal alloys
US2811436A (en) Process of producing steel
JPH0346527B2 (en)
CN108588340A (en) A kind of method that low-temperature refining prepares low aluminium calcium impurities Antaciron
Trentini et al. “OLP”: Oxygen, lime-powder injection: A new steelmaking process
US3374088A (en) Method for producing low silicon ferromanganese alloys
US2750285A (en) Process for extracting nickel from low grade ores
US3856510A (en) Pig iron refining process
SU1044641A1 (en) Method for alloying steel with manganese