US2986775A - Spinneret arrangement - Google Patents

Spinneret arrangement Download PDF

Info

Publication number
US2986775A
US2986775A US848024A US84802459A US2986775A US 2986775 A US2986775 A US 2986775A US 848024 A US848024 A US 848024A US 84802459 A US84802459 A US 84802459A US 2986775 A US2986775 A US 2986775A
Authority
US
United States
Prior art keywords
spinneret
spinning
tube
partitions
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US848024A
Other languages
English (en)
Inventor
Sluijters Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzona Inc
Original Assignee
American Enka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Enka Corp filed Critical American Enka Corp
Application granted granted Critical
Publication of US2986775A publication Critical patent/US2986775A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods

Definitions

  • the present invention relates generally to the wet spinning of viscose rayon thread or yarn and more especially to the tube spinning of high tenacity yarn of particular use as cord in the production of vehicle tires.
  • yarn having higher tenacity than heretofore available may be produced by spinning viscose in the presence of chemicals which retard regeneration and coagulation.
  • Use of these retardants or modifiers in most cases has necessitated conversion to the tube spinning system wherein the freshly extruded and relatively weaker filaments are passed through the critical initial regeneration stages with liquid traveling through a confined zone or tube.
  • the spinning tube is mounted in coaxial alignment with the spinneret face and is open at both ends, the thread and coagulant entrance end usually being funnel shaped and having a diameter greater than that of the outer circle of orifices in the spinneret, but less than that of the spinneret holder or assembly. It has been proposed, additionally, that a number of coagulant or spinning liquid flow passages be provided in the spinning tube near the entrance end thereof, as shown, for example, in the aforesaid Walker et al. patent.
  • the tube serves the purpose of protecting freshly formed and relatively soft threads from the transverse flow of the spinbath or spinning liquid, and the passages in the tube permit radial How of spinbath into the system.
  • Flow of spinbath through the tube may be caused by frictional engagement with traveling threads, or by a pressure drop which results in the converse, i.e., threads conveyed by liquid.
  • An object of this invention is to provide anapparatus not having the disadvantages of known systems described hereinabove.
  • An additional object of the present invention is to provide a spinneret assembly especially suitable for tubespinning which reduces considerably turbulence normally created near the spinneret face by flowing spinning liquid.
  • Another object of this invention is to provide a tube spinning apparatus which aflords greater penetration of spinbath into a bundle of freshly extruded filaments but with no increase in damage to said filaments.
  • Still another object of the present invention is to provide a spinneret assembly which improves the rate of viscose coagulation and permits production of high tenacity yarns at higher spinning speeds.
  • a further object of this invention is to provide spinneret assemblies which require no point to point adjustment and which serve not only to support a spinning tube, but also to align the same with a spinneret.
  • FIGURE 1 is a perspective view of a preferred form of spinneret assembly, illustrating only those elements necessary to an understanding of this invention
  • FIGURE 2 is an elevation view, partly in section, of the apparatus shown in FIGURE 1;
  • FIGURE 3 is an end view, in elevation, of the spinneret assembly shown in FIGURES 1 and 2, taken substantially along the line 33 of FIGURE 2.
  • the spinneret assembly is provided with partitions extending therefrom in the direction of spinning and defining a plurality of elongated passageways.
  • the side walls of two adjacent partitions, which together define a single passageway, are flat and extend inparallel planes, whereas the two side walls of each single partition, which lie intermediate two ad-- jacent passageways, should intersect near thespinneret to.-
  • each partition is of generally teardrop shape.
  • ref erence numeral 10 indicates generally a spinneret as-- sembly such as described briefly hereinabove.
  • the spinneret assembly would be submerged in coagulating liquid or spinbath contained within a spinning tank, neither of which is shown.
  • Viscose is supplied to theaassembly through spinneret tube 11, and the freshly extruded threads, as well as the coagulating liquid, pass outwardly from the assembly through spinning of flow tube 12.
  • the spinneret assembly 10 consists of a male portion 13 and a female housing section 14, these parts being screw threaded together in a known manner.
  • the front or spinneret side 15 of housing 14, in the preferred embodiment, is substantially spherical in shape, and has formed integral therewith a plurality of partitions 16 each of which extends outwardly of front side 15 in the direction of spinning and is supported therefrom in cantilever 3 fashion. These partitions also extend radially inwardly of housing 14, as shown in FIGURES 2 and 3, from a point flush with the outer peripheral surface to a joint just outside the outer circle of orifices in spinneret 17.
  • each of the partitions 16 is elongated; consequently, the flow passageways 18 defined by adjacent pairs of partitions also are elongated.
  • These partitions are provided with rounded inner and outer peripheral surfaces, however, to facilitate flow of spinbath through the passageways.
  • the cooperating flat surfaces of adjacent partitions should lie in planes which are parallel to an imaginary radial plane and accordingly extend parallel one to the other.
  • the opposed flat surfaces on any one partition should lie in a plane which intersects that of the complementary surface 21, in order to improve the flow of coagulant, as Well as reduce the turbulence thereof.
  • the end surfaces, or head ends, of the partitions 16 lie in a plane extending normal to the spinning axis, or normal to the center of flow tube 12, in order to permit flush mounting of the funnel shaped, or flanged, end 23 of the tube adjacent to spinneret 17.
  • Approximately one half, and preferably the lower half, of the partitions 16 are provided with extensions 24. These extensions are notched, as indicated at 25, and serve as a cradle or mounting bracket for the flanged end 23 of the spinning tube 12.
  • the flanges and notches should be constructed in a manner to maintain coaxial alignment of the spinning tube axis with the center of the spinneret and yet permit quick detachment of the tube from the spinneret assembly merely by an upward movement of the former with respect to the latter.
  • the flanged end 23 of the tube 12 closes the fiow passageways 18 between partitions 16, these passageways being otherwise bounded by spherical surface 15 and pairs of cooperating surfaces 20, 21.
  • the surface 15 was intentionally designed in spherical shape in order to decrease the volume or surface area of the passageways 18 in the direction of spinning, which produces an acceleration in spinbath flow as the same approaches the surface of spinneret 17. It can be seen, however, that the same effect could be obtained with a sloping flat surface, rather than one curved in the manner shown. If acceleration in spinbath flow is not desired, then the surface 15 should lie in a plane parallel to the aforesaid end surfaces, or head ends, of the partitions 16.
  • the filaments formed by extruding viscose from spinneret tube 1 L rough spinneret 17 are drawn off through spinning tube 12 and the coagulating bath by a driven roller, or rollers, not shown. Travel of these filaments through the spinning tube produces a movement of coagulating liquid contained within the tube, which of course draws in fresh liquid at the flanged end, as is known in this art.
  • the special shape of the partitions 16, surface 15, and the flanged end 23 of the tube has been found to reduce considerably, if not eliminate entirely, the turbulent flow of liquid in the immediate vicinity of the spinneret. Consequently, the number of filament ruptures occurring during use of this apparatus is extremely small.
  • the coagulating liquid penetrates further toward the center of the filament bundle near the spinneret face and that more uniform regeneration is obtained at a faster rate of speed. This contributes substantially to the higher strength yarn produced by and higher spinning speeds obtainable with this apparatus.
  • the axial length X should be measured from the outer periphery of flanged end 23 to a point on the spherical surface 15 equidistant from the center axis of the spinneret assembly.
  • the radial height Z should be confined to the flat surfaces only, and not include the curved inner and outer peripheries of the partitions,
  • each passageway (or the height of the fiat surfaces 20, 21, 22 on the partition) should be at least 1.5, and preferably 2, times the width Y (or circumferential distance between adjacent partitions).
  • length X taken in the direction of spinning, should be large relative to the width Y, for example, at least 1.5 times this width.
  • the axial dimension of the partitions is at least 4 times the width of the flow passageways.
  • the sides 21, 22 bounding a single partition 16 intersect at the inner periphery to form a line extending substantially parallel to the assembly axis.
  • these lines should not extend exactly parallel to the axis, but should diverge slightly toward the spinning tube axis, in the direction of spinning, in order to facilitate molding of the assembly in one composite piece. Without such, it would be extremely difiicult to remove the assembly at the end of a molding operation.
  • the intersection of corresponding surfaces 21, 22 of respective partitions 16 should occur outside the outer circle of spinneret orifices, although the exact distance radially outwardly of this circle is not critical.
  • the width Y of the fiow passages may vary within wide limits. Although a narrow passage indeed reduces turbulence, the same presents the possibility of rapid clogging due to impurities in the spinbath liquid. 0n the other hand, passageways that are too wide do not satisfactorily dampen the turbulent flow. It has been found that the best results are obtain-ed, under actual operating conditions, if the width of. these passageways amounts to between 3 and 4 mm. Since the radial height Z preferably amounts to about 2 times the width, it will be seen that length of at least 6 mm. will operate quite well at this selected Width.
  • the axial length X which as stated preferably amounts to about 4 times the width, therefore should be at least 12 mm. In connection with these dimensions, it is not advisable to design the flow passages so that the length X is much over 40 mm. Preferably, this axial length is not more than 25 mm.
  • the optimum number of flow passageways appears to be dependent on the width of the flow passageways and on the size of the space enclosed by the partitions.
  • the most advantageous situation appears to exist when the relation between the width (Y, measured in mm.), the diameter of a circle through the intersecting planes of the individual partitions (d, also measured in mm.), and the number of passageways (n) is determined according to the formula:
  • Y d sin situated just outside the spinneret face, and a flow passageway width of 3 mm.
  • the optimum number of pasageways should be 20 or 21, depending on the spacing of the imaginary intersecting planes outside the spinneret face. If it is desired that the flow passageways have a width of 4 mm., the number is determined to be 15 or 16.
  • the gradual decrease in surface area of the flow passageways in the direction of spinning is intended to impose an acceleration on the spinbath liquid forced through these passageways during the spinning process. Acceleration at this point contributes to elimination of turbulence in the vicinity of the spinneret face.
  • This decrease in surface area may best be obtained by suitably shaping the spinneret holder, either with the curved surface shown, or with a flat sloping surface which extends at an angle to the spinneret axis.
  • the extent of surface diminishing should be selected for each particular radial and axial length of the passageways and the diameter of the space within the partitions, and depends as well on the shape of other radially extending bounding surfaces of the flow passageway.
  • the partitions 16 be immovably secured to the housing 14, and one to the other. Additionally, it is advantageous if, during operation, they maintain a fixed position with respect to the spinning tube.
  • the partitions could be constructed as a unitary structure separate from but insertable adjacent to or between the spinneret housing 14 and flanged end 23 of the spinning tube. It is preferred, however, to form these members as shown, whereupon the lower half thereof may also serve as means for positioning and supporting the spinning tube relative to the spinneret. This arrangement also protects the spinneret, and is reasonably easy to fabricate. The number of parts forming the assembly also is considerably reduced.
  • the spinning or flow tube 12 of course could be secured by various other means, such as screw or bayonet joints, but the arrangement shown has definite advantages, discussed supra. It is not necessary to provide all of the partitions 16 on the lower half of the housing 14 with extensions 24, since a fewer number obivously would serve to support and align the spinning tube, as well as permit quick detachment from the spinneret assembly.
  • a spinneret assembly comprising a housing, a multiorificed spinneret secured within said housing for receiving a spinning solution, a plurality of elongated and circumferentially spaced partitions supported in cantilever fashion from and extending outwardly of said housing in a direction disposed radially outwardly from but generally parallel to the axis of said spinneret, each of said partitions having opposed flat surfaces which intersect in a line adjacent to but radially outwardly from the outer circle of orifices in said spinneret, cooperating flat surfaces on adjacent partitions being parallel and defining a flow passageway through which a spinning bath may be circulated, the cross sectional area between the passageway defining surfaces taken in planes parallel to the spinneret axis increasing in proportion to the distance away from said axis in order to accelerate the flow of spinning bath passing therethrough, a spinning tube coaxially aligned with said spinneret, and extensions on a plurality of said partitions, said extensions being notched to receive and quick

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
US848024A 1958-11-07 1959-10-22 Spinneret arrangement Expired - Lifetime US2986775A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL233025 1958-11-07

Publications (1)

Publication Number Publication Date
US2986775A true US2986775A (en) 1961-06-06

Family

ID=19751420

Family Applications (1)

Application Number Title Priority Date Filing Date
US848024A Expired - Lifetime US2986775A (en) 1958-11-07 1959-10-22 Spinneret arrangement

Country Status (7)

Country Link
US (1) US2986775A (xx)
CH (1) CH392764A (xx)
DE (1) DE1148694B (xx)
ES (1) ES252742A1 (xx)
FR (1) FR1239663A (xx)
GB (1) GB903645A (xx)
NL (1) NL97108C (xx)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177633A (en) * 1937-02-25 1939-10-31 Eastman Kodak Co Method and apparatus for making thermoplastic sheeting
US2252689A (en) * 1938-03-10 1941-08-19 Du Pont Production of filaments, ribbons, and the like
AT197004B (de) * 1955-08-11 1958-04-10 Algemene Kunstzijde Unie Nv Vorrichtung zur Herstellung von Kunstfäden od. ähnl. Produkten nach dem Naßspinnverfahren
US2834046A (en) * 1954-06-17 1958-05-13 American Enka Corp Spinneret arrangement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2416291A (en) * 1942-11-14 1947-02-25 American Viscose Corp Method and apparatus for spinning synthetic shapes
AT195015B (de) * 1955-09-07 1958-01-25 Algemene Kunstzijde Unie Nv Gerades, zylindrisches Faden- und Flüssigkeitsleitrohr und Befestigung desselben an einem Spinndüsenaggregat zur Herstellung von Kunstfäden nach dem Naßspinnverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177633A (en) * 1937-02-25 1939-10-31 Eastman Kodak Co Method and apparatus for making thermoplastic sheeting
US2252689A (en) * 1938-03-10 1941-08-19 Du Pont Production of filaments, ribbons, and the like
US2834046A (en) * 1954-06-17 1958-05-13 American Enka Corp Spinneret arrangement
AT197004B (de) * 1955-08-11 1958-04-10 Algemene Kunstzijde Unie Nv Vorrichtung zur Herstellung von Kunstfäden od. ähnl. Produkten nach dem Naßspinnverfahren

Also Published As

Publication number Publication date
CH392764A (de) 1965-05-31
NL97108C (xx)
DE1148694B (de) 1963-05-16
FR1239663A (fr) 1960-08-26
GB903645A (en) 1962-08-15
ES252742A1 (es) 1960-02-01

Similar Documents

Publication Publication Date Title
US2510135A (en) Method for spinning artificial filaments
US2968834A (en) Manufacture of voluminous yarns
US5968433A (en) Process for spinning of solutions of cellulose carbamate
US2642333A (en) Method of spinning polyvinyl alcohol fibers
US2408713A (en) Extrusion device
US2775505A (en) Spinning regenerated cellulose filaments
US3095607A (en) Spinneret assembly
GB982754A (en) Production of spandex filaments by dry spinning
US2988777A (en) Spinning apparatus
CN117716074A (zh) 对碱纤维素进行纺丝的方法
US2465408A (en) Method and apparatus for spinning artificial fibers
US2673368A (en) Spinnerette
US2986775A (en) Spinneret arrangement
US3067459A (en) Quenching chamber
US2440057A (en) Production of viscose rayon
CN109537074A (zh) 用于纤维素纺丝的凝固成型装置
US2908937A (en) Method and apparatus for the manufacture of yarn
GB477529A (en) Improvements in the manufacture of artificial filaments, yarns and the like
US2834046A (en) Spinneret arrangement
EP4116469A1 (en) Method of spinning alkali cellulose
US2898629A (en) Apparatus for the production of high tenacity viscose rayon yarn
US2447984A (en) Apparatus for spinning artificial staple fibers
US3071806A (en) Wet spinning column and process
US2541149A (en) Draw roll mechanism for hot stretching of artificial filaments
CN209210973U (zh) 一种喷丝板组件座