US2967816A - Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil - Google Patents

Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil Download PDF

Info

Publication number
US2967816A
US2967816A US673576A US67357657A US2967816A US 2967816 A US2967816 A US 2967816A US 673576 A US673576 A US 673576A US 67357657 A US67357657 A US 67357657A US 2967816 A US2967816 A US 2967816A
Authority
US
United States
Prior art keywords
fuel oil
petroleum
percent
pour
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US673576A
Inventor
Charles N Hudson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinclair Refining Co
Original Assignee
Sinclair Refining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinclair Refining Co filed Critical Sinclair Refining Co
Priority to US673576A priority Critical patent/US2967816A/en
Application granted granted Critical
Publication of US2967816A publication Critical patent/US2967816A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing

Description

PROCESS FOR DECOLORIZING PETROLEUM RES- INS AND PRODUCTS OBTAINED BY ADDING THE DECOLORIZED RESINS TO FUEL OIL Charles N. Hudson, Springdale, Conn., assignor to Sinclair Refining Company, New York, N.Y., a corporation of Maine NoDrawing. Filed July 23, 1957, Ser. No. 673,576
6 Claims. (Cl. 208-15) This invention relates to the decolorization of hydrocarbon oil additives and more particularly to the hydrodecolorization of resinous petroleum fractions useful, for instance, in hydrocarbon fuel oils as a pour point depressant.
Many petroleum stocks which could be considered suitable for diesel and heating fuels are limited in utility by the inability to meet certain specifications, for example, as to pour point. That is, these stocks do not pour readily at the low temperatures frequently encountered due to place or time of use. The high pour points that characterize these fuels may be substantially reduced to meet pour point specifications by incorporating into the heating fuels a small amount of a propane-insoluble heavy petroleum resin. However, use of the resinous ad'- ditive as a pour depressor in the production of fuel oil distillates has been found to present undesirable off-color finished fuels. Attempts have been made to eliminate the objectionable color of the resin-containing finished fuels by subjecting the raw petroleum resin to hydrodecolorization operations prior to its incorporation into the fuel oil distillate. These attempts have proved unsuccessful in that during the hydrode'colorization operation the pour depressor properties of the petroleum resin are invariably destroyed.
I have now found that the oil-soluble propane-insoluble petroleum resins prepared for use as fuel pour depressors can be successfully hydrodecolorized without loss of depressor properties by sufficiently diluting the resinous depressor with fuel oil stock prior to hydrogen treatment.
The petroleum resin additive hydrodecolorized'in my invention is obtained as a propane-insoluble fraction from the propane treatment of reduced crude or bottoms fraction from a Pennsylvania or paraffin base crude oil. The resins have viscosities of about 3000 to 10,000 SSU at 210 F. As the viscosity increases, their tendency to precipitate from the propane solution increases and advantage is taken of this fact to effect a fractionation of the wide range resin and obtain any desired resin fraction, the preferred fraction having a viscosity of about 5000 to 8000 SSU at 210 F. Similar fractions having the desired properties can be obtained by distillation of Pennsylvania reduced crudes.
In carrying out my invention about 0.05 percent to 2 percent, preferably about .30 to 1.0 percent of the petroleum resin additive is incorporated into petroleum fuel oil stocks characterized by boiling in a range of about 300 to 900 F., preferably about 350 to 700 F., and the blend subjected to hydrodesulfurization processing. The hydrodesulfurized products can then be used as such, for instance as fuel, or incorporated into an additional amount of a petroleum hydrocarbon fuel oil boiling in States Patent "ice the range of about 300 to 900 F., preferably about 300 to 750 F. to provide a pour depressed fuel oil of acceptable color containing from about 0.01 to 1.5 percent, preferably about 0.01 to 0.15 percent, of the pour depressor resin.
The petroleum fuel stocks with which the defined resinous depressor may be diluted prior to hydrodesulfurization are mineral oil fractions of the indicated boiling range and known in the art, for instance, as heavy and light catalytically cracked distallates, thermally cracked distillates, such as coker gas oils, other cycle oils from the coking of residuums or heavy stock, straight run stocks, or mixtures of the straight run stocks with any of the above cracked components. Frequently, the distillate fuel materials employed comprise about 15 to 100 percent cracked distillate with substantially the balance being straight run stock and are characterized by pour points of at least about 5 F.
Base fuel materials which can be modified by the addition of the hydrodecolorized products of my invention to effect pour point lowering are characterized by boiling ranges of about 300 to 900 F. Typical materials are any of the cracked distillate fuel materials or blends thereof described above as possible diluent stocks for the defined resinous pour depressor. These stocks can be blended with straight run distillate fuels boiling within about 300 to 675 F. to improve the sulfur content, volatility and percentage carbon residue. This blending may result in slightly improved pour point also, but usually the improvement obtained is insufficient to meet specifications. Substantial amounts, i.e. up to about 10 percent of high boiling, high pour point marginal stocks, such as paraffin tower overhead, may also be included. Base compositions thus comprise about 15 to 100 percent of cracked distillate and substantially the balance straight run stock and usually are characterized by pour points of at least about 5 F., cetane numbers of about 25 to 50, boiling ranges within about 300 to 900 F., and have percent points of at least about 600 F. and preferably at least about 700 F.' The preferred diesel fuel base material is about a 50/50 blend of heavy and light catalytically cracked distillates.
The hydrodesulfurization operation of my invention should be conducted underconditions'that are unlikely to produce substantial cracking of the fuel oil diluenta pour depressor composition. Employment of hydrodesulfurization conditions effecting substantial cracking has been found to destroy the pour depressor properties of the resin and should for that reasonibe avoided. Suitable processing conditions atfording a product of acceptable color level are in the following approximate ranges:
ably 650-700 F. Weigl1t of hydrocarbon per weight of catalyst per hour.
Any suitable desulfurization or decolorization catalyst can be employed, for instance, a calcined or activated catalyst containing minor amounts of cobalt and molybdena or cobalt molybdate supported on alumina.
The following examples are presented in order to further illustrate my invention. The physical properties of the heavy petroleum resin and cracked fuel oil distillates employed in the examples are indicated in Table I.
TABLE I TABLE III Tests on stocks 'r t r 1011131 dN 1 TestNo' es s on he on o. Fluid Catalytic Pennsylvania Cycle 011 Heavy Resin 1 2 3 4 vity. PI 23.6w 70 so Blend No. 111 drodesulfurlza Flash, F 215 (PM)-- 680 (C). i tlon Product: I y
740. Color, NPA 4 2% 2 Cloud Point, F-.. 6 8 8 2 Viscosity at 210 F. 774 10 Poor Point, F 13-30 13-30 13-5 B-30 Cloud Point, F 70/30 Blend N o. l/Feed to Hydro- P0111 Point, F 15 desulfurization Unit: Color 2% (NPA)---- 0 Color, NPA 4% 6 6 8 Carbon Resldue, Perccn 12.76. Cloud Point, F.. 8 4 4 T00 golfing Percent.-- Nu 0.31.8 Dark s 1, ercent 0.25 P Po t, F 13-30 B-30 B- B- Distillation (200 ml.) IBP, F 440 15 our m 30 3O EXAMPLE I To a fluid light cycle fuel oil having the physical properties shown in Table I were added various amounts of a Pennsylvania heavy resin whose physical properties are also shown in Table I.
A 50 gram portion of a calcined cobalt-molybdena on alumina desulfurization catalyst typically analyzing 25% Co, 9.0% M00 was charged to a one inch reactor as a solid bed, with A1 Alundum balls filling the entire space above the catalyst. The reactor was pressure tested and placed in a furnace. The catalyst was purged with hydrogen for 2 hours at 680 F., and 1 atmosphere, after which the reactor was pressured and the entire system pressure tested. Hydrogen gas recycle flow was started and the light cycle oil-resinous additive feed cut in. Process conditions and test results on the charge to the hydrodesulfurization unit and the tests on the hydrodesulfurized products are shown in Table II.
TABLE II Test No. Process Conditions Feed Percent Penn. Heavy Resin 0.33 .66 .66 1.0 Fl id Light Cycle Oil 99.67 99. 84 99. 34 99. 0
Temperature, F Press-re, P.s.i.g.-
Comparison of tests 1 through 4 on the hydrodesulfurized products to those on the feeds to the unit shows that a substantial reduction of both sulfur and color was effected by the various process conditions. The sulfur removal indicates no apparent loss of desulfurization activity during the course of the tests. Although all percentages of Pennsylvania heavy resin to light cycle oil afiorded a product of lighter color, the most favorable rcsults are produced when about 0.5 to 0.75, e.g. 0.66, percent by weight of the resin is incorporated in the cycle oil. The adding of this amount of heavy resin elfects a more desirable NPA color of below 4 to 5 when operating within the process conditions of this invention. If any dark colored hydrodesulfurized products should result under a particular set of operating conditions wherein the resin is employed, it may be remedied by simply adjusting the conditions of space velocity and/or temperature to increase the severity while avoiding cracking.
The hydrodesulfurized products of tests 1 to 4 were added to heating oil to produce a fuel blend composed of 70 percent heating oil and 30 percent hydrodesulfurized products. Tests on these fuel oil blends arereported in Table III.
Tests:
Color N PA Cloid Point, F Pour Point, F
B=below.
As shown, addition of the undesulfurized heavy resinlight cycle oil blend reduced the pour point of fuel blend No. 1 from 5 F. to below 30 F. but resulted in products in tests 2, 3 and 4 that are too dark (NPA 6 and 8) for ready acceptance. On the other hand, incorporation of the hydrodesulfurized products obtained under the process conditions of the tests in Table II into fuel blend No. 1 gave a fuel of reduced pour point and of lighter color. The color reductions (NPAcolor of 2 /2 and 2) were obtained with the hydrodesulfurization product afforded under the conditions of tests 2 and 3 in Table II, wherein .66 percent of the resin was present in the oil desulfurized; however, the more severe conditions in test 3 gave some loss of pour point depressor properties. Preferably, the decolorizing conditions should not be so severe that more than 10 F. of pour depressing properties are lost.
I claim:
1. A process for the decolorization of an oil-soluble, propane-insoluble, parafiin base-derived resinous petroleum fraction having a viscosity of about 3,000 to 10,000 SSU at 210 F. for use as a pour depressor in petroleum hydrocarbon stocks, which comprises contacting a blend consisting essentially of about 0.05 to 2.0 percent by weight of said resinous petroleum fraction and a petroleum fuel oil stock boiling in the range of about 300 to 900 F. with a desulfurization catalyst under non-cracking conditions of approximately 600 to 780 F., 0.5 to 4.0 WHSV, 300 to 1000 p.s.i. and 3 to 20 to 1 hydrogen to fuel oil stock ratio.
2. A process for the decolorization of an oil-soluble, propane-insoluble, parafiin base-derived resinous petroleum fraction having a viscosity of about 5000 to 8000 SSU at 210 F. for use as a pour depressor in petroleum hydrocarbon stocks, which comprises contacting a blend consisting essentially of about 0.3 to 1.0 percent by weight of said resinous petroleum fraction and a petrolem fuel oil stock boiling in the range of about 350 to 700 F. containing cracked components with a desulfurization catalyst under non-cracking conditions of approximately 650700 R, 0.5-4.0 WHSV, 300 to 1000 p.s.i. and 5 to 10 hydrogen to fuel oil stock ratio.
3. A decolorized, pour depressed composition prepared by a process which comprises contacting a blend consisting essentially of about .05 to 2 percent by weight of an oil-soluble, propane-insoluble, paratlin base-derived resinous petroleum fraction having a viscosity of about 3,000 to 10,000 SSU at 210 F. and a petroleum fuel oil stock boiling in the range of about 300-900" F. with a desulfurization catalyst under non-cracking conditions of approximately 600-780 F., 0.5 to 4.0 WHSV, 300 to 1000 psi. and 3 to 20 to 1 hydrogen to petroleum fuel oil stock ratio.
4. A pour depressed fuel oil composition consisting essentially of a petroleum hydrocarbon fuel oil boiling ficient of the product of claim 2 to provide about 0.01 in the range of about 300 to 900 F. and containing at to 0.15 percent of the petroleum resin.
least about 15 percent of cracked components and sufficient of the product of claim 1 to provide about 0.01
t 2,0 percent f h petroleum resin 5 References Cited in the file of this patent 5. A pour depressed fuel oil composition consisting essentially of a petroleum hydrocarbon fuel oil boiling UNITED STATES PATENTS in the range of about 300 to 900 F. and containing at 2,143,882 Keith et a1. J an. 17, 1939 least about 15 percent of cracked components and suf- 2,204,967 Moser June 18, 1940 ficient of the product of claim 2 to provide about 0.01 to 10 2,323,360 Wallace July 6, 1943 2.0 percent of the petroleum resin. 2,339,898 White et al. Jan. 25, 1944 6. A pour depressed fuel oil composition consisting 2,756,183 Knox July 24, 1956 essentially of a petroleum hydrocarbon fuel oil boiling 2,773,004 Martin Dec. 4, 1956 in the range of about 300 to 750 F. and containing at 2,793,986 Lanning May 28, 1957 least about 15 percent of cracked components and suf- 15 2,799,661 De Rosset July 16, 1957

Claims (1)

  1. 3. A DECOLORIZED, POUR DEPRESSED COMPOSITION PREPARED BY A PROCESS WHICH COMPRISES CONTACTING A BLEND CONSISTING ESSENTIALLY OF ABOUT .05 TO 2 PERCENT BY WEIGHT OF AN OIL-SOLUBLE, PROPANE-INSOLUBLE, PARAFFIN BASE-DERIVED RESINOUS PETROLEUM FRACTION HAVING A VISCOSITY OF ABOUT 3,000 TO 10,000 SSU AT 210*F. AND A PETROLEUM FUEL OIL STOCK BOILING IN THE RANGE OF ABOUT 300-900*F. WITH A DESULFURIZATION CATALYST UNDER NON-CRACKING CONDITIONS OF APPROXIMATELY 600-780*F., 0.5 TO 4.0 WHSV, 300 TO 1000 P.S.I. AND 3 TO 20 TO 1 HYDROGEN TO PETROLEUM FUEL OIL STOCK RATIO.
US673576A 1957-07-23 1957-07-23 Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil Expired - Lifetime US2967816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US673576A US2967816A (en) 1957-07-23 1957-07-23 Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US673576A US2967816A (en) 1957-07-23 1957-07-23 Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil

Publications (1)

Publication Number Publication Date
US2967816A true US2967816A (en) 1961-01-10

Family

ID=24703211

Family Applications (1)

Application Number Title Priority Date Filing Date
US673576A Expired - Lifetime US2967816A (en) 1957-07-23 1957-07-23 Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil

Country Status (1)

Country Link
US (1) US2967816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081258A (en) * 1959-12-04 1963-03-12 Shell Oil Co Production of high octane gasolines
US3250599A (en) * 1962-12-03 1966-05-10 Sinclair Research Inc Fuels of improved low temperature pumpability
US3270488A (en) * 1964-04-28 1966-09-06 Willard C Beach Lightweight harness
US3389979A (en) * 1964-06-03 1968-06-25 Exxon Research Engineering Co Middle distillate flow improver
US3853497A (en) * 1972-11-08 1974-12-10 Texaco Inc Low pour vacuum gas oil compositions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2143882A (en) * 1935-08-15 1939-01-17 Standard Oil Co Propane deresinating
US2204967A (en) * 1932-09-27 1940-06-18 Shell Dev Process for lowering the pour points of mineral oils
US2323360A (en) * 1941-07-01 1943-07-06 Standard Oil Co Transmission oil
US2339898A (en) * 1941-06-30 1944-01-25 Standard Oil Co Lubricant
US2756183A (en) * 1952-05-13 1956-07-24 Exxon Research Engineering Co Hydrotreating lubricating oil to improve color and neutralization number using a platinum catalyst on alumina
US2773004A (en) * 1952-03-18 1956-12-04 Sinclair Refining Co Solvent decovery of resins from precipitated asphalt
US2793986A (en) * 1952-11-25 1957-05-28 Phillips Petroleum Co Process and catalyst for hydrogenation of kerosene to remove color and fluorescence
US2799661A (en) * 1953-07-15 1957-07-16 Universal Oil Prod Co Manufacture of molybdenumcontaining catalysts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2204967A (en) * 1932-09-27 1940-06-18 Shell Dev Process for lowering the pour points of mineral oils
US2143882A (en) * 1935-08-15 1939-01-17 Standard Oil Co Propane deresinating
US2339898A (en) * 1941-06-30 1944-01-25 Standard Oil Co Lubricant
US2323360A (en) * 1941-07-01 1943-07-06 Standard Oil Co Transmission oil
US2773004A (en) * 1952-03-18 1956-12-04 Sinclair Refining Co Solvent decovery of resins from precipitated asphalt
US2756183A (en) * 1952-05-13 1956-07-24 Exxon Research Engineering Co Hydrotreating lubricating oil to improve color and neutralization number using a platinum catalyst on alumina
US2793986A (en) * 1952-11-25 1957-05-28 Phillips Petroleum Co Process and catalyst for hydrogenation of kerosene to remove color and fluorescence
US2799661A (en) * 1953-07-15 1957-07-16 Universal Oil Prod Co Manufacture of molybdenumcontaining catalysts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081258A (en) * 1959-12-04 1963-03-12 Shell Oil Co Production of high octane gasolines
US3250599A (en) * 1962-12-03 1966-05-10 Sinclair Research Inc Fuels of improved low temperature pumpability
US3270488A (en) * 1964-04-28 1966-09-06 Willard C Beach Lightweight harness
US3389979A (en) * 1964-06-03 1968-06-25 Exxon Research Engineering Co Middle distillate flow improver
US3853497A (en) * 1972-11-08 1974-12-10 Texaco Inc Low pour vacuum gas oil compositions

Similar Documents

Publication Publication Date Title
CA2895950C (en) Hydrotreated hydrocarbon tar, fuel oil composition, and process for making it
US4485004A (en) Catalytic hydrocracking in the presence of hydrogen donor
US5158668A (en) Preparation of recarburizer coke
US4302323A (en) Catalytic hydroconversion of residual stocks
US4065379A (en) Process for the production of normally gaseous olefins
US4075084A (en) Manufacture of low-sulfur needle coke
US3732154A (en) Catalytic hydrofinishing of lube oil product of solvent extraction of petroleum distillate
JP2825570B2 (en) Method for preparing low and high sulfur coke
US3666657A (en) Oil stabilizing sequential hydrocracking and hydrogenation treatment
US3594307A (en) Production of high quality jet fuels by two-stage hydrogenation
US4466883A (en) Needle coke process and product
US2967816A (en) Process for decolorizing petroleum resins and products obtained by adding the decolorized resins to fuel oil
US3781197A (en) Process for cracking hydrocarbons containing hydrodesulfurized residual oil
US3254020A (en) Production of a reduced sulfur content and pour point high boiling gas oil
GB2030172A (en) Petroleum-derived binder pitch
US2904500A (en) Hydrogen treatment of hydrocarbons
US3185639A (en) Hydrocarbon conversion process
Jankowski et al. Upgrading of syncrude from coal
EP2149594A1 (en) Production of gasoline using new method, blending of petroleum material cuts
US3936370A (en) Process for producing a zeolite riser cracker feed from a residual oil
US3324028A (en) Preparation of low sulfur content heavy fuel oils
GB732387A (en) Improved method for manufacturing heating oil
US2772221A (en) Reacting heavy residual fuel with hydrogen donor diluents
US3852186A (en) Combination hydrodesulfurization and fcc process
US2902431A (en) Hydrocracking of asphalt-containing materials