US2959020A - Process for the liquefaction and reliquefaction of natural gas - Google Patents
Process for the liquefaction and reliquefaction of natural gas Download PDFInfo
- Publication number
- US2959020A US2959020A US712002A US71200258A US2959020A US 2959020 A US2959020 A US 2959020A US 712002 A US712002 A US 712002A US 71200258 A US71200258 A US 71200258A US 2959020 A US2959020 A US 2959020A
- Authority
- US
- United States
- Prior art keywords
- gas
- pressure
- temperature
- natural gas
- liquefaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0005—Light or noble gases
- F25J1/0007—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0005—Light or noble gases
- F25J1/001—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0017—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
- F25J1/0025—Boil-off gases "BOG" from storages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
- F25J1/0202—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/90—Boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
Definitions
- This invention relates to the liquefaction of natural gas and it relates more particularly to the reliquefaction of vapors given ofi by liquefied gas in storage or in transportation.
- Natural gas has found extentive use both in the United States and in countries foreign to the United States as a fuel for space heating and for the generation of power or as a raw material used for synthesis in the petro-chemical industry. It is well known that certain areas of the country and that certain portions of the world are fortunate in having ample supplies of natural gas while other areas of the country and many countries of the world have no natural gas or an insufificient supply of natural gas.
- Liquefied natural gas at about atmospheric pressure has a boiling point temperature in the order of about 250 F. to about 258" F., depending upon the amount of heavier hydrocarbons, such as ethane, propane, butane and the like which may be present in the liquefied mateice rial.
- containers which are highly insulated to minimize the leakage of heat from the ambient atmosphere into the liquid to cause vaporization. While the use of insulated tanks will minimize the amount of liquid lost by vaporization, some heat flow from the ambient atmosphere to the liquefied natural gas will naturally take place because of the large temperature differential. As a result, some of the cargo of liquefied natural gas in storage will be released as a vapor.
- this vapor will be composed of methane because of its lower boiling point by comparison with the other heavier hydrocarbons which might be present and it will be assumed, for the purposes of this disclosure, that the vapors coming off of the storage vessels are relatively pure methane.
- the released methane vapors can be used as a fuel to power the ship or other transportation means during travel from the source of supply to the area of use. It is sometimes desirable, however, to make use of other liquid fuels which can be carried in limited amounts in available space on the ship and/or to recover the methane vapors for return in a liquefied state to the storage means.
- Means such as described in the copending application Ser. No. 698,667, filed on November 25, 1957, might be employed but the compressors and heat exchangers required for a modified cascade cycle of the type described will occupy too much space for use on a ship.
- a liquefaction system which is applicable generally to the liquefaction of natural and other gases; which is applicable to the reliquefaction of gaseous vapors given off during storage and transportation of a liquified low boiling gas; which is simple in construction and eco nomical and efficient in operation; which occupies minimum space from the standpoint of equipment to enable use in the limited space available on ship for liquefaction; which requires a minimum amount of equipment for operation and which can make use of the vapors available to power the equipment for liquefaction.
- Figlre 1 is a flow sheet illustrating the practice of this invention
- Figure 2 is a flow sheet embodying a modification in the process illustrated in Figure 1.
- liquefaction of the methane is achieved by the condensation of the methane while at high pressure whereafter the condensed methane is let down to the pressure desired for storage.
- the amount of refrigeration available from the relatively small amount of cold gas recycled from storage is insufficient to reduce the temperature of the compressed gas whereby most of the processed gas will be in the condensedstate upon return to storage.
- the desired results are achieved-"in a substantially self-contained process by using, as a refrigeration medium, a portion of the gas which has been compressed and expanded with external work andrecycled to the main gas stream after use of the expanded gas, in heat exchange relation with the main gas stream at high pressure to achieve liquefaction.
- the vapors released from the container will have a temperature of about -245' F.i10 F.
- the natural gas from the containers 10. is caused to flow through line 12 into a series of heat exchangers, as illustrated by the heat exchangers 14 and 1 6, to recover refrigeration available from the vapors.
- the temperature of the vapor. is raised to. about +33- F. upon passage through the first heat exchanger 14 and to about 85 F. upon passage through the second heat exchanger 16;
- the vapors can be processed through compressors without raising lubrication problems. It is preferred to increase the pressure of the vapor by multi-stage compression stepseach of which is preferably followed by a cooling step to remove heat of compression whereby a highly compressed gas is delivered at ordinary temperature for liquefaction by condensation.
- Isentropic compression or compression at constant entropy is preferably achieved by a reciprocating compressor of conventional construction as distinguished from a centrifugal compressor because the former is more eflicient when a lower volume of gas is being processed. It will be understood, however, that centrifugal compression could be employed.
- compression is achieved in four stages to raise the pressure of the gas orvapor from slightly above atmospheric pressure to about 2000:1000 p.s.i.
- the reciprocating compressor 20 receives the heated up vapor from line 18 and delivers the vapor to line 22 at about 50-60 p.s.i. and about 260 F.
- Heat of compression is removed, as by a water cooler 24 which reduces the compressed gas to a temperature of about 100 F; for delivery to line 26.
- the compressor 28 raises the gas to a level of about 180-190 p.s.i. with consequent increase in temperature to about 260 F.
- Heat of compression is again removed by passage of the compressed gas through a subsequent water cooler 30. to reduce the temperature to about 100 F.
- the compressor 32 raises the gas to a pressure of about 6l06 25 p.s.i. and;
- the compressor 36 raises the gas to a pressure of about 2000' p.s.i. andto a temperature of about 290 F. and the after cooler 38, in
- compression stage s represented may beembodied as separate stages in a single compressor, as illustrated in Figure 2, or various conibinations of compressors, and. that other coolers, such as an air cooler, can be used as the after coolers to take out heat of compression andto reduce the temperature of the compressed gases.
- the recornpressed gas is processed through a separator 40 after the temperature of the compressed gas has been reduced by the final after cooler 38 to a temperature above the condensation temperature of the gas but below the condensation temperature of the lubricant vapors.
- the clean and compressed gas is then advanced from the separator 40 through line 42 to the heat exchanger 16 and from the heat exchanger 16 the main process stream is advanced through line 44 to the heat exchanger 14 to recover some of the refrigeration available in the cold gas recycled from storage thereby to make use of the refrigeration available for reducing the temperature of the compressed gas.
- the main process stream in line 46 which is intended to be in a liquefied state, is expanded at constant en thalpy through an expansion valve 48 to drop the liquid from a, pressure of 2000 p.s.i. to a pressure of about- 60 p.s.i. whereby some of the liquid is flashed off with a slight reduction in temperature.
- the wet gas is fedthrough line 50 into a separating drum 52' wherein the condensate is separated from the gaseous component.
- the condensate is drained off through line 54 and flashed through valve 56 to the pressure conditions existing in the storage container 10 for return of the flashed condensate to the container for storage.
- the gas flashed oif from the expansion of the condensate is joined with the boil-ofi from the heat leaks into storage and returned through line 12' to form a part of the processing stream.
- a lot of cold gas is made available for refrigeration, by taking ofl" an increment of thecompressed gas from the main process stream into line 60for isentropic expansionby a machine doing external work froma pressure of about 2000 p.s.i. to about 60-p;s.i. or to a level corresponding to an intermediate stage ofrcompression, such as after-the first stage, so that-the ex panded gas. can be led back interstage into the recompression cycle.
- Expansion with work can be carried out in a centrifugal'expander but, because of the smallvolume ofmaterial being processed, it is preferredto'make' use of a reciprocating expander 62.
- Expansion with work provides a large amount of materialin a gaseous state aQabout 2 20'F.since 1ittle, if any, condensation tionwiththe main process stream to condense the main progess,stream,under the temperature andpressure conditions existing.
- the cold gas at intermediate pressure-- enters the heat exchanger 14 at about 220 F. and leaves at about 33 F. and it leaves the heat exchanger 16 at a temperature of about 85-100 F.
- the refrigeration gas may by-pass the separator 52 for feeding directly to the heat exchangers 14 and 16, as illustrated by the flow sheet in Figure 2 of the drawing. Any amount of condensate present in the refrigeration gas will become vaporized in the heat exchangers for return as a gas to the compression cycle. It is preferred, however, to recover the condensed portions where economical for return to storage.
- the main process stream When such large amount of cold gas is made available for use in heat exchange relation to extract heat from the main process stream, the main process stream will be capable of being reduced in temperature from 100 F. to about 32 F. upon passage through the heat exchanger 16 and to about 2l5 F. upon passage through the heat exchanger 14 whereby the gas becomes totally condensed.
- the heat exchanger 14 can be referred to more accurately as a liquefier.
- a small amount of the condensed gas When reduced from 2000 p.s.i. to about 60 p.s.i. upon passage through the valve 48, a small amount of the condensed gas will be flashed off as a vapor with a consequent reduction in temperature from --215 F. to a temperature of about --220 F. Under the conditions described less than about 20-25 percent of the condensed gas will be flashed off as a vapor upon pressure drop, the remainder continuing as a condensate for return to storage.
- Both the expansion valve 48 and the valve 66 in line 64 are provided with back pressure controllers 68 and 70 respectively to maintatin positive control of the pressure conditions existing in the units. Controller 68 can be eliminated and a floating pressure provided by direct communication interstage of the compressures to return the gas at the interstage compressure for joinder with the main gas stream.
- the refrigeration gas and the dry gas component of the expanded main process stream is returned to the cycle interstage between the first and second stages of compression 20 and 28 respectively thereby to avoid the necessity of recompressing the largest portion of the gas through all of the stages.
- some or all of the gas may be bled from the system for use as fuel in powering the units employed in the described liquefaction cycle or for powering the conveyance means.
- connection 72 can be provided with a valve control 74 for returning surge vapors to shore for use or re-liquefaction.
- the pressure and temperature conditions described are merely given by way of illustration of a set of conditions which may be employed. It will be understood that other temperatures and pressures could be used in the practice of this invention. For example, instead of raising the pressure of the gas by four stages of compression to 2000 p.s.i., fewer stages may be used, such as three stages, to raise the pressure of the gas to 600 p.s.i. The difference would result in greater power requirement because of the greater amount of flashing upon corresponding drop in temperature. Similarly, the pressure of the process stream may be raised to 1500 p.s.i. or 2500 p.s.i. with corresponding changes in temperature and pressure during processing for liquefaction and with corresponding changes in the amount of condensate which is derived upon expansion.
- the intent is to process an amount of gas through the expander 62 to supply an additional amount of refrigeration suflicient to reduce the temperature of the main process stream for liquefaction of an amount of vapor equivalent to the methane vapors escaping from storage due to heat leaks.
- the amount will vary in accordance with the conditions existing.
- the concept is to split an increment from the main stream while in a gaseous state wherein balance between temperature and pressure can be controlled to produce a large amount of cold gas for use to liquefy the main portion of the gas stream.
- the refrigeration stream instead of cycling the expanded refrigeration stream through the separator 52, it can by-pass the separator for passage directly through the heat exchangers but, in such event, the refrigeration stream might be processed through a separator to remove what little amount of condensate might exist.
- the main process stream may be reduced in a single step or in multiple steps to the pressure for storage without making use of a separator 52 in the line, but it is preferred to effect reduction in an intermediate low pressure so that the fluids and gases will be under suflicient pressure to flow by their own force for delivery to the subsequent processing steps and equipment.
- An intermediate pressure other than 60 p.s.i. can be employed. It the pressure is reduced all the way to the pressure of storage, then the flash into storage will be correspondingly increased.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Combustion & Propulsion (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL235432D NL235432A (en, 2012) | 1958-01-29 | ||
BE575166D BE575166A (en, 2012) | 1958-01-29 | ||
US712002A US2959020A (en) | 1958-01-29 | 1958-01-29 | Process for the liquefaction and reliquefaction of natural gas |
GB1282/59A GB853089A (en) | 1958-01-29 | 1959-01-13 | Process for the liquefaction and reliquefaction of natural gas |
FR784854A FR1221045A (fr) | 1958-01-29 | 1959-01-23 | Procédé de liquéfaction de gaz naturel |
AT65059A AT225167B (de) | 1958-01-29 | 1959-01-28 | Verfahren zur Verflüssigung von Gas, insbesondere von Erdgas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US712002A US2959020A (en) | 1958-01-29 | 1958-01-29 | Process for the liquefaction and reliquefaction of natural gas |
Publications (1)
Publication Number | Publication Date |
---|---|
US2959020A true US2959020A (en) | 1960-11-08 |
Family
ID=24860387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US712002A Expired - Lifetime US2959020A (en) | 1958-01-29 | 1958-01-29 | Process for the liquefaction and reliquefaction of natural gas |
Country Status (6)
Country | Link |
---|---|
US (1) | US2959020A (en, 2012) |
AT (1) | AT225167B (en, 2012) |
BE (1) | BE575166A (en, 2012) |
FR (1) | FR1221045A (en, 2012) |
GB (1) | GB853089A (en, 2012) |
NL (1) | NL235432A (en, 2012) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3160489A (en) * | 1961-02-06 | 1964-12-08 | Fluor Corp | Nitrogen removal from natural gas |
US3161492A (en) * | 1961-08-25 | 1964-12-15 | Hydrocarbon Research Inc | Mobile gas liquefaction platform |
US3162519A (en) * | 1958-06-30 | 1964-12-22 | Conch Int Methane Ltd | Liquefaction of natural gas |
US3187485A (en) * | 1961-12-13 | 1965-06-08 | Foster Wheeler Corp | Purification of hydrogen by scrubbing with nitrogen at high pressures |
US3256705A (en) * | 1963-12-26 | 1966-06-21 | Dimentberg Moses | Apparatus for and method of gas transportation |
US3271965A (en) * | 1963-01-08 | 1966-09-13 | Chicago Bridge & Iron Co | Methane liquefaction process |
US3324670A (en) * | 1964-11-09 | 1967-06-13 | Shell Oil Co | Method of transporting methane or natural gas |
US6453681B1 (en) | 2000-01-10 | 2002-09-24 | Boeing North American, Inc. | Methods and apparatus for liquid densification |
EP1562013A1 (de) * | 2004-02-03 | 2005-08-10 | Linde Aktiengesellschaft | Verfahren zum Rückverflüssigen eines Gases |
US20120151942A1 (en) * | 2010-12-15 | 2012-06-21 | George James Zamiar | Compact, high efficiency vessel blanketing system |
EP2746707A1 (en) * | 2012-12-20 | 2014-06-25 | Cryostar SAS | Method and apparatus for reliquefying natural gas |
JP2014234928A (ja) * | 2013-05-30 | 2014-12-15 | ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド | 液化ガス処理システム |
US20150226379A1 (en) * | 2012-10-24 | 2015-08-13 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied gas treatment method for vessel |
CN105324302A (zh) * | 2013-06-26 | 2016-02-10 | 大宇造船海洋株式会社 | 用于处理船舶中的蒸发气体的系统和方法 |
US20160313057A1 (en) * | 2015-04-24 | 2016-10-27 | Air Products And Chemicals, Inc. | Integrated Methane Refrigeration System for Liquefying Natural Gas |
US20160356424A1 (en) * | 2014-02-28 | 2016-12-08 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Boil-off gas treatment system |
WO2017037400A1 (fr) * | 2015-09-03 | 2017-03-09 | Cryostar Sas | Système et procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique |
US20170114960A1 (en) * | 2014-05-19 | 2017-04-27 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
CN108367800A (zh) * | 2015-12-09 | 2018-08-03 | 大宇造船海洋株式会社 | 包括发动机的轮船 |
KR20180135799A (ko) * | 2017-06-13 | 2018-12-21 | 현대중공업 주식회사 | 증발가스 재액화 시스템 및 선박 |
JP2019501059A (ja) * | 2015-12-09 | 2019-01-17 | デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド | エンジンを備える船舶 |
CN111819412A (zh) * | 2018-03-13 | 2020-10-23 | 株式会社神户制钢所 | 再液化装置 |
WO2022223909A1 (fr) * | 2021-04-21 | 2022-10-27 | Gaztransport Et Technigaz | Dispositif de liquéfaction de dihydrogène gazeux pour ouvrage flottant ou terrestre |
US11555651B2 (en) * | 2018-08-22 | 2023-01-17 | Exxonmobil Upstream Research Company | Managing make-up gas composition variation for a high pressure expander process |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE604886A (en, 2012) * | 1960-06-16 | |||
US3489678A (en) * | 1966-11-28 | 1970-01-13 | Phillips Petroleum Co | Precluding liquid from a compressing zone |
EG22306A (en) | 1999-11-15 | 2002-12-31 | Shell Int Research | Expanding a tubular element in a wellbore |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2509034A (en) * | 1948-10-04 | 1950-05-23 | Elliott Co | Method and apparatus for liquefying gaseous fluids |
US2522787A (en) * | 1948-06-11 | 1950-09-19 | Phillips Petroleum Co | Method of and apparatus for liquefying gases |
US2550886A (en) * | 1947-02-12 | 1951-05-01 | Union Carbide & Carbon Corp | System for conserving liquefied gases |
US2696088A (en) * | 1949-08-04 | 1954-12-07 | Lee S Twomey | Manipulation of nitrogen-contaminated natural gases |
US2760356A (en) * | 1952-04-22 | 1956-08-28 | Nat Res Dev | Method of liquefying gases |
US2764877A (en) * | 1950-04-26 | 1956-10-02 | Hartford Nat Bank & Trust Co | Apparatus for liquefying air |
US2783624A (en) * | 1951-09-29 | 1957-03-05 | Constock Liquid Methane Corp | Method of liquefying gas |
US2896414A (en) * | 1955-09-12 | 1959-07-28 | Constock Liquid Methane Corp | Methane liquefaction cycle |
-
0
- NL NL235432D patent/NL235432A/xx unknown
- BE BE575166D patent/BE575166A/xx unknown
-
1958
- 1958-01-29 US US712002A patent/US2959020A/en not_active Expired - Lifetime
-
1959
- 1959-01-13 GB GB1282/59A patent/GB853089A/en not_active Expired
- 1959-01-23 FR FR784854A patent/FR1221045A/fr not_active Expired
- 1959-01-28 AT AT65059A patent/AT225167B/de active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2550886A (en) * | 1947-02-12 | 1951-05-01 | Union Carbide & Carbon Corp | System for conserving liquefied gases |
US2522787A (en) * | 1948-06-11 | 1950-09-19 | Phillips Petroleum Co | Method of and apparatus for liquefying gases |
US2509034A (en) * | 1948-10-04 | 1950-05-23 | Elliott Co | Method and apparatus for liquefying gaseous fluids |
US2696088A (en) * | 1949-08-04 | 1954-12-07 | Lee S Twomey | Manipulation of nitrogen-contaminated natural gases |
US2764877A (en) * | 1950-04-26 | 1956-10-02 | Hartford Nat Bank & Trust Co | Apparatus for liquefying air |
US2783624A (en) * | 1951-09-29 | 1957-03-05 | Constock Liquid Methane Corp | Method of liquefying gas |
US2760356A (en) * | 1952-04-22 | 1956-08-28 | Nat Res Dev | Method of liquefying gases |
US2896414A (en) * | 1955-09-12 | 1959-07-28 | Constock Liquid Methane Corp | Methane liquefaction cycle |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3162519A (en) * | 1958-06-30 | 1964-12-22 | Conch Int Methane Ltd | Liquefaction of natural gas |
US3160489A (en) * | 1961-02-06 | 1964-12-08 | Fluor Corp | Nitrogen removal from natural gas |
US3161492A (en) * | 1961-08-25 | 1964-12-15 | Hydrocarbon Research Inc | Mobile gas liquefaction platform |
US3187485A (en) * | 1961-12-13 | 1965-06-08 | Foster Wheeler Corp | Purification of hydrogen by scrubbing with nitrogen at high pressures |
US3271965A (en) * | 1963-01-08 | 1966-09-13 | Chicago Bridge & Iron Co | Methane liquefaction process |
US3256705A (en) * | 1963-12-26 | 1966-06-21 | Dimentberg Moses | Apparatus for and method of gas transportation |
US3324670A (en) * | 1964-11-09 | 1967-06-13 | Shell Oil Co | Method of transporting methane or natural gas |
US6453681B1 (en) | 2000-01-10 | 2002-09-24 | Boeing North American, Inc. | Methods and apparatus for liquid densification |
EP1562013A1 (de) * | 2004-02-03 | 2005-08-10 | Linde Aktiengesellschaft | Verfahren zum Rückverflüssigen eines Gases |
US20050217281A1 (en) * | 2004-02-03 | 2005-10-06 | Linde Aktiengesellschaft | Method for the reliquefaction of gas |
US20120151942A1 (en) * | 2010-12-15 | 2012-06-21 | George James Zamiar | Compact, high efficiency vessel blanketing system |
US20150226379A1 (en) * | 2012-10-24 | 2015-08-13 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Liquefied gas treatment method for vessel |
EP2746707A1 (en) * | 2012-12-20 | 2014-06-25 | Cryostar SAS | Method and apparatus for reliquefying natural gas |
WO2014095877A1 (en) * | 2012-12-20 | 2014-06-26 | Cryostar Sas | Method and apparatus for reliquefying natural gas |
US10030815B2 (en) * | 2012-12-20 | 2018-07-24 | Cryostar Sas | Method and apparatus for reliquefying natural gas |
CN105008834B (zh) * | 2012-12-20 | 2018-07-06 | 克里奥斯塔股份有限公司 | 用于再液化天然气的方法和装置 |
CN105008834A (zh) * | 2012-12-20 | 2015-10-28 | 克里奥斯塔股份有限公司 | 用于再液化天然气的方法和装置 |
US20150330574A1 (en) * | 2012-12-20 | 2015-11-19 | Cryostar Sas | Method and apparatus for reliquefying natural gas |
JP2017036837A (ja) * | 2013-05-30 | 2017-02-16 | ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド | 液化ガス処理システム |
JP2014234927A (ja) * | 2013-05-30 | 2014-12-15 | ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド | 液化ガス処理システム |
EP2808634A3 (en) * | 2013-05-30 | 2016-06-29 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
EP2808633A3 (en) * | 2013-05-30 | 2016-06-29 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
US10767921B2 (en) | 2013-05-30 | 2020-09-08 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
JP2014234928A (ja) * | 2013-05-30 | 2014-12-15 | ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド | 液化ガス処理システム |
JP2016535209A (ja) * | 2013-06-26 | 2016-11-10 | デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド | 船舶の蒸発ガス処理システム及び蒸発ガス処理方法 |
CN105324302A (zh) * | 2013-06-26 | 2016-02-10 | 大宇造船海洋株式会社 | 用于处理船舶中的蒸发气体的系统和方法 |
US10518859B2 (en) | 2013-06-26 | 2019-12-31 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | System and method for treating boil-off gas in ship |
US20160356424A1 (en) * | 2014-02-28 | 2016-12-08 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Boil-off gas treatment system |
US20170114960A1 (en) * | 2014-05-19 | 2017-04-27 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
US9863697B2 (en) * | 2015-04-24 | 2018-01-09 | Air Products And Chemicals, Inc. | Integrated methane refrigeration system for liquefying natural gas |
US20160313057A1 (en) * | 2015-04-24 | 2016-10-27 | Air Products And Chemicals, Inc. | Integrated Methane Refrigeration System for Liquefying Natural Gas |
FR3040773A1 (fr) * | 2015-09-03 | 2017-03-10 | Cryostar Sas | Systeme et procede de traitement de gaz issu de l'evaporation d'un liquide cryogenique |
CN108369058A (zh) * | 2015-09-03 | 2018-08-03 | 克里奥斯塔股份有限公司 | 用于处理来自低温液体的蒸发的气体的系统及方法 |
WO2017037400A1 (fr) * | 2015-09-03 | 2017-03-09 | Cryostar Sas | Système et procédé de traitement de gaz issu de l'évaporation d'un liquide cryogénique |
US20180363975A1 (en) * | 2015-12-09 | 2018-12-20 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Vessel comprising engine |
CN108367800A (zh) * | 2015-12-09 | 2018-08-03 | 大宇造船海洋株式会社 | 包括发动机的轮船 |
JP2019501059A (ja) * | 2015-12-09 | 2019-01-17 | デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド | エンジンを備える船舶 |
US20190041125A1 (en) * | 2015-12-09 | 2019-02-07 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Vessel comprising engine |
EP3388326A4 (en) * | 2015-12-09 | 2019-08-14 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | SHIP WITH MOTOR |
US10830533B2 (en) * | 2015-12-09 | 2020-11-10 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Vessel comprising engine |
CN108367800B (zh) * | 2015-12-09 | 2020-07-14 | 大宇造船海洋株式会社 | 包括发动机的轮船及再液化方法 |
JP2019501060A (ja) * | 2015-12-09 | 2019-01-17 | デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド | エンジンを備える船舶 |
US10808996B2 (en) * | 2015-12-09 | 2020-10-20 | Daewood Shipbuilding & Marine Engineering Co., Ltd. | Vessel comprising engine |
KR20180135799A (ko) * | 2017-06-13 | 2018-12-21 | 현대중공업 주식회사 | 증발가스 재액화 시스템 및 선박 |
CN111819412A (zh) * | 2018-03-13 | 2020-10-23 | 株式会社神户制钢所 | 再液化装置 |
US11555651B2 (en) * | 2018-08-22 | 2023-01-17 | Exxonmobil Upstream Research Company | Managing make-up gas composition variation for a high pressure expander process |
US12050056B2 (en) | 2018-08-22 | 2024-07-30 | ExxonMobil Technology and Engineering Company | Managing make-up gas composition variation for a high pressure expander process |
WO2022223909A1 (fr) * | 2021-04-21 | 2022-10-27 | Gaztransport Et Technigaz | Dispositif de liquéfaction de dihydrogène gazeux pour ouvrage flottant ou terrestre |
FR3122250A1 (fr) * | 2021-04-21 | 2022-10-28 | Gaztransport Et Technigaz | Dispositif de liquéfaction de dihydrogène gazeux pour ouvrage flottant ou terrestre |
Also Published As
Publication number | Publication date |
---|---|
BE575166A (en, 2012) | |
NL235432A (en, 2012) | |
FR1221045A (fr) | 1960-05-30 |
GB853089A (en) | 1960-11-02 |
AT225167B (de) | 1963-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2959020A (en) | Process for the liquefaction and reliquefaction of natural gas | |
RU2205337C2 (ru) | Усовершенствованный способ сжижения природного газа | |
US3342037A (en) | Liquefaction of natural gas by cascade refrigeration and multiple expansion | |
US3347055A (en) | Method for recuperating refrigeration | |
US6192705B1 (en) | Reliquefaction of pressurized boil-off from pressurized liquid natural gas | |
US2960837A (en) | Liquefying natural gas with low pressure refrigerants | |
US5755114A (en) | Use of a turboexpander cycle in liquefied natural gas process | |
US3182461A (en) | Natural gas liquefaction and separation | |
US5537827A (en) | Method for liquefaction of natural gas | |
US4843829A (en) | Reliquefaction of boil-off from liquefied natural gas | |
US4430103A (en) | Cryogenic recovery of LPG from natural gas | |
US4012212A (en) | Process and apparatus for liquefying natural gas | |
US4846862A (en) | Reliquefaction of boil-off from liquefied natural gas | |
US3362173A (en) | Liquefaction process employing cascade refrigeration | |
KR101302310B1 (ko) | 반폐쇄 루프 액화 천연 가스 처리 | |
US20040083888A1 (en) | Heat integration system for natural gas liquefaction | |
US4172711A (en) | Liquefaction of gas | |
KR20180095870A (ko) | 액체 질소로 보강된, 팽창기-기반 lng 생산 방법 | |
EA006724B1 (ru) | Способ получения сжиженного природного газа (варианты) | |
JP6429867B2 (ja) | フローティングタンク用途における残存lngの気化及び回収のための統合カスケードプロセス | |
CA1100031A (en) | Liquefaction of high pressure gas | |
US9612050B2 (en) | Simplified LNG process | |
US3162519A (en) | Liquefaction of natural gas | |
US20070107464A1 (en) | LNG system with high pressure pre-cooling cycle | |
CA2764162C (en) | Simplified lng process |