US2933046A - Pump with flexible impeller and flexible annular cam - Google Patents

Pump with flexible impeller and flexible annular cam Download PDF

Info

Publication number
US2933046A
US2933046A US630599A US63059956A US2933046A US 2933046 A US2933046 A US 2933046A US 630599 A US630599 A US 630599A US 63059956 A US63059956 A US 63059956A US 2933046 A US2933046 A US 2933046A
Authority
US
United States
Prior art keywords
impeller
cam
annular cam
pump
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US630599A
Inventor
Alan A Mccray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jabsco Pump Co
Original Assignee
Jabsco Pump Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jabsco Pump Co filed Critical Jabsco Pump Co
Priority to US630599A priority Critical patent/US2933046A/en
Application granted granted Critical
Publication of US2933046A publication Critical patent/US2933046A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C5/00Rotary-piston machines or pumps with the working-chamber walls at least partly resiliently deformable

Definitions

  • the present invention relates in general to pumps and, more particularly, to a pump having an impeller provided with flexible radial vanes adapted to be flexed by a cam incorporated in the pump to produce the necessary pumping action, a primary object of the invention being to provide a pump having an improved cam for this purpose.
  • the invention contemplates a flexible-vaned pump of the concentric type, the impeller in a pump of this type being mounted for rotation about the axis of a cylindrical impeller bore and the vane flexure necessary to achieve a pumping action being produced by a cam located in the impeller bore at one side thereof, between and overlapping the inlet and outlet ports of the pu p
  • a pump of the concentric type has numerous adv a- 568 over a pump of the eccentric type, wherein the impeller is mounted for rotation about an axis spaced from and parallel to the axis of the impeller bore to achieve the necessary vane fiexure, since all of the bores in the housing of a pump of the concentric type, including the impeller bore, bearing bores, and the like, are coaxial.
  • a fundamental object of the invention is to provide a cam for a flexible-vaned pump of the concentric type which merely comprises a flexible, sheet metal annulus inserted into the impeller bore and formed to provide the desired circumferentially varying internal radius in the vicinities of the inlet and outlet ports.
  • a sheet metal annular cam may be die formed to provide the desired internal contour accurately and easily, which is an important feature of the invention. Since sheet metal stock is a relatively inexpensive starting material, and
  • Patented Apr. 19, 1960 since sheet metal stock may be die formed inexpensively, as compared to machining other stock, the present invention greatly reduces the cost of cams for flexible vaned pumps, which is an important feature.
  • the sheet metal annular cam is formed to provide the internal peripheral wall thereof with a reduced radius intermediate the inlet and outlet ports, the external peripheral wall of the annular cam is spaced inwardly from the peripheral wall of the impeller bore between the inlet and outlet ports.
  • An important object of the invention is to secure the annular cam in place in the impeller bore by means of an elastomeric spacer block inserted between the external peripheral wall of the annular cam and the peripheral wall of the bore in the region between the inlet and outlet ports, this elastomeric block being secured to the housing of the pump.
  • Another object is to provide a flexible, sheet metal annular cam in the formof a ring split at a point opposite the region of minimum internal radius, the annular cam of the invention thus being similar to an ordinary split piston ring.
  • the elastomeric spacer mentioned is located adjacent the region of minimum internal radius of the annular cam and serves to lock the annular cam in place in the annular bore with the longitudinal or longitudinally extending ends of the split annular cam in abutment, thereby rendering the internal peripheral wall of the annular cam a continuous annular surface.
  • An object in connection with one embodiment of the invention is to provide a pump wherein the inlet and outlet ports in the housing are formed in the peripheral wall of the impeller bore and wherein the annular cam and the elastomeric spacer are provided with inlet and outlet ports respectively registering with the inlet and outlet ports in the housing.
  • the elastomeric spacer mentioned serves as a sealing means for preventing fluid leakage between the inlet and outlet ports in the housing through the space between the external peripheral wall of the annular cam and the peripheral wall of the impeller bore, ,which is an important feature.
  • An object in connection with another embodiment is to provide a pump wherein the inlet and outlet ports in the housing are formed in an end wall thereof, there being no ports through the annular cam and the elastomeric spacer in this embodiment.
  • Another object is to circumferentially locate the inlet and outlet ports in either the peripheral wall of the hous ing or the end wall thereof at the vane-flexing ramps formed by the transitions between the minimum internal radius of the annular cam and the maximum internal radius thereof.
  • Fig. 1 is a transverse sectional view of a pump which embodies the invention
  • Fig. 2 is an exploded perspective view of a flexible, sheet metal annular cam of the invention and of means of the invention for retaining the cam;
  • Fig. 3 is a side elevational view of another pump which embodies the invention.
  • Fig. 4 is a transverse sectional view taken along th arrowed line 44 of Fig. 3.
  • each of the ports 24 and 26 may comprise a plurality of circumferentially extending slots.
  • inlet and outlet ports 14 and 16 designates a pump housing which is provided with a cylindrical impeller bore 12 and circumferentially spaced ports 14 and 16, the latter being formed in the peripheral wall 18 of the impeller bore in this embodiment.
  • the port 14 acts as an inlet port and the port 16 acts as an "outleb'port and the ports -14-and -16 will henceforth-be termed-inletand outlet ports for convenience.
  • the impeller-bore 12 is a-flexible,- sheet metal, annular cam' 20-in the form of a split ring,'the1 annular cam-having-longitudinal, i.e., longitudinally extending, ends ZZ-disposedin abutting relation.
  • the annular cam 20 is provided with inlet and outlet ports 24 and-26 therethrough 'which register with the inlet andoutlet ports Hand 16, respectively.
  • annular cam v20 is provided .with circumferentially extending segments 28 .whichareseated against the pe- .ripheral. wall 13 ofthe impeller bore 12 and which have a maximum internal radius relative to the axis, 30, equal to or slightlyless than the radius of the pump impeller described hereinafter.
  • the annular cam. 21 is spaced from the peripheral wall 18 of the impeller. bore 12.
  • the an'nularcani 20 provides a circumferentiallyextending segment 32 of minimum internal radius relative to the axis 30, the internal radius of the segment 32 preferably beingconstantthroughout the region of the minor circumferential spacing between the ports.
  • the annular cam 20 is provided with circumferentially extending transitional segments or ramps 34- and 36 of radii varying circumferentially from the minimum adjacentthe segment 32 to the maximum adjacent the segment 28.
  • the configurations of the internal peripheral walls of the transitional segments 34 and 36 are such as to provide the entire internal peripheralwallof 1 theannular cam with a smooth'contour.
  • the elastomeric block38 serves to retain theannular cam 20 in the impeller bore 12 in its proper position and closes anygapbetween the longitudinal ends 22 of the annular cam bylbringing such ends into abutting; relation. Also, .in the embodiment under consideration, the elastomeric block 38 acts as a sealing means for preventing. ,fluid leakage between the inlet and outlet ports 14 and:16 by inlet and outlet ports 14 and 16, which is an important feature.
  • the segments 28 ofmaximum internal radius wextend circumferentially substantially walls of these segments, 18 an elastomenc spacer or block .38 havingmolded thereinto anut 40 to receive a screw 42 threaded. through the housing 16, and having .therein in said"annular cam about the axis of said bo're, .said
  • vanes 48 unflex'as they move along the transitional segment 34 of the annular cam 20 into engagement with the segment 28 of maximum internal radius, thereby enlarging the intervane spaces to draw fluid thereinto through the inlet ports 14 and 24.
  • the vanes 48 move along the transitional segment 36 into engagement with the segment 32 of minimum radius, the vanes are flexed to decrease the volumes of theintervanespaces, thereby discharging fluid-therefrom through the outlet ports26- and 16.
  • the annular cam 20 can be die formed readily and inexpensively from sheet metal'stock, the cost of: the cam 20beingmuch less than the cost of prior machined cams. Also, it is possible to provide the sheet metal cam 24 ⁇ with a smooth internal contour designed for quiet operation. Further, since the cam 20 is an annulus, wearis confined to thecam and to the impeller 44, which elements can readily be replaced, there being no wear of the housing 10.

Description

A. A. MCCRAY April 19, 1960 PUMP WITH FLEXIBLE IMPELLER AND FLEXIBLE ANNULAR CAM Filed Dec. 26, 1956 2 Sheets-Sheet 1 ALA/VA Q McCk4y,
jvrsA/rae,
A. A. M CRAY April 19, 1960 PUMP WITH FLEXIBLE IMPELLER AND FLEXIBLE ANNULAR CAM Filed D60. 26, 1956 2 Sheets-Sheet 2 Unitd States l atent iice PUMP WITH FLEXIBLE IMPELLER AND FLEX- IBLE ANNULAR CAM Alan A. McCray, North Hollywood, Caliti, assignor to Jahsco Pump Company, Burbank, Calif., a corporation of California Application December 26, 1956, Serial No. 630,599
2 Claims. (Cl. 103-117) The present invention relates in general to pumps and, more particularly, to a pump having an impeller provided with flexible radial vanes adapted to be flexed by a cam incorporated in the pump to produce the necessary pumping action, a primary object of the invention being to provide a pump having an improved cam for this purpose.
Still more particularly, the invention contemplates a flexible-vaned pump of the concentric type, the impeller in a pump of this type being mounted for rotation about the axis of a cylindrical impeller bore and the vane flexure necessary to achieve a pumping action being produced by a cam located in the impeller bore at one side thereof, between and overlapping the inlet and outlet ports of the pu p A pump of the concentric type has numerous adv a- 568 over a pump of the eccentric type, wherein the impeller is mounted for rotation about an axis spaced from and parallel to the axis of the impeller bore to achieve the necessary vane fiexure, since all of the bores in the housing of a pump of the concentric type, including the impeller bore, bearing bores, and the like, are coaxial. However, the aforementioned cam required by the concentric type of pump to produce the necessary vane flexure has presented manufacturing difliculties prior to the present invention. Heretofore, flexible-vaned pumps of the concentric type have utilized a cam in the form of a machined insert mounted in the impeller bore at one side thereof between and overlapping the inlet and outlet ports, the angular or circumferential extent of such cam insert being considerably less than 180 degrees. Due to the fact that the radius of the internal peripheral wall of the cam varies circumferentially in the vicinities of the inlet and outlet ports to produce the desired vane fiexure, machining such an insert in accordance with prior practice presents troublesome problems. For example, it is difiicult to provide the internal wall of such a machined insert with a smooth contour for engagement by the blades or vanes of the impeller. It is also very difiicult to provide the internal wall of such a machined cam insert with the contour necessary to produce smooth and quiet operation. These and various other difliculties encountered with machined cam inserts are eliminated by the present invention, which is an important feature thereof.
A fundamental object of the invention is to provide a cam for a flexible-vaned pump of the concentric type which merely comprises a flexible, sheet metal annulus inserted into the impeller bore and formed to provide the desired circumferentially varying internal radius in the vicinities of the inlet and outlet ports. Such a sheet metal annular cam may be die formed to provide the desired internal contour accurately and easily, which is an important feature of the invention. Since sheet metal stock is a relatively inexpensive starting material, and
Patented Apr. 19, 1960 since sheet metal stock may be die formed inexpensively, as compared to machining other stock, the present invention greatly reduces the cost of cams for flexible vaned pumps, which is an important feature.
Since the sheet metal annular cam is formed to provide the internal peripheral wall thereof with a reduced radius intermediate the inlet and outlet ports, the external peripheral wall of the annular cam is spaced inwardly from the peripheral wall of the impeller bore between the inlet and outlet ports. An important object of the invention is to secure the annular cam in place in the impeller bore by means of an elastomeric spacer block inserted between the external peripheral wall of the annular cam and the peripheral wall of the bore in the region between the inlet and outlet ports, this elastomeric block being secured to the housing of the pump.
Another object is to provide a flexible, sheet metal annular cam in the formof a ring split at a point opposite the region of minimum internal radius, the annular cam of the invention thus being similar to an ordinary split piston ring. The elastomeric spacer mentioned is located adjacent the region of minimum internal radius of the annular cam and serves to lock the annular cam in place in the annular bore with the longitudinal or longitudinally extending ends of the split annular cam in abutment, thereby rendering the internal peripheral wall of the annular cam a continuous annular surface.
An object in connection with one embodiment of the invention is to provide a pump wherein the inlet and outlet ports in the housing are formed in the peripheral wall of the impeller bore and wherein the annular cam and the elastomeric spacer are provided with inlet and outlet ports respectively registering with the inlet and outlet ports in the housing. With this construction, the elastomeric spacer mentioned serves as a sealing means for preventing fluid leakage between the inlet and outlet ports in the housing through the space between the external peripheral wall of the annular cam and the peripheral wall of the impeller bore, ,which is an important feature.
An object in connection with another embodiment is to provide a pump wherein the inlet and outlet ports in the housing are formed in an end wall thereof, there being no ports through the annular cam and the elastomeric spacer in this embodiment.
Another object is to circumferentially locate the inlet and outlet ports in either the peripheral wall of the hous ing or the end wall thereof at the vane-flexing ramps formed by the transitions between the minimum internal radius of the annular cam and the maximum internal radius thereof.
The foregoing objects, advantages, features and results of the present invention, together with various other ob jects, advantages, features and results thereof which will be quite evident to those skilled in the pump are in the light of this disclosure, may be attained with the exemplary embodiments of the invention described in detail hereinafter and illustrated in the accompanying drawings, in which:
Fig. 1 is a transverse sectional view of a pump which embodies the invention;
Fig. 2 is an exploded perspective view of a flexible, sheet metal annular cam of the invention and of means of the invention for retaining the cam;
Fig. 3 is a side elevational view of another pump which embodies the invention; and
Fig. 4 is a transverse sectional view taken along th arrowed line 44 of Fig. 3.
Referring to Figs. 1 and 2 of the drawings, the numeral although-they may have other configurations.
ample, each of the ports 24 and 26 may comprise a plurality of circumferentially extending slots.
. inlet and outlet ports 14 and 16. inlet and outlet ports 14 and 16 and in the region of the designates a pump housing which is provided with a cylindrical impeller bore 12 and circumferentially spaced ports 14 and 16, the latter being formed in the peripheral wall 18 of the impeller bore in this embodiment. For the direction of impeller rotation hereinafter considered, the port 14 acts as an inlet port and the port 16 acts as an "outleb'port and the ports -14-and -16 will henceforth-be termed-inletand outlet ports for convenience.
Within- "the impeller-bore 12 is a-flexible,- sheet metal, annular cam' 20-in the form of a split ring,'the1 annular cam-having-longitudinal, i.e., longitudinally extending, ends ZZ-disposedin abutting relation. The annular cam 20 is provided with inlet and outlet ports 24 and-26 therethrough 'which register with the inlet andoutlet ports Hand 16, respectively. In the particular construction'illustrated, the inletand outlet ports 24 and 26 in the annular cam Zilareshown'as simple circular ports,
For ex- The annular cam v20 is provided .with circumferentially extending segments 28 .whichareseated against the pe- .ripheral. wall 13 ofthe impeller bore 12 and which have a maximum internal radius relative to the axis, 30, equal to or slightlyless than the radius of the pump impeller described hereinafter.
throughout the major circumferential distance between the In the regions of the minor circumferential distance between these ports,.the annular cam. 21 is spaced from the peripheral wall 18 of the impeller. bore 12. In the region of'the minor circumfereutialdistance between the inlet and outlet ports 14 and .16, the an'nularcani 20 provides a circumferentiallyextending segment 32 of minimum internal radius relative to the axis 30, the internal radius of the segment 32 preferably beingconstantthroughout the region of the minor circumferential spacing between the ports. At the ports Y24 and 26, the annular cam 20 is provided with circumferentially extending transitional segments or ramps 34- and 36 of radii varying circumferentially from the minimum adjacentthe segment 32 to the maximum adjacent the segment 28. The configurations of the internal peripheral walls of the transitional segments 34 and 36 are such as to provide the entire internal peripheralwallof 1 theannular cam with a smooth'contour.
'Disposed in the space between the housing .10and the segments 32,. 34.ancl 36,.and engaging the peripheral wall 18 of the impeller bore 12.and the external peripheral notchesi64 and 66 registering with:the ports 14 and. 16,
respectively, and with the ports 24- and 26, respectively. The elastomeric block38 serves to retain theannular cam 20 in the impeller bore 12 in its proper position and closes anygapbetween the longitudinal ends 22 of the annular cam bylbringing such ends into abutting; relation. Also, .in the embodiment under consideration, the elastomeric block 38 acts as a sealing means for preventing. ,fluid leakage between the inlet and outlet ports 14 and:16 by inlet and outlet ports 14 and 16, which is an important feature.
".Mounted withinthe annular cam 20'forrotation about the axis'30 of the impeller boreIZ-is an-eIastQmeric im- .pellelr lfil'r havingsal'iub 46 provided with fiexible radial vanes or blades 48 engagingr-the-internalperipheralWall ofthefannular cam. :Molded into theshub46 ofthe impeller 44 is an insert 50 which is telescopedovera 81131 052 andwhich is keyed thereto at 5 4.
The segments 28 ofmaximum internal radius wextend circumferentially substantially walls of these segments, 18 an elastomenc spacer or block .38 havingmolded thereinto anut 40 to receive a screw 42 threaded. through the housing 16, and having .therein in said"annular cam about the axis of said bo're, .said
in "the-clockwise directiomthe vanes 48 unflex'as they move along the transitional segment 34 of the annular cam 20 into engagement with the segment 28 of maximum internal radius, thereby enlarging the intervane spaces to draw fluid thereinto through the inlet ports 14 and 24. As the vanes 48 move along the transitional segment 36 into engagement with the segment 32 of minimum radius, the vanes are flexed to decrease the volumes of theintervanespaces, thereby discharging fluid-therefrom through the outlet ports26- and 16.
As will be apparent, the annular cam 20 can be die formed readily and inexpensively from sheet metal'stock, the cost of: the cam 20beingmuch less than the cost of prior machined cams. Also, it is possible to provide the sheet metal cam 24} with a smooth internal contour designed for quiet operation. Further, since the cam 20 is an annulus, wearis confined to thecam and to the impeller 44, which elements can readily be replaced, there being no wear of the housing 10.
Referring .now to'Figs. Band 4, various components ofthe embodiment illustrated therein correspond to. certain componentsofthe embodiment of Figs. 1 and land are designated by the samereferencenumerals plus 100.
The embodiment of Figs. 3 and 4 diifers in that the inlet andoutlet-portsu114 and.116 are'located-in an end wall 169 of the impeller bore 112, instead of in the peripheral wall 118 thereof, thereby making ports in the annular cam 120 andthe elastomeric spacer 138 unnecessary. It
:isthought that the structure and operation of this embodimentwill be apparent in the light of the descriptionxof the structure and operation-of the embodiment of Figs. 1 and 2.
Although exemplary embodiments of the invention have been disclosed herein for purposes of illustration, it will be understood that various changes, modifications and substitutions may be incorporatedtherein without departing from thespirit of the 'inventionas defined by um relativetoithe axis of said bore, said internal radius being a minimum between said inlet and outlet ports and progressively increasing adjacent said inlet and outlet ports, there being a space between the external peripheral wall of said annular cam and the peripheral wall of said bore between and overlapping said inlet and outlet ports, the radial dimension of said space being amaximum between said inlet andoutlet ports to provide said .minimum internal radius therebetween andprogressively decreasing adjacent said inlet and .outlet ports to provide said progressively "increasing internal radius there adjacent, said annular cam being a split cam having abuttable ends;an e'lasto'meric spacerin said space and extending radially from the external peripheral Wall of said annular cam "to the peripheral" wall' of said "impeller bore, said spacer providing 'a fluid-tightseal between said-annular ca'm andthe"peripheral .wallof' said impeller. bore between said in'let'and outlet ports and rhold'ingthe abuttable ends of. said annulancam inabutting relationpand flexible vanes engaging the. internal.peripheral'. wall of said annular cam.
2. Apump as set forth in claim 1 wherein said abuttable endsof saidannular'cam which are held 'in abutting i relation "by said spacer arediametrically opposite saidspacer.
. {References on following page) maspao 2 1 5 V 6 References Cited in the file of this patent 2,676,545 Barr Apr. 27, 1954 UNITED STATES PATENTS ami i 720,334 Michael Fcb. 17, 19 2:816:513 WatS0l1 1:: 1);. 17, 1951 763,525 Van Beresteyn June 28, 1904 5 1,322,764 Crago Nov. 25, 1919 2,465,887 Larsh Mar. 29,1949 FOREIGN PATENTS 2,659,313 Carson Nov. 17, 1953 807,977 Germany July 9, 1951
US630599A 1956-12-26 1956-12-26 Pump with flexible impeller and flexible annular cam Expired - Lifetime US2933046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US630599A US2933046A (en) 1956-12-26 1956-12-26 Pump with flexible impeller and flexible annular cam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US630599A US2933046A (en) 1956-12-26 1956-12-26 Pump with flexible impeller and flexible annular cam

Publications (1)

Publication Number Publication Date
US2933046A true US2933046A (en) 1960-04-19

Family

ID=24527821

Family Applications (1)

Application Number Title Priority Date Filing Date
US630599A Expired - Lifetime US2933046A (en) 1956-12-26 1956-12-26 Pump with flexible impeller and flexible annular cam

Country Status (1)

Country Link
US (1) US2933046A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074350A (en) * 1959-01-06 1963-01-22 R C Ray Portable pump with interchangeable drive unit
US3155313A (en) * 1962-10-01 1964-11-03 Cuertiss Wright Corp Rotor housing construction of rotating combustion engine
US3202103A (en) * 1961-12-21 1965-08-24 Western Brass Works Flexible cam actuated impeller pump
US3218983A (en) * 1963-11-05 1965-11-23 Jabsco Pump Co Flexible-vaned pump with liner cam
US3270679A (en) * 1964-08-13 1966-09-06 Gen Motors Corp Pump assembly
US3303790A (en) * 1964-06-26 1967-02-14 Itt Rotating-cam vane pump
US3364867A (en) * 1966-01-14 1968-01-23 Itt Sanitary pump with removable port bridges
US4392779A (en) * 1980-05-05 1983-07-12 Brunswick Corporation Marine drive water pump
US4863344A (en) * 1987-05-22 1989-09-05 Daniel Stefanini Centrifugal pump
US5667383A (en) * 1994-08-23 1997-09-16 Denticator International, Inc. Disposable dental prophylaxis handpiece
US5697773A (en) * 1994-08-23 1997-12-16 Denticator International, Inc. Rotary fluid reaction device having hinged vanes
US5743718A (en) * 1995-06-07 1998-04-28 Denticator International, Inc. Compressed air driven disposable hand tool having a rotor with radially moving vanes
EP1788249A3 (en) * 2005-11-16 2008-09-03 Roberto Manzini Positive-displacement pump
US20100316504A1 (en) * 2009-06-10 2010-12-16 Larry Lack Positive Displacement Pumping System
US20140255164A1 (en) * 2011-10-07 2014-09-11 Quantex Patents Limited Pump Fittings and Methods for Their Manufacture
CN105484847A (en) * 2014-09-18 2016-04-13 苏州金鼎机械制造有限公司 Dual-cooled engine
US20180258932A1 (en) * 2017-03-07 2018-09-13 Nok Corporation Impeller For Pump
US10865805B2 (en) 2016-07-08 2020-12-15 Fenwal, Inc. Flexible impeller pumps and disposable fluid flow circuits incorporating such pumps
EP3792499A1 (en) * 2004-09-17 2021-03-17 The Penn State Research Foundation Expandable impeller pump
US11852138B2 (en) 2020-11-11 2023-12-26 Server Products, Inc. Flexible impeller pump for flowable food product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US720834A (en) * 1901-08-21 1903-02-17 Adolph Michael Rotary engine.
US763525A (en) * 1903-08-19 1904-06-28 Hugo Van Beresteyn Rotary motor.
US1322764A (en) * 1919-11-25 chago
US2465887A (en) * 1946-03-01 1949-03-29 Everett P Larsh Sliding vane reversible air compressor
DE807977C (en) * 1949-04-13 1951-07-09 Miag Zentralverwaltung G M B H Devices to improve the sealing and running properties of rotary piston machines
US2659313A (en) * 1949-05-31 1953-11-17 Frank L Carson Rotary pump
US2676545A (en) * 1950-12-26 1954-04-27 Lear Inc Rotary pump having a viscositycontrolled by-pass
US2711136A (en) * 1947-06-02 1955-06-21 Cascade Pump Company Seal
US2789511A (en) * 1953-05-25 1957-04-23 Jabsco Pump Co Flexible vane pump impeller
US2816513A (en) * 1954-07-21 1957-12-17 Viking Pump Company Pump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1322764A (en) * 1919-11-25 chago
US720834A (en) * 1901-08-21 1903-02-17 Adolph Michael Rotary engine.
US763525A (en) * 1903-08-19 1904-06-28 Hugo Van Beresteyn Rotary motor.
US2465887A (en) * 1946-03-01 1949-03-29 Everett P Larsh Sliding vane reversible air compressor
US2711136A (en) * 1947-06-02 1955-06-21 Cascade Pump Company Seal
DE807977C (en) * 1949-04-13 1951-07-09 Miag Zentralverwaltung G M B H Devices to improve the sealing and running properties of rotary piston machines
US2659313A (en) * 1949-05-31 1953-11-17 Frank L Carson Rotary pump
US2676545A (en) * 1950-12-26 1954-04-27 Lear Inc Rotary pump having a viscositycontrolled by-pass
US2789511A (en) * 1953-05-25 1957-04-23 Jabsco Pump Co Flexible vane pump impeller
US2816513A (en) * 1954-07-21 1957-12-17 Viking Pump Company Pump

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074350A (en) * 1959-01-06 1963-01-22 R C Ray Portable pump with interchangeable drive unit
US3202103A (en) * 1961-12-21 1965-08-24 Western Brass Works Flexible cam actuated impeller pump
US3155313A (en) * 1962-10-01 1964-11-03 Cuertiss Wright Corp Rotor housing construction of rotating combustion engine
US3218983A (en) * 1963-11-05 1965-11-23 Jabsco Pump Co Flexible-vaned pump with liner cam
US3303790A (en) * 1964-06-26 1967-02-14 Itt Rotating-cam vane pump
US3270679A (en) * 1964-08-13 1966-09-06 Gen Motors Corp Pump assembly
US3364867A (en) * 1966-01-14 1968-01-23 Itt Sanitary pump with removable port bridges
US4392779A (en) * 1980-05-05 1983-07-12 Brunswick Corporation Marine drive water pump
US4863344A (en) * 1987-05-22 1989-09-05 Daniel Stefanini Centrifugal pump
US5667383A (en) * 1994-08-23 1997-09-16 Denticator International, Inc. Disposable dental prophylaxis handpiece
US5697773A (en) * 1994-08-23 1997-12-16 Denticator International, Inc. Rotary fluid reaction device having hinged vanes
US5984654A (en) 1995-06-07 1999-11-16 Denticator International, Inc. Compressed air driven disposable hand tool having a rotor with radially moving vanes
US5743718A (en) * 1995-06-07 1998-04-28 Denticator International, Inc. Compressed air driven disposable hand tool having a rotor with radially moving vanes
EP3792499A1 (en) * 2004-09-17 2021-03-17 The Penn State Research Foundation Expandable impeller pump
US11434921B2 (en) 2004-09-17 2022-09-06 Tc1 Llc Expandable impeller pump
US11428236B2 (en) 2004-09-17 2022-08-30 Tc1 Llc Expandable impeller pump
EP1788249A3 (en) * 2005-11-16 2008-09-03 Roberto Manzini Positive-displacement pump
US8591202B2 (en) 2009-06-10 2013-11-26 Larry Lack Positive displacement pumping system
US20100316504A1 (en) * 2009-06-10 2010-12-16 Larry Lack Positive Displacement Pumping System
US9816520B2 (en) * 2011-10-07 2017-11-14 Quantex Patents Limited Pump fittings and methods for their manufacture
US20140255164A1 (en) * 2011-10-07 2014-09-11 Quantex Patents Limited Pump Fittings and Methods for Their Manufacture
CN105484847A (en) * 2014-09-18 2016-04-13 苏州金鼎机械制造有限公司 Dual-cooled engine
US10865805B2 (en) 2016-07-08 2020-12-15 Fenwal, Inc. Flexible impeller pumps and disposable fluid flow circuits incorporating such pumps
US20180258932A1 (en) * 2017-03-07 2018-09-13 Nok Corporation Impeller For Pump
US11852138B2 (en) 2020-11-11 2023-12-26 Server Products, Inc. Flexible impeller pump for flowable food product

Similar Documents

Publication Publication Date Title
US2933046A (en) Pump with flexible impeller and flexible annular cam
US4558998A (en) Variable capacity type vane pump with balancing groove in the cam ring
US2612110A (en) Pump and motor
US3642390A (en) Vane-type rotary fluid-displacing machine
US2278131A (en) Pump
US3303791A (en) Flexible-vaned centrifugal pump
US2663263A (en) Rotary pump
US3125032A (en) Rotary pump
US2527536A (en) Rotary screw pump
KR880009211A (en) Vane compressor
US4762480A (en) Rotary pump
US3361076A (en) Expansible chamber device
US4486150A (en) Rotary pump and improved discharge port arrangement
US2333323A (en) Pump
US3711227A (en) Vane-type fluid pump
US2880677A (en) Variable volume vane pump
US2971469A (en) Pump with floating end plates
US2491351A (en) Rotary pump
US3135460A (en) Refrigerating apparatus
US3912427A (en) High pressure gear pump
US2294647A (en) Rotary pump
US2753809A (en) Rotary motor or pump
US2498826A (en) Variable volume rotary vane pump
US3014429A (en) Tandem pump
US3162141A (en) Fluid flow device