US2918736A - Hollow plastic heels - Google Patents

Hollow plastic heels Download PDF

Info

Publication number
US2918736A
US2918736A US637463A US63746357A US2918736A US 2918736 A US2918736 A US 2918736A US 637463 A US637463 A US 637463A US 63746357 A US63746357 A US 63746357A US 2918736 A US2918736 A US 2918736A
Authority
US
United States
Prior art keywords
heel
plastic
shoe
insert
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US637463A
Inventor
Carl L Beal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US637463A priority Critical patent/US2918736A/en
Priority to US706047A priority patent/US2918703A/en
Application granted granted Critical
Publication of US2918736A publication Critical patent/US2918736A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/28Soles; Sole-and-heel integral units characterised by their attachment, also attachment of combined soles and heels
    • A43B13/34Soles also attached to the inner side of the heels

Definitions

  • This invention relates to hollow plastic heels and especially to a novel construction of such hollow heels, and to the manufacture of such hollow heels from plastic materials, including tall slim high hollow plastic heels for ladies dress shoes, as well as lower types of heels.
  • An object of this invention is to provide a novel and highly serviceable hollow plastic heel for ladies shoes that can be attached to a shoe proper by means noirnally employed in the manufacture of shoes, as by screws or nails or other known fastening means, and meet the severe service requirements above indicated as essential to a high quality shoe.
  • Another object of this invention is to provide a lightweight hollow and tall slim high plastic heel which will give greater comfort to the wearer and a better balance to the shoe.
  • Still another object of this invention is to provide a lightweight hollow plastic heel having a space therewithin en- 'tirely enclosed by an integral wall structure.
  • a further object of this invention is to provide a hollow plastic heel having embedded in its upper shoe-contacting wall a fastening retaining insert.
  • Another further object of this invention is to provide a hollow plastic heel having its upper shoe-contacting wall member made, at least in the portion into which the fastening means penetrate, of a less brittle and tougher plastic than that of the remainder of the heel.
  • a still further object of this invention is to provide a novel and economical method of manufacturing the tall slim high hollow plastic heel with an integral wall structure defining the hollow space and a nail and screw retaining insert integrally cast within the shoe-contacting wall member of the plastic heel.
  • Fig. l is a cross-sectional view of one form of a mold and of one embodiment of the slim high plastic heel within the mold, the heel being shown completed and ready to be removed from the mold;
  • FIG. 2 is a fragmentary cross-sectional view of another embodiment of the slim high plastic heel showing a modi- "ice fied form of attachment insert and the manner in which the heel is attached to a shoe;
  • Fig. 3 is a view of the heel portion of the shoe take on line 3--3 of Fig. 2, showing the position of the attaching screw and nails fastening the plastic heel to the shoe;
  • Fig. 4 is a cross-sectional view of an embodiment of the invention showing still another form of attachment insert
  • Fig. 5 is a cross-sectional view on line 5-5 of Fig. 4;
  • Fig. 6 is a cross-sectional view on line 66 of Fig. 4;
  • Fig. 7 is a cross-sectional view on line 77 of Fig. 4.
  • Figs. 8 and 9 are each a cross-sectional view, similar to Fig. 4, of a modified form of the invention, showing heels of lower heights.
  • the hollow plastic heel 10 has an intergal wall structure 11 completely enclosing the hollow space 12, a lower groundcontacting portion 13, an upper concave shoe-contacting wall portion 14, a rear and side arcuate wall portion 15, and a front or forward instep wall portion 16.
  • the Wall portion 14 contains a fastening insert 17 and a hole 18, left in the upper wall 14 and in the insert 17 upon removal of the pin on which is mounted fastening insert 17 during the casting of the heel 10, as will be more fully hereinafter described.
  • the plastic of the finished heel 10 is a tough, rigid, resilient plastic of medium hardness and may be manufactured by any suitable process, although the process hereinbelow described seems at present to be preferable.
  • Fig. l the heel 10 is shown within a mold 20 and is illustrated with the finished heel 10 in the mold 20, before the opening of the mold and the removal of the heel 10.
  • the mold 20 is preferably made of a good heat-conducting material, such as a metal, and as shown :is a two-section mold, and, although the mold 20 may be made in a larger number of sections and of a wide variety of materials, a two-section metal mold is preferred.
  • the mold 20 consists of a one-piece lower mold section 21, having its inner wall surfaces 22 of a size and shape to form the lower ground portion 13, rear and side arcuate wall 15 and forward instep wall 16 of the heel 10, and also having an open top 23 into which fits the cover section 24 to close tightly the two-section mold 20.
  • the inner surface 25 of the cover section 24 is preferably convex so that the upper surface of the wall portion 14 of the heel 10 may conform to the bottom portion of the shoe to which the heel 10 is to be attached.
  • the cover section 24 has a pin 26 secured centrally thereof so as to support in proper position the insert 17 during the manufacture of the heel 10.
  • the two mold sections 21 and 24 may be locked together by any suitable means, as by bolts 27 passing through registering openings 28 in flanges 29 of the mold sections 21 and 24.
  • the heel 10 is preferably made in the mold 20 by what is sometimes called gyrational casting from a suitable fiowable plastic composition capable of being distributed more or less uniformly over the entire inner surfaces of the closed mold 20 and between the cover section 24 and the insert 17 during gyration of the mold 20., and further capable of being gelled and hardened by heat transferred through the walls of mold 20.
  • the gyratio-n and the heating may be carried out simultaneously, or the mold 20 may be first gyrated to distribute the freely fiowable plastic composition within the mold and then heat applied to the outer surfaces of mold 20 while continuing the gyration of the mold 20.
  • a number of freely flowable plastic compositions are suitable as a starting material for producing heels of this application and are not per se a part of the invention of this application, since suitable plastic compositions may be purchased from a number of manufacturers and distributors of plastic compositions. These compositions may be liquids of sufiiciently low viscosity to flow freely at room temperature or they may be materials of higher viscosity that wil flow freely under the temperature conditions existing in the mold in the early part of the heating cycle. Any plastic composition that will distribute itself uniformly over the entire inner surface of the mold during the gyrating and heating cycle and will react to produce an article of satisfactory physical properties can be considered as a starting material for this process.
  • a type of freely flowable composition may be used.
  • This may consist of a dispersion of finely divided particles of polyvinyl chloride resin in a liquid mixture of a plasticizer and a liquid dispersant capable of being converted into a rigid plastic by heating, such as a polymerizable monomer.
  • a composition is heated in the gyrating mold, the material is distributed over the entire inner surface of the mold, is gelled in that position, and the composition rapidly becomes a medium-hard, resilient plastic heel, with a hollow space inside.
  • a flowable plastic composition or rigisol, of the following composition may be employed:
  • the high molecular weight dispersion-type polyvinyl chlorides which have been found satisfactory in carrying out the invention of this application, are finely divided or minute particle sized resins, such as are produced by the polymerization of vinyl chloride in aqueous emulsion, the particle size normally ranging from 0.1 to 10.0 microns.
  • a high molecular Weight polyvinyl chloride resin marketed by B. F.
  • Geon Vinyl Resin 121 a dispersion-type resin having a particle size ranging between 0.1 and 1.3 microns or, a dispersion-type high molecular weight polyvinyl resin marketed by Naugatuck Chemical Company as Marvinol Vinyl Resin VR-lO, having an average particle size of about 6.2 microns. It may be preferable, however to use a mixture of two or more dispersion-type polyvinyl resins in varying proportions, since a mixture of the particle sizes of the different dispersion-type resins gives a lower viscosity composition. In practice, equal parts of Geon Vinyl Resin 121 and of Marvinol Vinyl Resin VR-lO have given satisfactory results. It is to be understood that other makes of the dispersiontype high molecular weight polyvinyl resins also may be employed, such as Bakelite QYNV, Exon 654, Marvinol VR50, and the like.
  • the liquid dispersant is one capable of being hardened by heat and/ or chemical action, the dispersion-type polyvinyl resin being first dispersed in the dispersant, with other constituents, and then hardened by heat and/or chemical action.
  • the dispersant is preferably a poly- 4 merizable acrylic monomer, preferably a methacrylate di ester of an ethylene glycol, such as triethylene glycol dimethacrylate, marketed by Specialty Resins, Inc., as monomer SR #205, or ethylene glycol dimethacrylate, marketed by The Borden Company, as EGD, or a commercial acrylic monomer marketed by Carbide and Carbon Corporation under the trade name MG-l, comprising chiefly diethylene glycol dimethacrylate, and having a viscosity of 12.2 centipoises at 25 C., a specific gravity at 25 C. of 1.078, and a refractive index at 30 C. of 1.459, or other like dispersants.
  • the plasticizer may also be chosen from a variety of plasticizers known to plasticize high molecular weight polyvinyl chloride resins, as di(2-ethylhexyl)phthalate, dicapryl phthalate, dioctyl sebacate, di(2-ethylnexyl)succinate, and the like.
  • the catalyst may likewise be any one of the recognized catalysts for the hardening or solidification of the acrylic monomer, such as benzoyl peroxide, acetyl peroxide, lauroyl peroxide and the like.
  • the cover section 24, having the pin 26 secured in a central portion thereof and projecting inwardly therefrom, is first made ready for the casting operation by supporting the fastening insert 17 on the pin 26 so as to bring the upper surface of the insert 17 generally parallel to the inner surface of the cover section 24 and spaced from the said inner surface a distance approximately that of the thickness of the wall structure 16 at its thinnest portion, so that the plastic during casting will completely fill the space between the upper surface of the insert 17 and the inner surface of the cover section 24, as shown in Fig. 1, and will form on the lower face of the insert 17 a plastic layer somewhat thinner than that of the wall structure 16 at its thinnest portion, since the insert 17 shields somewhat the plastic beneath the insert 17 from the heat which the heated Walls of the mold 20 transfer to the plastic.
  • a suitable liowable plastic composition, or rigisol, of the character hereinabove more fully described is introduced into the lower mold section 21, the amount of the rigisol being best determined by experimentation, an amount being selected which gives to the wall structures 11, 13 and 14 of the heel 10 the required thickness at their thinnest wall portions, and leaves a hollow space 12 centrally of the heel 10 as large as is possible, consistent with the strength necessary in the wall portions of the heel 10.
  • the cover mold section 24 with the fastening insert 17 supported on the pin 26, as above described, is clamped tightly on the lower mold section 21 containing the proper amount of the rigisol, as by bolts 27.
  • the assembled mold 20 is then gyrated by any suitable mechanism.
  • Gyrational casting comprehends movements of the mold 20 in a variety of ways.
  • the assembled mold 20, containing a measured amount of a suitable rigisol may be rotated about a single axis, or simultaneously about two or more axes, or may be oscillated through a wide angle in one or more planes, or may be moved in irregular or zigzag paths, the purpose of any such gyrating movements of the mold. 20 being to spread the freely fiowable rigisol all over the inner surfaces of the mold 20 and into the space between the inner surface of the cover section 24 and the fastening insert 17, so as to fill that space.
  • the gynaetion is accompanied by heating, as by gyrating the mold 20 in a chamber containing a fluid heating medium, such as heated air, gas or steam.
  • a fluid heating medium such as heated air, gas or steam.
  • the temperature of the heating medium is such that the heat transferred through the mold 20 to the rigisol, which has been distributed over the inner surfaces of the mold 20 and insert 17 during the heat-up period, is converted into a tough rigid solid hollow plastic heel 10, such as is shown in Figs. 1 and 4 to, 7 of the drawing.
  • the assembled mold 20 is then cooled, as by passing it through a cold water spray, and when the mold 20 and the tough rigid plastic of the cast heel 10 have been cooled someamsyee what, the mold sections 21 and 24 are opened, the cover section 24 removed, taking with it the pin 26, leaving the heel with an opening 18 made by removal of the pin 26.
  • the cast plastic heel 10 is then removed from the lower section 21 of the mold 20, with the fastening insert 17 firmly embedded in the shoe-contacting wall 14 of the heel 10.
  • the insert 17 may be made of a variety of materials. Thus, fibrous sheets or slabs of various types have been found to be effective. These may range from soft cardboard to wall boards and other fibrous bodies.
  • the insert 17 in Fig. 1 represents a fibrous sheet insert, such as cardboard.
  • the insert 17 may be made of plywood or cross-plied fiber boards and may have a considerable thickness, the better to anchor screws and nails and other fastening devices. Such a thick plied construction is shown in Fig. 2.
  • the insert may be made of a metal sheet, such as aluminum and aluminum alloys, copper and copper alloys, and a sheet iron and tinned sheet iron insert has also proven to be effective in certain cases. Such a metal insert is shown in Fig. 4.
  • fastening insert 17 of the finished heel 10 serves primarily as an anchoring means for the fasteners employed in securing the heel 10 to the shoe, it may also be desirably employed to modify the properties of the rigid plastic in the region of the heel penetrated by the fasteners.
  • Such a material may be a solid or liquid plasticizer, or both, that, during the heating of the mold 20 and its rigisol contents, migrates into portions of the plastic contiguous to the insert, and thus makes the rigid plastic in the nailable top of the heel softer, less brittle, and more readily penetrated by the fasteners which attach the heel to the shoe and also reduces any tendency to crack or split the rigid plastic of the heel during the driving of the fasteners. It is to be understood, however, that satisfactory attachments of the heel 10 to a shoe may be attained without the embodiment of a plasticizer on or in the insert 17.
  • solid plasticizers in the production of inserts having the plasticizer distributed throughout the insert, powdered dicyclohexyl phthalate, a commercial solid plasticizer having a melting point of about 5865 C., is added to paper pulp at the heater in proportions ranging from 10 to 40 weight percent of the dry fiber weight, and thoroughly admixed therewith. Sheets of a thickness of heavy cardboard are made therefrom on a paper-making machine and sections of the size and shape of the insert 17 for any desired size heel are cut from said cardboard and either as a single board section or a plurality of plied-up sections are utilized as an insert.
  • the dicyclohexyl phthalate plasticizer fuses and migrates into contiguous portions of the plastic, producing a tougher and less brittle plastic portion in the region of the insert.
  • Other plasticizers which are solid at normal temperatures may be similarly employed, such as triphenyl phosphate, glycerol monostearate, N-ethyl p-toluenesulfonamide, and the like.
  • Plasticizers which are liquid at normal temperatures, such as didecyl phthalate, tricresyl phosphate, and the like, may serve a like purpose by impregnating or coating the inserts with the liquid plasticizer before placing the inserts in the mold 20. Upon the heat formation of the plastic solid about the impregnated insert, the plasticizer .will ,rnigrate into the contiguous portions of the plastic hceL producing a less brittle plastic adjacent the insert.
  • plasticizers both solid and liquid, useful in the invention of this application, consult the 1956 Modern Plastics Encyclopedia, pages 534 to 549, published by Breskin Publications, Inc., Bristol, Connecticut, which plasticizers are incorporated in this application by reference.
  • the upper 31 of the shoe 30 is attached to and made a part of the mid-sole 32 and the sole 33 of the shoe in any of the well-known shoe constructions.
  • An inner sole 34 is attached to the mid-sole 32 in any suitable manner.
  • the upper shoe-contacting surface of the heel 10 and the contacting surface of the shoe sole may be coated with an adhesive and the heel attached to the shoe in its proper position by means of adhesion.
  • the tall slim ladies heels of this application are made in lightweight inexpensive molds, and without the use of heavy expensive machinery, since the plastic molding is done at substantially atmospheric or relatively low pressures with the lightweight mold gyrated in heated chambers. Further, the heels are molded with a hollow space in the central portion of the heel.
  • the volume of the hollow portion 12 of the heel 10 will vary with the strength of the plastic employed, and the size and style of the heel. For tall slim high heels the volume of the hollow portion will range from 10 to 30% of volume of the Whole heel, the smaller sizes being in the lower ranges and the larger sizes being in the upper part of this range. In case of high heels, not as slim or tall, as the heel of Fig.
  • the volume of the hollow portion 12 will range from 40 to 60%, and in case of lower heels, such as that of Fig. 9, the volume of the hollow portion will range as high as 70% of the total volume of the heel.
  • the relatively large volume 7 of the hollow portion 12 to the total volume of the heel makes possible not only a substantial economy in the quantity of plastic needed for the manufacture of the heel, but, what is more important, produces a lighter and more resilient heel and a more comfortable shoe.
  • the rigid hollow heel comprises a relatively thin arcuate side and back wall, a thin forward or instep wall, a heavier and thicker ground-contacting portion, and a novel upper or shoe-contacting wall portion reinforced by an insert in which the fastening means for attaching the heel to the shoe are anchored.
  • the heel has a portion of the upper wall member, through which pass the fastening means attaching the heel to the shoe, composed adjacent the insert of a tougher, less brittle rigid plastic, but at the same time integral with the more rigid plastic of the rest of the heel.
  • the lighter heel is not only more comfortable, but also the strength of the joinder of the heel to the shoe insures a trim neat appearance of a new shoe throughout the useful life of the shoe by the maintenance of the original lines of the heel and shoe, a very desirable feature in high quality ladies shoes.
  • a rigid resilient hollow plastic tall slim heel comprising a hollow coreless plastic heel consisting of a relatively thin arcuate rear and side wall portion, an instep wall portion of substantially the same thickness as the rear and side wall portion, the said rear, side and instep wall portions being for the most part of substantially uniform thickness, a ground-contacting wall portion and a concave, shoe-contacting portion, each of materially greater thickness than the arcuate rear and side wall portion, all the said wall portions collectively constituting a single integral wall structure of the hollow coreless plastic heel, the inner wall surfaces of the said integral wall structure defining a hollow completely closed void, the said concave shoe-contacting wall portion being of substantially greater thickness than the said rear, side and instep wall portions and having a plate insert embedded within and surrounded by a layer of plastic of the shoe-contacting wall portion in a position to be penetrated by fastening means by which the heel is attached to the shoe, the plastic adjacent the insert being tougher and more readily penetrated by fastening means than the plastic in the remainder of the heel.
  • a light strong rigid resilient hollow plastic heel com prising a hollow coreless integral plastic heel having relatively thin arcuate rear and side wall portions, relatively thin instep wall portion, relatively thick bottom ground-contacting wall portion, and a relatively thick concave top shoe-contacting wall portion, all said wall portions together constituting a single integral one-piece wall structure of the said hollow coreless plastic heel, the interior surfaces of the said integral wall structure defining a single hollow completely closed empty chamber free of any interior supporting and wall defining means and of a shape approximately similar to the shape defined by the exterior surfaces of the heel, the said relatively thick concave top shoe-contacting wall portion having a plate insert embedded therein in a position to serve as an anchor for the fasteners by which the heel is attached to the shoe.
  • a light strong rigid resilient hollow plastic heel comprising a hollow coreless integral plastic heel having relatively thin arcuate rear and side Wall portions, relatively thin instep wall portion, relatively thick bottom ground-contacting wall portion, and a relatively thick concave top shoe-contacting wall portion, all said wall portions together constituting a single integral one-piece wall structure of the said hollow coreless plastic heel, the interior surfaces of the said integral wall structure defining a single hollow completely closed empty chamber free of any interior supporting and wall defining means and of a shape approximately similar to the shape defined by the exterior surfaces of the heel, the said relatively thick concave top shoe-contacting wall portion having a plate insert embedded therein in a position to serve as an anchor for the fasteners by which the heel is attached to the shoe, the plastic adjacent the insert being tougher and more readily penetrated by the fastening means than the plastic in the remainder of the heel.
  • a light strong rigid resilient hollow plastic tall slim heel comprising a hollow coreless plastic heel consisting of a relatively thin arcuate rear and side wall portion, an instep wall portion of substantially the same thickness as the rear and side wall portion, the said rear, side and instep wall portions being relatively thin and for the most part of substantially uniform thickness, a ground-contacting wall portion and a concave shoe-contacting portion, each of materially greater thickness than the arcuate rear and side wall portion, all the said wall portions collectively constituting a single integral complete wall structure of the hollow coreless plastic heel, the inner wall surfaces of the said integral wall structure defining a single hollow completely closed chamber free of any interior strengthening means, the said concave shoe-contacting wall portion being of substantially greater thickness than the said rear, side and instep wall portions and having a plate insert embedded within and surrounded by a layer of plastic of the shoe-contacting wall portion in a position to be penetrated by fastening means by which the heel is attached to the shoe.
  • a strong resilient hollow heel comprising an integral one-piece hollow plastic heel-shaped body having an angularly disposed comparatively thick shoe-contacting top portionand having a vertical portion integral with and extending downwardly from said top portion and tapering inwardly and downwardly from the perimeter of said top portion to form within the said body a closed central cavity of generally decreasing cross section downwardly from the said top portion, the walls of said vertical portion converging to a solid comparatively thick ground-contacting portion, and a plate insert embedded within and completely surrounded by the plastic of the said top portion.
  • a plastic heel comprising an integral one-piece hollow plastic heel-shaped body having a relatively thick shoe-contacting top portion and having a vertical portion integral with and extending downwardly from said top portion, said vertical portion having walls tapering inwardly and downwardly from the perimeter of said top portion to form within said body a closed central cavity, the walls defining said cavity converging down- '10 I wardly to a comparatively thick ground-contacting portion, and a plate insert embedded within and spaced from both the outer and the inner surfaces of the said top portion and disposed generally parallel to the inner surface of the said top portion.

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Description

Dec. 29, 1959 CL. BEAL HOLLOW PLASTIC HEELS Filed Jan. 31, 195'? IN VEN TOR.
CARL L. BEAL BY y 5 ATTORNEY United States Patent HOLLOW PLASTIC HEELS Carl L. Bea], Huntington, N.Y.
Application January 31, 1957, Serial No. 637,463
6 Claims. (Cl. 36-34) This invention relates to hollow plastic heels and especially to a novel construction of such hollow heels, and to the manufacture of such hollow heels from plastic materials, including tall slim high hollow plastic heels for ladies dress shoes, as well as lower types of heels.
One of the requirements of a high quality ladies shoe is that the shoe maintain the trim appearance of a new shoe throughout its useful life. To maintain such an appearance, the heel must show no looseness or pulling away from the area of the shoe bottom to which the heel is attached, and, above all, the complete disengagement of the heel from the shoe under the most severe condition of stress must be prevented. The most destructive stresses imposed on the joinder of the heel to the shoe are lateral stresses which tend, and often do, wrench the heel from the shoe. These stresses are intensified at the heel joinder where ladies shoes are equipped with hollow high heels by reason of the action of the relatively long lever arm which is approximately equal to the height of the heel.
An object of this invention is to provide a novel and highly serviceable hollow plastic heel for ladies shoes that can be attached to a shoe proper by means noirnally employed in the manufacture of shoes, as by screws or nails or other known fastening means, and meet the severe service requirements above indicated as essential to a high quality shoe.
Another object of this invention is to provide a lightweight hollow and tall slim high plastic heel which will give greater comfort to the wearer and a better balance to the shoe.
Still another object of this invention is to provide a lightweight hollow plastic heel having a space therewithin en- 'tirely enclosed by an integral wall structure.
1 A further object of this invention is to provide a hollow plastic heel having embedded in its upper shoe-contacting wall a fastening retaining insert.
Another further object of this invention is to provide a hollow plastic heel having its upper shoe-contacting wall member made, at least in the portion into which the fastening means penetrate, of a less brittle and tougher plastic than that of the remainder of the heel.
A still further object of this invention is to provide a novel and economical method of manufacturing the tall slim high hollow plastic heel with an integral wall structure defining the hollow space and a nail and screw retaining insert integrally cast within the shoe-contacting wall member of the plastic heel.
Other objects will be apparent from the following specification and the accompanying drawing, although it is to be understood that changes, variations and modifications are to be included within the scope of this invention as herein described and claimed.
Fig. l is a cross-sectional view of one form of a mold and of one embodiment of the slim high plastic heel within the mold, the heel being shown completed and ready to be removed from the mold;
l Fig. 2 is a fragmentary cross-sectional view of another embodiment of the slim high plastic heel showing a modi- "ice fied form of attachment insert and the manner in which the heel is attached to a shoe;
Fig. 3 is a view of the heel portion of the shoe take on line 3--3 of Fig. 2, showing the position of the attaching screw and nails fastening the plastic heel to the shoe;
Fig. 4 is a cross-sectional view of an embodiment of the invention showing still another form of attachment insert;
Fig. 5 is a cross-sectional view on line 5-5 of Fig. 4;
Fig. 6 is a cross-sectional view on line 66 of Fig. 4;
Fig. 7 is a cross-sectional view on line 77 of Fig. 4; and
Figs. 8 and 9 are each a cross-sectional view, similar to Fig. 4, of a modified form of the invention, showing heels of lower heights.
It is here noted that similar cross-sectional views of the embodiments of Figs. 1 and 2 to those shown in Figs. 4, 5, 6 and 7 would vary from the cross-sections of the latter views only in the showing of the nature of the fastening insert.
Referring to the drawing, in all figures of which the samereference numeral indicates the same element, the hollow plastic heel 10 has an intergal wall structure 11 completely enclosing the hollow space 12, a lower groundcontacting portion 13, an upper concave shoe-contacting wall portion 14, a rear and side arcuate wall portion 15, and a front or forward instep wall portion 16. The Wall portion 14 contains a fastening insert 17 and a hole 18, left in the upper wall 14 and in the insert 17 upon removal of the pin on which is mounted fastening insert 17 during the casting of the heel 10, as will be more fully hereinafter described. The plastic of the finished heel 10 is a tough, rigid, resilient plastic of medium hardness and may be manufactured by any suitable process, although the process hereinbelow described seems at present to be preferable.
In Fig. l, the heel 10 is shown within a mold 20 and is illustrated with the finished heel 10 in the mold 20, before the opening of the mold and the removal of the heel 10.
The mold 20 is preferably made of a good heat-conducting material, such as a metal, and as shown :is a two-section mold, and, although the mold 20 may be made in a larger number of sections and of a wide variety of materials, a two-section metal mold is preferred. The mold 20 consists of a one-piece lower mold section 21, having its inner wall surfaces 22 of a size and shape to form the lower ground portion 13, rear and side arcuate wall 15 and forward instep wall 16 of the heel 10, and also having an open top 23 into which fits the cover section 24 to close tightly the two-section mold 20. The inner surface 25 of the cover section 24 is preferably convex so that the upper surface of the wall portion 14 of the heel 10 may conform to the bottom portion of the shoe to which the heel 10 is to be attached. The cover section 24 has a pin 26 secured centrally thereof so as to support in proper position the insert 17 during the manufacture of the heel 10. The two mold sections 21 and 24 may be locked together by any suitable means, as by bolts 27 passing through registering openings 28 in flanges 29 of the mold sections 21 and 24.
The heel 10 is preferably made in the mold 20 by what is sometimes called gyrational casting from a suitable fiowable plastic composition capable of being distributed more or less uniformly over the entire inner surfaces of the closed mold 20 and between the cover section 24 and the insert 17 during gyration of the mold 20., and further capable of being gelled and hardened by heat transferred through the walls of mold 20. The gyratio-n and the heating may be carried out simultaneously, or the mold 20 may be first gyrated to distribute the freely fiowable plastic composition within the mold and then heat applied to the outer surfaces of mold 20 while continuing the gyration of the mold 20.
A number of freely flowable plastic compositions are suitable as a starting material for producing heels of this application and are not per se a part of the invention of this application, since suitable plastic compositions may be purchased from a number of manufacturers and distributors of plastic compositions. These compositions may be liquids of sufiiciently low viscosity to flow freely at room temperature or they may be materials of higher viscosity that wil flow freely under the temperature conditions existing in the mold in the early part of the heating cycle. Any plastic composition that will distribute itself uniformly over the entire inner surface of the mold during the gyrating and heating cycle and will react to produce an article of satisfactory physical properties can be considered as a starting material for this process.
A type of freely flowable composition, sometimes generically called a rigisol, may be used. This may consist of a dispersion of finely divided particles of polyvinyl chloride resin in a liquid mixture of a plasticizer and a liquid dispersant capable of being converted into a rigid plastic by heating, such as a polymerizable monomer. When such a composition is heated in the gyrating mold, the material is distributed over the entire inner surface of the mold, is gelled in that position, and the composition rapidly becomes a medium-hard, resilient plastic heel, with a hollow space inside.
By way of illustration, a flowable plastic composition, or rigisol, of the following composition may be employed:
Constituents Parts by Weight (1) Highmoleeular weight dispersion-type polyvinyl chloride 100 resin (2) Liquid dispersant, such as polymerizable acrylic IllOllO- 45 mer (3) Plastieizer, such as dideeyl phthalate 15 (4) czgal at, such as 40% dicumyl peroxide on p1 p tated 4 a 3 (5) Colorant, such as carbon black dispers p cizer, as dideeyl phthalatc 5 The constituents of the above formula are thoroughly intermixed by stirring and/0r grinding. The resulting composition is a fiowable plastic liquid composition of low viscosity capable of being converted into a rigid plastic by heating.
The high molecular weight dispersion-type polyvinyl chlorides, which have been found satisfactory in carrying out the invention of this application, are finely divided or minute particle sized resins, such as are produced by the polymerization of vinyl chloride in aqueous emulsion, the particle size normally ranging from 0.1 to 10.0 microns. Thus, a high molecular Weight polyvinyl chloride resin, marketed by B. F. Goodrich Chemical Company as Geon Vinyl Resin 121, a dispersion-type resin having a particle size ranging between 0.1 and 1.3 microns or, a dispersion-type high molecular weight polyvinyl resin marketed by Naugatuck Chemical Company as Marvinol Vinyl Resin VR-lO, having an average particle size of about 6.2 microns. It may be preferable, however to use a mixture of two or more dispersion-type polyvinyl resins in varying proportions, since a mixture of the particle sizes of the different dispersion-type resins gives a lower viscosity composition. In practice, equal parts of Geon Vinyl Resin 121 and of Marvinol Vinyl Resin VR-lO have given satisfactory results. It is to be understood that other makes of the dispersiontype high molecular weight polyvinyl resins also may be employed, such as Bakelite QYNV, Exon 654, Marvinol VR50, and the like.
The liquid dispersant is one capable of being hardened by heat and/ or chemical action, the dispersion-type polyvinyl resin being first dispersed in the dispersant, with other constituents, and then hardened by heat and/or chemical action. The dispersant is preferably a poly- 4 merizable acrylic monomer, preferably a methacrylate di ester of an ethylene glycol, such as triethylene glycol dimethacrylate, marketed by Specialty Resins, Inc., as monomer SR #205, or ethylene glycol dimethacrylate, marketed by The Borden Company, as EGD, or a commercial acrylic monomer marketed by Carbide and Carbon Corporation under the trade name MG-l, comprising chiefly diethylene glycol dimethacrylate, and having a viscosity of 12.2 centipoises at 25 C., a specific gravity at 25 C. of 1.078, and a refractive index at 30 C. of 1.459, or other like dispersants.
The plasticizer may also be chosen from a variety of plasticizers known to plasticize high molecular weight polyvinyl chloride resins, as di(2-ethylhexyl)phthalate, dicapryl phthalate, dioctyl sebacate, di(2-ethylnexyl)succinate, and the like.
The catalyst may likewise be any one of the recognized catalysts for the hardening or solidification of the acrylic monomer, such as benzoyl peroxide, acetyl peroxide, lauroyl peroxide and the like.
The cover section 24, having the pin 26 secured in a central portion thereof and projecting inwardly therefrom, is first made ready for the casting operation by supporting the fastening insert 17 on the pin 26 so as to bring the upper surface of the insert 17 generally parallel to the inner surface of the cover section 24 and spaced from the said inner surface a distance approximately that of the thickness of the wall structure 16 at its thinnest portion, so that the plastic during casting will completely fill the space between the upper surface of the insert 17 and the inner surface of the cover section 24, as shown in Fig. 1, and will form on the lower face of the insert 17 a plastic layer somewhat thinner than that of the wall structure 16 at its thinnest portion, since the insert 17 shields somewhat the plastic beneath the insert 17 from the heat which the heated Walls of the mold 20 transfer to the plastic.
A suitable liowable plastic composition, or rigisol, of the character hereinabove more fully described is introduced into the lower mold section 21, the amount of the rigisol being best determined by experimentation, an amount being selected which gives to the wall structures 11, 13 and 14 of the heel 10 the required thickness at their thinnest wall portions, and leaves a hollow space 12 centrally of the heel 10 as large as is possible, consistent with the strength necessary in the wall portions of the heel 10.
The cover mold section 24 with the fastening insert 17 supported on the pin 26, as above described, is clamped tightly on the lower mold section 21 containing the proper amount of the rigisol, as by bolts 27. The assembled mold 20 is then gyrated by any suitable mechanism.
Gyrational casting, as the name implies, comprehends movements of the mold 20 in a variety of ways. Thus, the assembled mold 20, containing a measured amount of a suitable rigisol, may be rotated about a single axis, or simultaneously about two or more axes, or may be oscillated through a wide angle in one or more planes, or may be moved in irregular or zigzag paths, the purpose of any such gyrating movements of the mold. 20 being to spread the freely fiowable rigisol all over the inner surfaces of the mold 20 and into the space between the inner surface of the cover section 24 and the fastening insert 17, so as to fill that space. The gynaetion is accompanied by heating, as by gyrating the mold 20 in a chamber containing a fluid heating medium, such as heated air, gas or steam. The temperature of the heating medium is such that the heat transferred through the mold 20 to the rigisol, which has been distributed over the inner surfaces of the mold 20 and insert 17 during the heat-up period, is converted into a tough rigid solid hollow plastic heel 10, such as is shown in Figs. 1 and 4 to, 7 of the drawing. The assembled mold 20 is then cooled, as by passing it through a cold water spray, and when the mold 20 and the tough rigid plastic of the cast heel 10 have been cooled someamsyee what, the mold sections 21 and 24 are opened, the cover section 24 removed, taking with it the pin 26, leaving the heel with an opening 18 made by removal of the pin 26. The cast plastic heel 10 is then removed from the lower section 21 of the mold 20, with the fastening insert 17 firmly embedded in the shoe-contacting wall 14 of the heel 10.
The insert 17 may be made of a variety of materials. Thus, fibrous sheets or slabs of various types have been found to be effective. These may range from soft cardboard to wall boards and other fibrous bodies. The insert 17 in Fig. 1 represents a fibrous sheet insert, such as cardboard. Again, the insert 17 may be made of plywood or cross-plied fiber boards and may have a considerable thickness, the better to anchor screws and nails and other fastening devices. Such a thick plied construction is shown in Fig. 2. Further, the insert may be made of a metal sheet, such as aluminum and aluminum alloys, copper and copper alloys, and a sheet iron and tinned sheet iron insert has also proven to be effective in certain cases. Such a metal insert is shown in Fig. 4.
While the fastening insert 17 of the finished heel 10 serves primarily as an anchoring means for the fasteners employed in securing the heel 10 to the shoe, it may also be desirably employed to modify the properties of the rigid plastic in the region of the heel penetrated by the fasteners. Thus, it has been found in certain cases to be advantageous to embody in the preformed insert 17, by incorporation into the insert 17 in course of its construction or later by impregnation, or otherwise, or by coating the insert 17 on its upper surface with, a material that exerts a softening influence on the rigid plastic of the heel contiguous to the insert 17. Such a material may be a solid or liquid plasticizer, or both, that, during the heating of the mold 20 and its rigisol contents, migrates into portions of the plastic contiguous to the insert, and thus makes the rigid plastic in the nailable top of the heel softer, less brittle, and more readily penetrated by the fasteners which attach the heel to the shoe and also reduces any tendency to crack or split the rigid plastic of the heel during the driving of the fasteners. It is to be understood, however, that satisfactory attachments of the heel 10 to a shoe may be attained without the embodiment of a plasticizer on or in the insert 17.
As an example of the use of solid plasticizers in the production of inserts having the plasticizer distributed throughout the insert, powdered dicyclohexyl phthalate, a commercial solid plasticizer having a melting point of about 5865 C., is added to paper pulp at the heater in proportions ranging from 10 to 40 weight percent of the dry fiber weight, and thoroughly admixed therewith. Sheets of a thickness of heavy cardboard are made therefrom on a paper-making machine and sections of the size and shape of the insert 17 for any desired size heel are cut from said cardboard and either as a single board section or a plurality of plied-up sections are utilized as an insert. Upon gyrational casting of the rigisol and heating of the mold to the temperature necessary for conversion of the rigisol to a hard tough rigid plastic, that is, from 300 to 500 F., the dicyclohexyl phthalate plasticizer fuses and migrates into contiguous portions of the plastic, producing a tougher and less brittle plastic portion in the region of the insert. Other plasticizers which are solid at normal temperatures may be similarly employed, such as triphenyl phosphate, glycerol monostearate, N-ethyl p-toluenesulfonamide, and the like.
Plasticizers which are liquid at normal temperatures, such as didecyl phthalate, tricresyl phosphate, and the like, may serve a like purpose by impregnating or coating the inserts with the liquid plasticizer before placing the inserts in the mold 20. Upon the heat formation of the plastic solid about the impregnated insert, the plasticizer .will ,rnigrate into the contiguous portions of the plastic hceL producing a less brittle plastic adjacent the insert.
For a comprehensive list of plasticizers, both solid and liquid, useful in the invention of this application, consult the 1956 Modern Plastics Encyclopedia, pages 534 to 549, published by Breskin Publications, Inc., Bristol, Connecticut, which plasticizers are incorporated in this application by reference.
It will be understood that this invention is not limited to the specific inserts hereinabove described but that any solid sheet or slab of any material that will provide an adequate anchorage for screws, nails or other fastening devices is within the scope of this invention.
Referring to Figs. 2 and 3, in which the reference numerals heretofore applied to heel 10 are also applied to the heel of Figs. 2 and 3, the upper 31 of the shoe 30 is attached to and made a part of the mid-sole 32 and the sole 33 of the shoe in any of the well-known shoe constructions. An inner sole 34 is attached to the mid-sole 32 in any suitable manner. As is usual in applying a heel to a proper part of the sole construction of the shoe, the upper shoe-contacting surface of the heel 10 and the contacting surface of the shoe sole may be coated with an adhesive and the heel attached to the shoe in its proper position by means of adhesion. Usually the shoe and heel are held in position in a jig constructed for that purpose, and then placed in well-known machines for mechanically setting the screw, and/or for driving the nails, through the sole of the heel portion of the shoe into the plastic heel 10 and the fastening insert 17. Normally, different machines are employed for driving the screws and for driving the nails. As shown in Figs. 2 and 3, a central screw 35 and five nails 36 which are firmly anchored in the insert 17 are normally adequate, although a less or greater number of fastening means may be used. In some instances, forked or barbed nails, whose projecting points catch in the insert and resist the withdrawal of the nails may be used to effect a stronger anchorage of the nails 36 in the insert 17. Extensive tests have demonstrated that the tall slim high plastic heel 10 having an insert 17 of the nature hereinabove described may be most firmly attached to the proper portion of a shoe in the above described manner, so as'to produce a high quality ladies shoe having the desirable characteristics hereinabove more fully described.
It has heretofore been proposed to manufacture tall slim plastic heels for ladies shoes by the high pressure injection of cellulose acetate and other plastics into multiple cavity molds, a process which requires expensive high pressure injection machinery as well as expensive multiple cavity high pressure molds, that is, molds that will withstand the high plastic pressures necessary for multiple cavity injection molding. Further, such prior injection processes produce heels which lack the central hollow space of the heels of this application and which consequently are heavier, less re silient and more expensive in the use of plastic material.
On the other hand, the tall slim ladies heels of this application are made in lightweight inexpensive molds, and without the use of heavy expensive machinery, since the plastic molding is done at substantially atmospheric or relatively low pressures with the lightweight mold gyrated in heated chambers. Further, the heels are molded with a hollow space in the central portion of the heel. The volume of the hollow portion 12 of the heel 10 will vary with the strength of the plastic employed, and the size and style of the heel. For tall slim high heels the volume of the hollow portion will range from 10 to 30% of volume of the Whole heel, the smaller sizes being in the lower ranges and the larger sizes being in the upper part of this range. In case of high heels, not as slim or tall, as the heel of Fig. 8, the volume of the hollow portion 12 will range from 40 to 60%, and in case of lower heels, such as that of Fig. 9, the volume of the hollow portion will range as high as 70% of the total volume of the heel. The relatively large volume 7 of the hollow portion 12 to the total volume of the heel makes possible not only a substantial economy in the quantity of plastic needed for the manufacture of the heel, but, what is more important, produces a lighter and more resilient heel and a more comfortable shoe.
The further features of the insert embedded in the plastic to anchor the fasteners of the heel to the shoe and the modified softened, tougher and less brittle plastic adjacent the insert and through which the fasteners must be driven in attaching the heel to the shoe, make the rigid resilient hollow plastic heel of this application superior in quality.
From the above detailed description, it is apparent that the heel of this application is the result of a fundamentally novel conception which has made available a novel, practical, highly useful and greatly improved heel construction for ladies shoes embodying a single unitary hollow rigid plastic heel, light in weight and economical to manufacture.
The rigid hollow heel comprises a relatively thin arcuate side and back wall, a thin forward or instep wall, a heavier and thicker ground-contacting portion, and a novel upper or shoe-contacting wall portion reinforced by an insert in which the fastening means for attaching the heel to the shoe are anchored. In certain embodiments, the heel has a portion of the upper wall member, through which pass the fastening means attaching the heel to the shoe, composed adjacent the insert of a tougher, less brittle rigid plastic, but at the same time integral with the more rigid plastic of the rest of the heel. This permits the fastening means, whether nails or screws or other fastening elements, to penetrate the toughened, less brittle rigid plastic portion more readily and to minimize the cracking or splitting of the heel during its attachment to the shoe by means of the specialized machinery now commonly used in the shoe manufacturing industry.
It will be obvious that in addition to the advantages above indicated, other advantages accrue to both the manufacturer of shoes and to thewearer of shoes which embody the invention of this application.
To the manufacturer, the utilization of the standard machines for attaching the hollow plastic heels of this invention to the proper sole portion of the shoe brings about substantial economies, and further, the hollow plastic heels of this invention are more economical to manufacture, making a double economy to the manufacturer in the utilization of the heels of this applicatron.
To the wearer of quality shoes having the hollow plastic heels of this invention, the lighter heel is not only more comfortable, but also the strength of the joinder of the heel to the shoe insures a trim neat appearance of a new shoe throughout the useful life of the shoe by the maintenance of the original lines of the heel and shoe, a very desirable feature in high quality ladies shoes.
The invention of this application may be carried out in other specific ways than those herein set forth without departing from the spirit and essential characteristics of the invention, and the embodiments hereinabove set forth are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
What is claimed is:
l. A rigid resilient hollow plastic tall slim heel comprising a hollow coreless plastic heel consisting of a relatively thin arcuate rear and side wall portion, an instep wall portion of substantially the same thickness as the rear and side wall portion, the said rear, side and instep wall portions being for the most part of substantially uniform thickness, a ground-contacting wall portion and a concave, shoe-contacting portion, each of materially greater thickness than the arcuate rear and side wall portion, all the said wall portions collectively constituting a single integral wall structure of the hollow coreless plastic heel, the inner wall surfaces of the said integral wall structure defining a hollow completely closed void, the said concave shoe-contacting wall portion being of substantially greater thickness than the said rear, side and instep wall portions and having a plate insert embedded within and surrounded by a layer of plastic of the shoe-contacting wall portion in a position to be penetrated by fastening means by which the heel is attached to the shoe, the plastic adjacent the insert being tougher and more readily penetrated by fastening means than the plastic in the remainder of the heel.
2. A light strong rigid resilient hollow plastic heel com prising a hollow coreless integral plastic heel having relatively thin arcuate rear and side wall portions, relatively thin instep wall portion, relatively thick bottom ground-contacting wall portion, and a relatively thick concave top shoe-contacting wall portion, all said wall portions together constituting a single integral one-piece wall structure of the said hollow coreless plastic heel, the interior surfaces of the said integral wall structure defining a single hollow completely closed empty chamber free of any interior supporting and wall defining means and of a shape approximately similar to the shape defined by the exterior surfaces of the heel, the said relatively thick concave top shoe-contacting wall portion having a plate insert embedded therein in a position to serve as an anchor for the fasteners by which the heel is attached to the shoe.
3. A light strong rigid resilient hollow plastic heel comprising a hollow coreless integral plastic heel having relatively thin arcuate rear and side Wall portions, relatively thin instep wall portion, relatively thick bottom ground-contacting wall portion, and a relatively thick concave top shoe-contacting wall portion, all said wall portions together constituting a single integral one-piece wall structure of the said hollow coreless plastic heel, the interior surfaces of the said integral wall structure defining a single hollow completely closed empty chamber free of any interior supporting and wall defining means and of a shape approximately similar to the shape defined by the exterior surfaces of the heel, the said relatively thick concave top shoe-contacting wall portion having a plate insert embedded therein in a position to serve as an anchor for the fasteners by which the heel is attached to the shoe, the plastic adjacent the insert being tougher and more readily penetrated by the fastening means than the plastic in the remainder of the heel.
4. A light strong rigid resilient hollow plastic tall slim heel comprising a hollow coreless plastic heel consisting of a relatively thin arcuate rear and side wall portion, an instep wall portion of substantially the same thickness as the rear and side wall portion, the said rear, side and instep wall portions being relatively thin and for the most part of substantially uniform thickness, a ground-contacting wall portion and a concave shoe-contacting portion, each of materially greater thickness than the arcuate rear and side wall portion, all the said wall portions collectively constituting a single integral complete wall structure of the hollow coreless plastic heel, the inner wall surfaces of the said integral wall structure defining a single hollow completely closed chamber free of any interior strengthening means, the said concave shoe-contacting wall portion being of substantially greater thickness than the said rear, side and instep wall portions and having a plate insert embedded within and surrounded by a layer of plastic of the shoe-contacting wall portion in a position to be penetrated by fastening means by which the heel is attached to the shoe.
5. A strong resilient hollow heel comprising an integral one-piece hollow plastic heel-shaped body having an angularly disposed comparatively thick shoe-contacting top portionand having a vertical portion integral with and extending downwardly from said top portion and tapering inwardly and downwardly from the perimeter of said top portion to form within the said body a closed central cavity of generally decreasing cross section downwardly from the said top portion, the walls of said vertical portion converging to a solid comparatively thick ground-contacting portion, and a plate insert embedded within and completely surrounded by the plastic of the said top portion.
6. A plastic heel comprising an integral one-piece hollow plastic heel-shaped body having a relatively thick shoe-contacting top portion and having a vertical portion integral with and extending downwardly from said top portion, said vertical portion having walls tapering inwardly and downwardly from the perimeter of said top portion to form within said body a closed central cavity, the walls defining said cavity converging down- '10 I wardly to a comparatively thick ground-contacting portion, and a plate insert embedded within and spaced from both the outer and the inner surfaces of the said top portion and disposed generally parallel to the inner surface of the said top portion.
References Cited in the file of this patent UNITED STATES PATENTS 1,710,378 Owen Apr. 23, 1929 1,733,185 De Witt Oct. 29, 1929 1,867,132 Berenstein July 12, 1932 2,023,441 Riddock Dec. 10, 1935 2,312,008 Tobey Feb. 23, 1943 2,312,197 Simon Feb. 23, 1943 2,330,233 Morris Sept. 28, 1943 2,600,819 Walsh June 17, 1952
US637463A 1957-01-31 1957-01-31 Hollow plastic heels Expired - Lifetime US2918736A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US637463A US2918736A (en) 1957-01-31 1957-01-31 Hollow plastic heels
US706047A US2918703A (en) 1957-01-31 1957-12-30 Method of producing hollow plastic heels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US637463A US2918736A (en) 1957-01-31 1957-01-31 Hollow plastic heels

Publications (1)

Publication Number Publication Date
US2918736A true US2918736A (en) 1959-12-29

Family

ID=24556053

Family Applications (1)

Application Number Title Priority Date Filing Date
US637463A Expired - Lifetime US2918736A (en) 1957-01-31 1957-01-31 Hollow plastic heels

Country Status (1)

Country Link
US (1) US2918736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109246A (en) * 1960-12-19 1963-11-05 William J Walsh Shoe heel construction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1710378A (en) * 1928-07-26 1929-04-23 William A Owen Composite heel
US1733185A (en) * 1927-09-24 1929-10-29 Shoe Form Co Inc Heel for footwear
US1867132A (en) * 1931-02-06 1932-07-12 Panco Rubber Company Method of making rubber heels
US2023441A (en) * 1933-01-17 1935-12-10 M H Rourke Shoe heel
US2312008A (en) * 1941-01-25 1943-02-23 Frank H Tobey Heel for shoes
US2312197A (en) * 1941-03-27 1943-02-23 Cy I Simon Shoe heel
US2330233A (en) * 1939-12-09 1943-09-28 B B Chem Co Molded article and method of making the same
US2600819A (en) * 1949-11-05 1952-06-17 William J Walsh Shoe heel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1733185A (en) * 1927-09-24 1929-10-29 Shoe Form Co Inc Heel for footwear
US1710378A (en) * 1928-07-26 1929-04-23 William A Owen Composite heel
US1867132A (en) * 1931-02-06 1932-07-12 Panco Rubber Company Method of making rubber heels
US2023441A (en) * 1933-01-17 1935-12-10 M H Rourke Shoe heel
US2330233A (en) * 1939-12-09 1943-09-28 B B Chem Co Molded article and method of making the same
US2312008A (en) * 1941-01-25 1943-02-23 Frank H Tobey Heel for shoes
US2312197A (en) * 1941-03-27 1943-02-23 Cy I Simon Shoe heel
US2600819A (en) * 1949-11-05 1952-06-17 William J Walsh Shoe heel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109246A (en) * 1960-12-19 1963-11-05 William J Walsh Shoe heel construction

Similar Documents

Publication Publication Date Title
US2918703A (en) Method of producing hollow plastic heels
US4972611A (en) Shoe construction with resilient, absorption and visual components based on spherical pocket inclusions
US2470089A (en) Method of molding plastic shoes
US2651118A (en) Molding soles and heels to uppers
US2129106A (en) Footwear
US2621140A (en) Method for molding propeller blades
US2534947A (en) Golf club head
US2968106A (en) Lightweight heels
US3791050A (en) Shoe sole and heel
US2381389A (en) Plastic shoe
US2918736A (en) Hollow plastic heels
US2256329A (en) Method of making footwear
US2180924A (en) Rubber footwear
US1877298A (en) Heel molding method
US2266575A (en) Shoe heel
US3246068A (en) Injection molded shoe bottom
US2918737A (en) Hollow plastic shoe heel
US2260155A (en) Toilet seat
US3009204A (en) Apparatus for use in making footwear having molded outersoles
US3559311A (en) Golf shoes
US3246059A (en) Process for the preparation of form pressed parts of light specific gravity from foamed synthetic plastics
US2312008A (en) Heel for shoes
US2317475A (en) Shoe bottom unit and method of making the same
US3184865A (en) Molded composite heel and removable tap
US2370303A (en) Shoe sole