US2914637A - System and device for prolonging the life of current energized filamentary elements - Google Patents

System and device for prolonging the life of current energized filamentary elements Download PDF

Info

Publication number
US2914637A
US2914637A US562068A US56206856A US2914637A US 2914637 A US2914637 A US 2914637A US 562068 A US562068 A US 562068A US 56206856 A US56206856 A US 56206856A US 2914637 A US2914637 A US 2914637A
Authority
US
United States
Prior art keywords
current
resistance
prolonging
thermomotive
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US562068A
Inventor
Robert C Wuerth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US562068A priority Critical patent/US2914637A/en
Priority claimed from GB10369/58A external-priority patent/GB823631A/en
Application granted granted Critical
Publication of US2914637A publication Critical patent/US2914637A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/54Circuit arrangements for protecting such amplifiers with tubes only
    • H03F1/544Protection of filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/504Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by thermal means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/901Starting circuits

Definitions

  • FIG. 3 SYSTEM AND DEVICE FOR PROLONGING THE LIFE OF CURRENT ENERGIZED F ILAMENTARY ELEMENTS Filed Jan. so. 1956 FIG. 3.
  • the device of the present invention may be made extremely compact. It is easily installed in commercial receivers and, at the same time, it is inexpensive to make and may be made from conventional, commercially available elements. Furthermore, its construction does not require great precision, although as the accuracy with which current control is achieved is increased, the dimensions must be controlled much more closely.
  • the present invention consists of a circuit element for use in a filamentary circuit to initially limit a current and subsequently to permit full-rated current to flow.
  • the element consists of a structure having parallel circuit branches, one of these branches contains a heat-producing current-limiting resistance and the other branch contains a thermomotive member having a relatively small resistance.
  • This thermomotive member must be positioned to be heated by the current-limiting resistance.
  • a pair of normally open contacts are employed, one of which is supported by the thermomotive member in such position that the movement of the thermomotive member, in response to heating by the current-limiting resistance, will cause the contacts to close.
  • the resistance of the thermomotive member must be suflicient to cause the current passing through it to generate enough heat to keep the thermomotive member in closed contact position once the contacts have been closed and as long as current continues to flow through the circuit.
  • FIG. 1 is a plan view from above of a preferred form of the present invention
  • Fig. 2 is a side elevational view of the device of Fig. 1, showing the movement involved in its operation;
  • Fig. 3 is a circuit diagram showing schematically the use of the device of the present invention.
  • a high-resistance, heat-producing element is preferably embedded in a rigid, elongated refractory body 11, which will become sulficiently heated by the heating of the resistance 10 to cause actuation of the thermomotive member.
  • the resistance element 10 has terminals 12 and 13 extending out the opposite ends of the elongated refractory member 11.
  • Refractory member 11 is preferably a rectangular solid preferably having an essentially square cross section. The square cross section provides flat surfaces against any one of which the thermomotive member 14 may be mounted.
  • thermomotive member 14 is preferably bimetal and it may extend, as shown, around the end of the refractory body in portions 15 and 16. Portion 15 is firmly connected to the terminal 12 and portion 16 provides a clamp-like action in order to aid holding the thermomotive member in place and prevent its rotation relative to square body 11. Any other suitable arrangement can be used and the thermomotive member need be only a part of the structure 14, 15, 16. Moreover, the thermomotive member need not be a bimetal strip, but may be of any other suitable form or any other type of thermomotive element such as a bellows.
  • thermomotive member At the end of the thermomotive member is a contact 17 which lies opposite contact 18 which is supported on angle bracket 19, which is in turn supported on terminal 13. Bracket 19 is of such dimension that the contact 18 is normally spaced from contact 17 since the thermomotive member is preferably made to normally lie flat against the refractory body.
  • the bimetal thermomotive member 14 When the refractory body is heated by a flow of current through the resistance element 10, the bimetal thermomotive member 14 is readily heated and, because of its thermal properties, tends to flex upward into the position shown in dotted lines, eventually causing contacts 17 and 18 to close. At this point, current flows through the path 15, 14, 17, 18, 19 instead of through resistance 10.
  • thermomotive member 14 must be selected from a variety of materials and of such dimensions that the current flowing through it will produce suflicient heating to keep it flexed into close contact position.
  • the circuit shown in Fig. 3 includes the device of the present invention shown somewhat schematically but with all its essential elements present.
  • the resistance 10 is shown without a refractory body but it could be used without a refractory body in certain instances and, if it were desirable to enclose the unit within a vacuum envelope or within a gas filled envelope, it would probably be desirable to eliminate the refractory body.
  • the thermomotive member 14 could, of course, be supported on some rigid insulator and have a lead connected between it and terminal 12 instead of having the bend 15 in the bimetal member fixed to terminal 12 of the resistor 10.
  • the device as a unit has its terminal leads 12, 13 placed in series with the filaments 20 within bulb envelopes 21, and the bulbs 20-21 are illustrated schematically without showing other tube elements, which may or may not be present. They would not be present, for example, if the structures shown were electric light bulbs rather than vacuum tubes.
  • thermomotive member 14 In operation, current is applied across terminals 22.-23. This current flows through resistor 10 which has the effect of limiting the current flow reaching the various filaments 20. As the current-limiting impedance 10 heats up, however, the heat which it generates causes thermomotive member 14 to flex so that its contact 17 eventually touches contact 18. Since the resistance of path 15, 14, 17, 18, 19 is much lower than resistance than current-limiting impedance 10, most of the current will then tend to flow through the thermomotive member. This current will be suflicient to heat member 14 which has such selected dimensions and physical properties that it will be heated sufllciently by current flowing through it to keep the contacts 17, 18 closed.
  • the size of the current-limiting resistance 10 is selected to reduce current sufliciently that the filaments 20 will not be severely shocked.
  • the size of resistance selected in different instances for different application will depend upon the types of filaments employed and their rated current and the voltage applied across them normally. It
  • a circuit element for use in a filament circuit to initially limit current and subsequently to permit full rated current to flow comprising a structure having parallel circuit branches one of which contains a heat producing, current limiting resistance and the other of which contains a thermomotive member having a relatively small resistance and positioned to be heated by the current limiting resistance and a pair of normally open contacts one of which is supported by the thermomotive member in such position that the movement of the thermomotive member in response to heating by the current limiting resistance will close the contacts, the resistance of the thermomotive member being sufficient to cause the current passing therethrough to generate enough heat to keep the thermomotive member in closed contact po sition.
  • thermomotive member is a bimetal strip one end of which is fixed relative to the current limiting resistance and the other end of which is free and supports one of the contacts and in which the other contact is fixed relative to the resistance in such position that the free end will move toward said fixed contact upon being heated.
  • a circuit element comprising a current limiting resistance in an elongated rigid body which heats as current heats the resistance and having terminal leads extending from opposite ends of the body, a bimetal strip positioned adjacent the body, fixed at one end to one terminal and bearing a contact at its other end on the side remote from the body and a contact support fixed relative to the rigid body, connected to the other terminal and supporting a contact in position to be contacted by the contact on the bimetal strip when the strip is heated by the elongated rigid body, the bimetal strip having sufficient resistance for the current passing through it to generate enough heat to keep the bimetal bent away from the elongated body and the contacts closed.

Description

Nov. 24, 1959 R. c. WUERTH 2,914,637
SYSTEM AND DEVICE FOR PROLONGING THE LIFE OF CURRENT ENERGIZED F ILAMENTARY ELEMENTS Filed Jan. so. 1956 FIG. 3.
f I g INVENTOR ROBERT C. WUERTH ATTYS.
United States Patent SYSTEM AND DEVICE FOR PROLONGING THE LIFE OF CURRENT ENERGIZED FILAMENTARY ELEMENTS Robert C. Wuerth, Philadelphia, Pa. Application January 30, 1956, Serial No. 562,068 '3 Claims. (Cl. 200-122) This invention relates to a device for prolonging the life of electron tubes, electric light bulbs, and the like,
i by prolonging the life of their current-energized filaments.
or substantially eliminate, the shock to them. Elimination of shock to filaments is also my primary object in the present instance. However, in this instance, the mechanism accomplishing the end is even simpler and more universally useful than the mechanism described in my copending application. Moreover, the device of the present invention may be made extremely compact. It is easily installed in commercial receivers and, at the same time, it is inexpensive to make and may be made from conventional, commercially available elements. Furthermore, its construction does not require great precision, although as the accuracy with which current control is achieved is increased, the dimensions must be controlled much more closely.
Broadly speaking, the present invention consists of a circuit element for use in a filamentary circuit to initially limit a current and subsequently to permit full-rated current to flow. The element consists of a structure having parallel circuit branches, one of these branches contains a heat-producing current-limiting resistance and the other branch contains a thermomotive member having a relatively small resistance. This thermomotive member must be positioned to be heated by the current-limiting resistance. A pair of normally open contacts are employed, one of which is supported by the thermomotive member in such position that the movement of the thermomotive member, in response to heating by the current-limiting resistance, will cause the contacts to close. The resistance of the thermomotive member must be suflicient to cause the current passing through it to generate enough heat to keep the thermomotive member in closed contact position once the contacts have been closed and as long as current continues to flow through the circuit.
For a better understanding of the present invention, reference is made to the following drawings, in which Fig. 1 is a plan view from above of a preferred form of the present invention;
' Fig. 2 is a side elevational view of the device of Fig. 1, showing the movement involved in its operation; and
Fig. 3 is a circuit diagram showing schematically the use of the device of the present invention.
Referring to Figs. 1 and 2, a high-resistance, heat-producing element is preferably embedded in a rigid, elongated refractory body 11, which will become sulficiently heated by the heating of the resistance 10 to cause actuation of the thermomotive member. The resistance element 10 has terminals 12 and 13 extending out the opposite ends of the elongated refractory member 11. Refractory member 11 is preferably a rectangular solid preferably having an essentially square cross section. The square cross section provides flat surfaces against any one of which the thermomotive member 14 may be mounted.
The thermomotive member 14 is preferably bimetal and it may extend, as shown, around the end of the refractory body in portions 15 and 16. Portion 15 is firmly connected to the terminal 12 and portion 16 provides a clamp-like action in order to aid holding the thermomotive member in place and prevent its rotation relative to square body 11. Any other suitable arrangement can be used and the thermomotive member need be only a part of the structure 14, 15, 16. Moreover, the thermomotive member need not be a bimetal strip, but may be of any other suitable form or any other type of thermomotive element such as a bellows.
At the end of the thermomotive member is a contact 17 which lies opposite contact 18 which is supported on angle bracket 19, which is in turn supported on terminal 13. Bracket 19 is of such dimension that the contact 18 is normally spaced from contact 17 since the thermomotive member is preferably made to normally lie flat against the refractory body. When the refractory body is heated by a flow of current through the resistance element 10, the bimetal thermomotive member 14 is readily heated and, because of its thermal properties, tends to flex upward into the position shown in dotted lines, eventually causing contacts 17 and 18 to close. At this point, current flows through the path 15, 14, 17, 18, 19 instead of through resistance 10.
The thermomotive member 14 must be selected from a variety of materials and of such dimensions that the current flowing through it will produce suflicient heating to keep it flexed into close contact position.
The circuit shown in Fig. 3 includes the device of the present invention shown somewhat schematically but with all its essential elements present. The resistance 10 is shown without a refractory body but it could be used without a refractory body in certain instances and, if it were desirable to enclose the unit within a vacuum envelope or within a gas filled envelope, it would probably be desirable to eliminate the refractory body. The thermomotive member 14 could, of course, be supported on some rigid insulator and have a lead connected between it and terminal 12 instead of having the bend 15 in the bimetal member fixed to terminal 12 of the resistor 10. The device as a unit has its terminal leads 12, 13 placed in series with the filaments 20 within bulb envelopes 21, and the bulbs 20-21 are illustrated schematically without showing other tube elements, which may or may not be present. They would not be present, for example, if the structures shown were electric light bulbs rather than vacuum tubes.
In operation, current is applied across terminals 22.-23. This current flows through resistor 10 which has the effect of limiting the current flow reaching the various filaments 20. As the current-limiting impedance 10 heats up, however, the heat which it generates causes thermomotive member 14 to flex so that its contact 17 eventually touches contact 18. Since the resistance of path 15, 14, 17, 18, 19 is much lower than resistance than current-limiting impedance 10, most of the current will then tend to flow through the thermomotive member. This current will be suflicient to heat member 14 which has such selected dimensions and physical properties that it will be heated sufllciently by current flowing through it to keep the contacts 17, 18 closed.
The size of the current-limiting resistance 10 is selected to reduce current sufliciently that the filaments 20 will not be severely shocked. The size of resistance selected in different instances for different application will depend upon the types of filaments employed and their rated current and the voltage applied across them normally. It
termine how long after the initial application or" voltage 4 across terminals 22-23 it will take for the contacts 17, 18 to close and hence for essentially the full-rated voltage to be applied across the tube filaments.
Although the form of the device shown in Figs. 1 and 2 may be modified, and even the form shown in Fig. 3 may be modified slightly, the choice of the elements 10, 14 and their position relative to one another is limited as previously described. However, many changes within the scope of these limitations are possible and are intended to be within the scope and spirit of the present invention.
I claim:
1. A circuit element for use in a filament circuit to initially limit current and subsequently to permit full rated current to flow comprising a structure having parallel circuit branches one of which contains a heat producing, current limiting resistance and the other of which contains a thermomotive member having a relatively small resistance and positioned to be heated by the current limiting resistance and a pair of normally open contacts one of which is supported by the thermomotive member in such position that the movement of the thermomotive member in response to heating by the current limiting resistance will close the contacts, the resistance of the thermomotive member being sufficient to cause the current passing therethrough to generate enough heat to keep the thermomotive member in closed contact po sition.
2. The circuit element of claim 1 in which the thermomotive member is a bimetal strip one end of which is fixed relative to the current limiting resistance and the other end of which is free and supports one of the contacts and in which the other contact is fixed relative to the resistance in such position that the free end will move toward said fixed contact upon being heated.
3. A circuit element comprising a current limiting resistance in an elongated rigid body which heats as current heats the resistance and having terminal leads extending from opposite ends of the body, a bimetal strip positioned adjacent the body, fixed at one end to one terminal and bearing a contact at its other end on the side remote from the body and a contact support fixed relative to the rigid body, connected to the other terminal and supporting a contact in position to be contacted by the contact on the bimetal strip when the strip is heated by the elongated rigid body, the bimetal strip having sufficient resistance for the current passing through it to generate enough heat to keep the bimetal bent away from the elongated body and the contacts closed.
References Cited in the file of this patent UNITED STATES PATENTS 283,492 Kinsman Aug. 21, 1883 1,701,757 Lea Feb. 12, 1929 1,806,796 Gates May 26, 1931 1,898,174 Dubilier Feb. 21, 1933 1,960,408 Brach May 29, 1934 2,185,130 Morrill et a1 Dec. 26, 1939 2,774,845 Lituchy Dec. 18, 1956 FOREIGN PATENTS 1197/31 Australia Mar. 16, 1931 458,020 Great Britain Dec. 10, 1936
US562068A 1956-01-30 1956-01-30 System and device for prolonging the life of current energized filamentary elements Expired - Lifetime US2914637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US562068A US2914637A (en) 1956-01-30 1956-01-30 System and device for prolonging the life of current energized filamentary elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US562068A US2914637A (en) 1956-01-30 1956-01-30 System and device for prolonging the life of current energized filamentary elements
GB10369/58A GB823631A (en) 1958-04-01 1958-04-01 Current limiting device for safeguarding circuit elements from excessive starting currents

Publications (1)

Publication Number Publication Date
US2914637A true US2914637A (en) 1959-11-24

Family

ID=26247470

Family Applications (1)

Application Number Title Priority Date Filing Date
US562068A Expired - Lifetime US2914637A (en) 1956-01-30 1956-01-30 System and device for prolonging the life of current energized filamentary elements

Country Status (1)

Country Link
US (1) US2914637A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1120013B (en) * 1960-07-28 1961-12-21 Carl Braun Circuit arrangement for reducing the starting current of incandescent lamps, in particular light throw lamps
US3059693A (en) * 1959-07-20 1962-10-23 Controls Co Of America Control system
US3084237A (en) * 1960-11-14 1963-04-02 Philco Corp Electrical apparatus
US3105889A (en) * 1957-08-17 1963-10-01 Philips Corp Bimetallic starter switch for gas discharge tubes
US3248502A (en) * 1963-10-18 1966-04-26 Essex Wire Corp Thermally responsive circuit breaker for electric cigar lighter
US3265839A (en) * 1963-08-05 1966-08-09 Fasco Industries Thermally-operable circuit breaker
US3501718A (en) * 1968-09-30 1970-03-17 Robertshaw Controls Co Rapid opening time-delay relay
US3526753A (en) * 1966-12-08 1970-09-01 Ardco Inc Anti-shock control devices for electrically heated glass
US3532849A (en) * 1969-06-09 1970-10-06 Casco Products Corp Bimetal shunt for electric cigar lighter
US3601736A (en) * 1969-06-23 1971-08-24 Wagner Electric Corp Time delay bimetallic relay
US3760317A (en) * 1972-01-31 1973-09-18 Gen Signal Corp Thermally actuated control device and circuit
US3868540A (en) * 1973-10-29 1975-02-25 Gte Sylvania Inc Incandescent lamp having extended lamp life
US6616416B1 (en) * 2002-02-19 2003-09-09 Bristol Compressors, Inc. Methods and system for motor optimization using capacitance and/or voltage adjustments

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US283492A (en) * 1883-08-21 Fbanr e
US1701757A (en) * 1922-04-13 1929-02-12 John M Lea Electric-circuit-controlling device
US1806796A (en) * 1931-05-26 Javvvivvvma-i
AU119731A (en) * 1931-09-11 1931-09-17 Nv. Philips' Gloeilampenfabrieken Improvements in or relating to devices for maintaining constant the current in consumption apparatus
US1898174A (en) * 1926-09-11 1933-02-21 Dubilier William Flasher device
US1960408A (en) * 1933-10-04 1934-05-29 Leon S Brach Means for preventing radio interference from neon signs
GB458020A (en) * 1935-07-05 1936-12-10 Philips Nv Improvements in or relating to switch devices for use with electric rectifiers
US2185130A (en) * 1937-12-21 1939-12-26 Gen Electric Apparatus for starting electric motors
US2774845A (en) * 1955-02-15 1956-12-18 Noel J Lituchy Electric light flasher

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US283492A (en) * 1883-08-21 Fbanr e
US1806796A (en) * 1931-05-26 Javvvivvvma-i
US1701757A (en) * 1922-04-13 1929-02-12 John M Lea Electric-circuit-controlling device
US1898174A (en) * 1926-09-11 1933-02-21 Dubilier William Flasher device
AU119731A (en) * 1931-09-11 1931-09-17 Nv. Philips' Gloeilampenfabrieken Improvements in or relating to devices for maintaining constant the current in consumption apparatus
US1960408A (en) * 1933-10-04 1934-05-29 Leon S Brach Means for preventing radio interference from neon signs
GB458020A (en) * 1935-07-05 1936-12-10 Philips Nv Improvements in or relating to switch devices for use with electric rectifiers
US2185130A (en) * 1937-12-21 1939-12-26 Gen Electric Apparatus for starting electric motors
US2774845A (en) * 1955-02-15 1956-12-18 Noel J Lituchy Electric light flasher

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105889A (en) * 1957-08-17 1963-10-01 Philips Corp Bimetallic starter switch for gas discharge tubes
US3059693A (en) * 1959-07-20 1962-10-23 Controls Co Of America Control system
DE1120013B (en) * 1960-07-28 1961-12-21 Carl Braun Circuit arrangement for reducing the starting current of incandescent lamps, in particular light throw lamps
US3084237A (en) * 1960-11-14 1963-04-02 Philco Corp Electrical apparatus
US3265839A (en) * 1963-08-05 1966-08-09 Fasco Industries Thermally-operable circuit breaker
US3248502A (en) * 1963-10-18 1966-04-26 Essex Wire Corp Thermally responsive circuit breaker for electric cigar lighter
US3526753A (en) * 1966-12-08 1970-09-01 Ardco Inc Anti-shock control devices for electrically heated glass
US3501718A (en) * 1968-09-30 1970-03-17 Robertshaw Controls Co Rapid opening time-delay relay
US3532849A (en) * 1969-06-09 1970-10-06 Casco Products Corp Bimetal shunt for electric cigar lighter
US3601736A (en) * 1969-06-23 1971-08-24 Wagner Electric Corp Time delay bimetallic relay
US3760317A (en) * 1972-01-31 1973-09-18 Gen Signal Corp Thermally actuated control device and circuit
US3868540A (en) * 1973-10-29 1975-02-25 Gte Sylvania Inc Incandescent lamp having extended lamp life
US6616416B1 (en) * 2002-02-19 2003-09-09 Bristol Compressors, Inc. Methods and system for motor optimization using capacitance and/or voltage adjustments

Similar Documents

Publication Publication Date Title
US2914637A (en) System and device for prolonging the life of current energized filamentary elements
US2306509A (en) Gas detector
US2847536A (en) Anticipatory heater circuit for thermostat controls
US2023748A (en) Electrical resistance apparatus
US2609466A (en) Thermorelay element
US2372295A (en) Starting device for fluorescent tubes
US2369215A (en) Humidity-responsive switch
US3272944A (en) Encapsulated thermostatic switch having a heater disposed in the stem
US3950741A (en) Accessory outage monitoring circuitry
US1722511A (en) Resistor
US2375967A (en) Circuits
US1694107A (en) System for detecting and controlling humidity variations
US1932071A (en) Thermostatic heat control switch
US2512268A (en) Permanent magnet hot-wire starting device
US1738150A (en) Heating element
US2875377A (en) Electron discharge devices
US2346109A (en) Electric discharge lamp and starting device
US3176101A (en) Liquid contact switch with auxiliary heating means
US3172011A (en) Electrical circuit control apparatus
US1209862A (en) Electric heating appliance.
US3105889A (en) Bimetallic starter switch for gas discharge tubes
US2564853A (en) Thermally operated electric switch
US2949518A (en) Thermostatic time delay relay
US1847036A (en) Connecting means for electrical switches
US684094A (en) Heater cut-out for electric lamps.