US2913377A - Aqueous electrolytic process - Google Patents
Aqueous electrolytic process Download PDFInfo
- Publication number
- US2913377A US2913377A US590389A US59038956A US2913377A US 2913377 A US2913377 A US 2913377A US 590389 A US590389 A US 590389A US 59038956 A US59038956 A US 59038956A US 2913377 A US2913377 A US 2913377A
- Authority
- US
- United States
- Prior art keywords
- aqueous
- lead
- compounds
- acid
- anodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000007743 anodising Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 150000002913 oxalic acids Chemical class 0.000 claims description 2
- 150000003016 phosphoric acids Chemical class 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 29
- 239000003595 mist Substances 0.000 description 12
- 239000007921 spray Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 8
- -1 fluorocarbon sulfonic acids Chemical class 0.000 description 8
- 239000006260 foam Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 229940126214 compound 3 Drugs 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 229910000978 Pb alloy Inorganic materials 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000005363 electrowinning Methods 0.000 description 3
- 230000009931 harmful effect Effects 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000011260 aqueous acid Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- JABNAQCRWXPVIN-UHFFFAOYSA-N 4-ethylcyclohexane-1-sulfonic acid Chemical compound CCC1CCC(S(O)(=O)=O)CC1 JABNAQCRWXPVIN-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- STECJAGHUSJQJN-USLFZFAMSA-N LSM-4015 Chemical compound C1([C@@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-USLFZFAMSA-N 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920001617 Vinyon Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- OIDPCXKPHYRNKH-UHFFFAOYSA-J chrome alum Chemical compound [K]OS(=O)(=O)O[Cr]1OS(=O)(=O)O1 OIDPCXKPHYRNKH-UHFFFAOYSA-J 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- LWUVWAREOOAHDW-UHFFFAOYSA-N lead silver Chemical compound [Ag].[Pb] LWUVWAREOOAHDW-UHFFFAOYSA-N 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 125000005459 perfluorocyclohexyl group Chemical group 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
Definitions
- This invention relates to the prevention of mist and spray by the use of a surface-active fluorocarbon sulfonic acid dissolved in the aqueous acidic solutions of certain electrolytic processes employing insoluble or highly polarized anodes at which gases such as oxygen, ozone or chlorine are evolving.
- ordinary surface-active agents can prevent the mist and spray which is evolved by gases that are liberated in aqueous electrolytic processes.
- the surface-active agents accomplish this by lowering the surface tension of the aqueous electrolyte and by forming a foam blanket with the evolved gases which can greatly minimize mist and spray.
- ordinary surface-active agents are used, for example, in alkaline electrolytic cleaners, and also in non-electrolytic processes such as acid dips and metal pickling operations for the prevention of mist and spray from evolved hydrogen.
- the oxidized and hydrolyzed products resulting from the degradation of ordinary surface-active agents may cause harmful results on the insoluble or highly polarized anode (for example, cause excessive attack of lead anodes if acetic acid is one of the oxidation byproducts) or cause a harmful effect on cathodically deposited metals such as pitted zinc plate from acidic zinc sulfate solutions or pitted chromium cathodes from chrome-alum solutions in case the oxidation residues of the surface-active compound are oily or grease-like.
- the compounds of Table I show exceptional surfaceactivity (they are capable of lowering the surface tension of aqueous electrolytes down to 20-25 dynes/cm.) and arecapableof forming thin foam blankets with'the I from the completely successful minimization or preven 2,913,377 Patented Nov. 17, 1959 bubbles of evolved gases, preventing or greatly minimizing the formation of mist and spray from electrolytic processes employing insoluble or highly polarizedfanodes.
- the very stable compounds of Table I it is very easy to control the mist and spray evolving from.
- the compounds of Table I tend to greatly decrease the contact angle of the bubbles adhering to the cathode and the bubbles do not grow large but readily detach from the cathode surface as very fine bubbles.
- the compounds of Table I tend to concentrate at interfaces such as the electrode surfaces and apparently in this way aid in obtaining smoother and more fine-grained plate, which are very desirable characteristics in plating thick cathode sheets as in electrowinning.
- the compounds of Table I do not appear to plate out to any noticeable extent and electrodeposits (Zn, Cd, Mn, and Cr plated from theirsulfate salts) are found not to contain any sulfur contributed by the surface-active agent, unlike the case often found with ordinary sulfonic surface-active compounds.
- Table I to be used in the aqueous electrolytic processes are from about 0.003 gram/liter for the more active compounds to about 6 grams per liter for least active:
- Example 3 is preferredas it maintains a thin foam blanket with the least concentration most readily at high- 3 er tempeiatiiresi However-"where very low foaming is required, Examples Sand 6a'r'epreferred.
- about three hydrogen atoms may be substituted for fluorine atoms, or about one hydrogen or One -(:lilbfin "aibfn cid'b'jfdschfbll' every other carbon atom carrying fluorine and actually "two hydroge'ns or chlorine 'ammscan be ptes'e'nto1'1 the same carbon atom when adjacent to acarbon atom" carrying at least two fluorine'atoms; withoufseriously decreasing the effectiveness or the stability of the compounds of Table-1.
- the preferred'compounds' are thus, the compounds ofTable I, from the standpoint oPefi'ectiveness and stability.
- Example I Aqueous acid zinc Cathode current-densities of 5 to over 1,000 amperes/ sq. ft. depending on the acidity of the bath andthe degree of agitation.
- Example 2- A'queous acid'cad'mium' sulfate baths with lead or lead alloy anodes.”
- Example '3 Aqueous acid copper sulfate baths lead or lead alloy anodes.
- Example'4 Aqueous manganous sulfate. baths. with lead or lead alloy anodes, and the anode; compartment separated. by
- Example 5 Aqueous acidic cbromic sulfate baths with lead or lead alloy anodes, and the anode compartment separated by a porous diaphragm (e.g. Vinyon cloth) from the cathode compartment.
- a porous diaphragm e.g. Vinyon cloth
- the compounds of Table I also give excellent resultsv when aqueous oxalic acid solutions and when aqueous phosphoric acid solutions are used as the anodizing baths.
- compound 3 of Table I perfiuoro n-octyl-l-sulfonic acid
- compound 6 of Table I at concentrations of about 0.3 to 2 grams/liter is generally preferred as itdoes not tend to over-foam.
- compound 3 of Table I perfiuoro n-octyl-l-sulfonic acid
- perfluoroalkane sulfonic acids of this invention may be used in form of salts, for example, sodium or potassium salts, also they may be characterized or defined as fiuoroalkane sulfonic acids or sulfonates of six to ten carbon atoms inclusive, in Which the fluorine atoms exceed the number of chlorine or hydrogen atoms that may be present in the fluorocarbon chain.
- anodizing process employing essentially insoluble anodes selected from the group consisting of aluminum, manganese and lead and an aqueous solution of an acid selected from the group consisting of sulfuric, phosphoric, and oxalic acids, the improvement comprising minimizing the formation of spray and mist during anodizing by incorporating in said aqueous electrolyte a perfluoro-alkane sulfonic acid of 6-10 carbon atoms inclusive in a quantity to produce therein a concentration of about 0.003 to 6 grams/ liter.
- perfluoro-alkane sulfonic acid is perfluoro n-octyl-l-sulfonic acid and is present in a concentration of about 0.003 gram/liter to about 0.5 gram/liter.
- perfiuoro-alkane sulfonic acid is perfiuoro p-ethyl cyclohexyl sulfonic acid and is present in an amount of about 0.3 to about 2 grams/liter.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Description
can
United States Patent AQUEOUS ELECTROLYTIC PROCESSES Henry Brown, Huntington Woods, Mich., assignor to The Udylite Research Corporation, Detroit, Mich., a corporation of Michigan No Drawing. Application June 11, 1956 Serial No. 590,389
6 Claims. 01. 2 04--ss This invention relates to the prevention of mist and spray by the use of a surface-active fluorocarbon sulfonic acid dissolved in the aqueous acidic solutions of certain electrolytic processes employing insoluble or highly polarized anodes at which gases such as oxygen, ozone or chlorine are evolving.
It is well-known that ordinary surface-active agents can prevent the mist and spray which is evolved by gases that are liberated in aqueous electrolytic processes. The surface-active agents accomplish this by lowering the surface tension of the aqueous electrolyte and by forming a foam blanket with the evolved gases which can greatly minimize mist and spray. Thus, ordinary surface-active agents are used, for example, in alkaline electrolytic cleaners, and also in non-electrolytic processes such as acid dips and metal pickling operations for the prevention of mist and spray from evolved hydrogen. However, in aqueous acidic electrolytic processes involving the use of insoluble or highly polarized anodes, ordinary surface-active agents (which have in common one or more hydrocarbon chains) are oxidized quite rapidly at the insoluble or highly polarized anodes, and it is difficult to control and maintain the proper concentrations of surface-active agents for suppression of mist and spray. Furthermore, in the case of acidic electrolytes employing insoluble or highly polarized anodes, the oxidized and hydrolyzed products resulting from the degradation of ordinary surface-active agents may cause harmful results on the insoluble or highly polarized anode (for example, cause excessive attack of lead anodes if acetic acid is one of the oxidation byproducts) or cause a harmful effect on cathodically deposited metals such as pitted zinc plate from acidic zinc sulfate solutions or pitted chromium cathodes from chrome-alum solutions in case the oxidation residues of the surface-active compound are oily or grease-like.
It has been found that surface-active fluorocarbon sulfonic acids as exemplified in Table I containing 6 to carbon atoms inclusive (preferably 8 carbon atoms) are not oxidized at insoluble or highly polarized anodes in aqueous electrolytic processes even though current densities of over 1,000 amperes per square foot are employed, but instead are completely stable to the powerful oxidizing conditions existing at such insoluble type anodes as, lead and lead alloys (lead-antimony, lead-tin, tellurium lead, lead-silver), graphite, silver, silver alloys, copper alloys, magnetite and silicon containing anodes, and independent of whether lead dioxide, manganese dioxide, peroxides, chlorine, chlorates, persulfates, oxygen or ozone are being formed at the insoluble or highly polarized anodes. Furthermore, these fluorocarbon sulfonic acids of Table I are stable to the reducing conditions existing at cathodes whether the electrolyte is an alkaline, neutral or acidic sulfate or chloride solution.
' The compounds of Table I show exceptional surfaceactivity (they are capable of lowering the surface tension of aqueous electrolytes down to 20-25 dynes/cm.) and arecapableof forming thin foam blankets with'the I from the completely successful minimization or preven 2,913,377 Patented Nov. 17, 1959 bubbles of evolved gases, preventing or greatly minimizing the formation of mist and spray from electrolytic processes employing insoluble or highly polarizedfanodes. Thus, with the very stable compounds of Table I it is very easy to control the mist and spray evolving from. electrolytic processes employing insoluble type anodesat the cathodes at a rate to exceed 2% of the atmosphere when the danger of explosion would be present, the ventilators and baffles are kept free from accumulation of sprayed and dried electrolyte and the need for washers in the ventilating system is eliminated. Apart tion of mist and spray in aqueous electrolytic processes using insoluble anodes accomplished by the compounds of Table I, there is an improvement in the smoothness of metal plate obtained in the presence of the compounds of Table I in certain aqueous electrowinning processes (for Zn, Cd, Mn and Cu from sulfate electrolytes). This is especially noticeable in the more dilute solutions and also where there is a tendency for fine particles and bubbles to stick to the cathodes. The compounds of Table I tend to greatly decrease the contact angle of the bubbles adhering to the cathode and the bubbles do not grow large but readily detach from the cathode surface as very fine bubbles. The compounds of Table I tend to concentrate at interfaces such as the electrode surfaces and apparently in this way aid in obtaining smoother and more fine-grained plate, which are very desirable characteristics in plating thick cathode sheets as in electrowinning. The compounds of Table I do not appear to plate out to any noticeable extent and electrodeposits (Zn, Cd, Mn, and Cr plated from theirsulfate salts) are found not to contain any sulfur contributed by the surface-active agent, unlike the case often found with ordinary sulfonic surface-active compounds.
Surface-active fluorocarbon carboxylic acids which were also found to be stable to the powerful oxidation conditions existing at insoluble anodes such as lead or lead-alloy anodes in aqueous acidic electrolytes, and which also lower the surface tension of the electrolyte solutions to low values, were, however, of little value in preventing mist and spray during electrolysis even though the most surface-active example, perfluoro-octanoic acid was used as well as the six-carbon compound. Also, no improvements were found if chlorine atoms were partially substituted for fluorine atoms, as for example,
one chlorine atom present to every three fluorine atoms, with the chlorine atom on every other carbon atom.
Table I to be used in the aqueous electrolytic processes are from about 0.003 gram/liter for the more active compounds to about 6 grams per liter for least active:
examples. In general, Examples 3, 6 and Sam preferred since smaller concentrations may be used etfec tively and for higher temperature baths (over about 50 C.) Example 3 is preferredas it maintains a thin foam blanket with the least concentration most readily at high- 3 er tempeiatiiresi However-"where very low foaming is required, Examples Sand 6a'r'epreferred. In the compounds of Table I, about three hydrogen atoms may be substituted for fluorine atoms, or about one hydrogen or One -(:lilbfin "aibfn cid'b'jfdschfbll' every other carbon atom carrying fluorine and actually "two hydroge'ns or chlorine 'ammscan be ptes'e'nto1'1 the same carbon atom when adjacent to acarbon atom" carrying at least two fluorine'atoms; withoufseriously decreasing the effectiveness or the stability of the compounds of Table-1.. In general, the preferred'compounds' are thus, the compounds ofTable I, from the standpoint oPefi'ectiveness and stability. v
' TABLEI Gone. in baths grams/liter (1;; Perfluoro phexsgl -sull'onlc aeid... (2 Perfluoro n-heptyl sultonie acid (3) Perfluorb n-oct'yl sulfonic acid (CFACFMCFgSOgH).
(4;; Perfluoro n-decylsulmnieamdn (6 Perfluoro p-methyl cyelohexyl sulfonic acid (6) Perfluorop'ethylcyclohexyl sulfonieaeid (O5FS0'=H)-..- 0.1-4
(7; Periiuoro eycloliexyl w-methyl sultonie acid (8 Perfluoro cyclohexyl w-ethyl sulfonic acid (@GFiCFsSOiH): 0.1-4
To illustratethe scop'e'and'utility of'the compounds of this invention, the following examples? of. electrowinning baths are given'in'Exainples'l, 2, 3, 4 and 5. In Examples 6A" and 6B, the'use ofthe'com'pounds' ofTable I are illustratediin aluminum anodizing baths.
Example I- Aqueous acid zinc Cathode current-densities of 5 to over 1,000 amperes/ sq. ft. depending on the acidity of the bath andthe degree of agitation.
Example 2- A'queous acid'cad'mium' sulfate baths with lead or lead alloy anodes."
' Grams/liter Cdso so- 300 HQSO}, 5- 100 Compound 3 of Table'f .Q. 0.003-0.02 pH=*2;5to'0ll'.
Cathode current densities of. 5 to 500. amperes/sq. ft.
Example '3 Aqueous acid copper sulfate baths lead or lead alloy anodes.
Grams/liter Cuso' 25-300 H 50; 5-100 Compounddof'lable I 0.1- 2 pI-I=3L5 t 0.1.
Cathode-current densities of -300 amperes/sq. it.
I Example'4 Aqueous manganous sulfate. baths. with lead or lead alloy anodes, and the anode; compartment separated. by
a-porous-diaphragm from thecathode' department. The anode'compartmentis kept acidic.
Grams/liter MnSO, 25- 200 (NI -I SO 25- 200 Compound 3zof-'Tab1e.I 0005-004 4 v Cathode current densities of 5-100 amperes/ sq. ft.
Example 5 Aqueous acidic cbromic sulfate baths with lead or lead alloy anodes, and the anode compartment separated by a porous diaphragm (e.g. Vinyon cloth) from the cathode compartment.
Grams/liter Cr (SO 25-200 (NI-10580 2s-'200 Compound 6 of Table'I 0.1- 3
Example v6 In the anodizing. of aluminum where the aluminum,
represents a highly polarized anode.
(A) Chromic. acid process.-CrO at 5 to 10% strength. Temperature=32 F. to 100 F., With voltages as high as 40 volts. Concentration of compound 6 of Table fat 0.1 to 2 g./l., or compound 3 of Table I at 0.01 to 0.1.g./l.
(B) Sulfuric acid process-H 50 at 10-25% by weight. Temperature=32 F. to F., with voltages as high as 40 volts. Concentration of compound 6 of Table I at 0.1 to 2 g./l., or compound 3 of TableI at.
0.01 to 0.1 g./l.
The compounds of Table I also give excellent resultsv when aqueous oxalic acid solutions and when aqueous phosphoric acid solutions are used as the anodizing baths. In anodizing aluminum in warm or hot baths, e.g. 200 F. or up to boiling, compound 3 of Table I (perfiuoro n-octyl-l-sulfonic acid) is the preferred compound to use, andmay. be used in a concentration of about 0.01 to 0.2 gram/liter, because it tends to form the most stable thin foam blanket at these higher temperatures. In colder baths the use of compound 6 of Table I at concentrations of about 0.3 to 2 grams/liter is generally preferred as itdoes not tend to over-foam. However,
if the baths are to be discarded often then compound 3 of TableI is preferred since it is used in the lowest con-- centrations.
Not only are the compounds of, Table I highly suitable for the elcctrowinning or electroplating of the metals.
given in the above Examples 1-5 inclusive, when insoluble or highly polarized anodes are used, but also in the electrolytic processes for the preparation of manganese dioxide, andin the electrolytic process for the formation of lead dioxide positive plates, and spongy lead (from lead oxide) negative plates of lead storage batteries. The compounds of Table I are compatible with the lignin and lignin sulfonate used in the negative plates. Furthermore, in the chlor-alkali electrolytic cells for the production of chlorine from sodium or potassium chloride, the.
compounds of Table I are completely stable to the oxidizing and reducing conditions.
In general, the compounds of Table I cause the quick detachment of the bubbles of gases released during,
electrolysis, thus only small bubbles formand because the compounds ofv Table I are stable to the oxidizing conditions at the insoluble anodes, their effect is uniform and consistent without harmful side reactions. In general, the concentrations of the. compounds of Table I cambe; used: up; tosaturationinthebaths, though 11011331.
ly only 0.005 to 0.1 g./l. is the concentration needed for compound 3 and 0.1 to 3 g./l. for compound 6 of Table I with compound 3 preferred for the hotter baths and compound 6 for the cooler baths, or where the thinnest foam blanket is required, or where actually no foam blanket is desired with the reduction of mist and spray. To get as complete suppression of mist and spray as possible, a foam blanket must be formed.
The perfluoroalkane sulfonic acids of this invention may be used in form of salts, for example, sodium or potassium salts, also they may be characterized or defined as fiuoroalkane sulfonic acids or sulfonates of six to ten carbon atoms inclusive, in Which the fluorine atoms exceed the number of chlorine or hydrogen atoms that may be present in the fluorocarbon chain.
What is claimed is:
1. In an anodizing process employing essentially insoluble anodes selected from the group consisting of aluminum, manganese and lead and an aqueous solution of an acid selected from the group consisting of sulfuric, phosphoric, and oxalic acids, the improvement comprising minimizing the formation of spray and mist during anodizing by incorporating in said aqueous electrolyte a perfluoro-alkane sulfonic acid of 6-10 carbon atoms inclusive in a quantity to produce therein a concentration of about 0.003 to 6 grams/ liter.
2. A process in accordance with claim 1 wherein the process is anodizing aluminum in an aqueous sulfuric acid solution.
3. A process in accordance with claim 1 wherein the process is anodizing aluminum in an aqueous phosphoric acid solution.
4. A process in accordance with claim 1 wherein the process is anodizing aluminum in an aqueous oxalic acid solution.
5. A process in accordance With claim 1 wherein said perfluoro-alkane sulfonic acid is perfluoro n-octyl-l-sulfonic acid and is present in a concentration of about 0.003 gram/liter to about 0.5 gram/liter.
6. A process in accordance with claim 1 wherein the said perfiuoro-alkane sulfonic acid is perfiuoro p-ethyl cyclohexyl sulfonic acid and is present in an amount of about 0.3 to about 2 grams/liter.
References Cited in the file of this patent UNITED STATES PATENTS 2,750,334 Brown June 12, 1956
Claims (1)
1. IN AN ANODIZING PROCESS EMPLOYING ESSENTIALLY INSOLUBLE ANODES SELECTED FROM THE GROUP CONSISTNG OF ALUMINUM, MANGANESE AND LEAD AND AN AQUEOUS SOLUTION OF AN ACID SELECTED FROM THE GROUP CONSISTING OF SULFURIC, PHOSPHORIC, AND OXALIC ACIDS, THE IMPROVEMENT COMPRISING MINIMIZING THE FORMATION OF SPRAY AND MIST DURING ANODIZING BY INCORPORATING IN SAID AQUEOUS ELECTRODYTE A PERFLUORO-ALKANE SULFONIC ACID OF 6-10 CARBON ATOMS INCLUSIVE IN A QUANTITY OF PRODUCE THEREIN A CONCENTRATION OF ABOUT 0.003 TO 6 GRAMS/LITER.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US590389A US2913377A (en) | 1956-06-11 | 1956-06-11 | Aqueous electrolytic process |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US590389A US2913377A (en) | 1956-06-11 | 1956-06-11 | Aqueous electrolytic process |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2913377A true US2913377A (en) | 1959-11-17 |
Family
ID=24362047
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US590389A Expired - Lifetime US2913377A (en) | 1956-06-11 | 1956-06-11 | Aqueous electrolytic process |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2913377A (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3002901A (en) * | 1959-09-08 | 1961-10-03 | Metal & Thermit Corp | Electroplating process and bath |
| US3034973A (en) * | 1958-12-01 | 1962-05-15 | Union Carbide Corp | Electrolytic manganese production |
| US3213491A (en) * | 1961-12-18 | 1965-10-26 | United Aircraft Corp | Hardcoated mold press die |
| US3438878A (en) * | 1966-10-27 | 1969-04-15 | Union Carbide Canada Ltd | Simultaneous refining of zinc and manganese dioxide |
| JPS5476443A (en) * | 1977-11-30 | 1979-06-19 | Dainippon Ink & Chem Inc | Fluorine type surfactant mixture suitable for preventing planting mist |
| US4196060A (en) * | 1975-01-22 | 1980-04-01 | Societe De Vente De L'aluminium Pechiney | Method of surface treating an aluminum wire for electrical use |
| US4243499A (en) * | 1978-12-22 | 1981-01-06 | Outokumpu Oy | Process for electrolytic recovery of zinc from zinc sulfate solutions |
| US4303792A (en) * | 1979-05-24 | 1981-12-01 | Stauffer Chemical Company | N-substituted haloacyloxyacetamides herbicidal antidotes |
| US4412894A (en) * | 1981-07-06 | 1983-11-01 | Prototech Company | Process for electrowinning of massive zinc with hydrogen anodes |
| US4484990A (en) * | 1980-06-16 | 1984-11-27 | Minnesota Mining And Manufacturing Company | Mist suppressant for solvent extraction metal electrowinning |
| US5104496A (en) * | 1990-10-18 | 1992-04-14 | Optical Radiation Corporation | Low mist chromium plating method and system |
| EP0488862A1 (en) * | 1990-11-27 | 1992-06-03 | Rhone-Poulenc Chemicals Limited | Prevention against acid mist in metal electrowinning |
| WO1995030783A1 (en) * | 1994-05-05 | 1995-11-16 | Minnesota Mining And Manufacturing Company | Mist suppressant for solvent extraction metal electrowinning |
| JP2004002252A (en) * | 2001-06-29 | 2004-01-08 | Jsr Corp | Acid generator, sulfonic acid, sulfonic acid derivative and radiation-sensitive resin composition |
| KR100863119B1 (en) * | 2001-06-29 | 2008-10-14 | 제이에스알 가부시끼가이샤 | Acid Generator, Sulfonic Acid, Sulfonic Acid Derivatives And Radiation-Sensitive Resin Composition |
| US20160222534A1 (en) * | 2013-09-05 | 2016-08-04 | Enthone, Inc. | Aqueous Electrolyte Composition Having a Reduced Airborne Emission, Method and Use of this Composition |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2750334A (en) * | 1953-01-29 | 1956-06-12 | Udylite Res Corp | Electrodeposition of chromium |
-
1956
- 1956-06-11 US US590389A patent/US2913377A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2750334A (en) * | 1953-01-29 | 1956-06-12 | Udylite Res Corp | Electrodeposition of chromium |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3034973A (en) * | 1958-12-01 | 1962-05-15 | Union Carbide Corp | Electrolytic manganese production |
| US3002901A (en) * | 1959-09-08 | 1961-10-03 | Metal & Thermit Corp | Electroplating process and bath |
| US3213491A (en) * | 1961-12-18 | 1965-10-26 | United Aircraft Corp | Hardcoated mold press die |
| US3438878A (en) * | 1966-10-27 | 1969-04-15 | Union Carbide Canada Ltd | Simultaneous refining of zinc and manganese dioxide |
| US4196060A (en) * | 1975-01-22 | 1980-04-01 | Societe De Vente De L'aluminium Pechiney | Method of surface treating an aluminum wire for electrical use |
| JPS5476443A (en) * | 1977-11-30 | 1979-06-19 | Dainippon Ink & Chem Inc | Fluorine type surfactant mixture suitable for preventing planting mist |
| US4243499A (en) * | 1978-12-22 | 1981-01-06 | Outokumpu Oy | Process for electrolytic recovery of zinc from zinc sulfate solutions |
| US4303792A (en) * | 1979-05-24 | 1981-12-01 | Stauffer Chemical Company | N-substituted haloacyloxyacetamides herbicidal antidotes |
| US4484990A (en) * | 1980-06-16 | 1984-11-27 | Minnesota Mining And Manufacturing Company | Mist suppressant for solvent extraction metal electrowinning |
| US4412894A (en) * | 1981-07-06 | 1983-11-01 | Prototech Company | Process for electrowinning of massive zinc with hydrogen anodes |
| US5104496A (en) * | 1990-10-18 | 1992-04-14 | Optical Radiation Corporation | Low mist chromium plating method and system |
| EP0488862A1 (en) * | 1990-11-27 | 1992-06-03 | Rhone-Poulenc Chemicals Limited | Prevention against acid mist in metal electrowinning |
| WO1995030783A1 (en) * | 1994-05-05 | 1995-11-16 | Minnesota Mining And Manufacturing Company | Mist suppressant for solvent extraction metal electrowinning |
| US5468353A (en) * | 1994-05-05 | 1995-11-21 | Minnesota Mining And Manufacturing Company | Mist suppressant for solvent extraction metal electrowinning |
| JP2004002252A (en) * | 2001-06-29 | 2004-01-08 | Jsr Corp | Acid generator, sulfonic acid, sulfonic acid derivative and radiation-sensitive resin composition |
| KR100863119B1 (en) * | 2001-06-29 | 2008-10-14 | 제이에스알 가부시끼가이샤 | Acid Generator, Sulfonic Acid, Sulfonic Acid Derivatives And Radiation-Sensitive Resin Composition |
| US20160222534A1 (en) * | 2013-09-05 | 2016-08-04 | Enthone, Inc. | Aqueous Electrolyte Composition Having a Reduced Airborne Emission, Method and Use of this Composition |
| US10081876B2 (en) * | 2013-09-05 | 2018-09-25 | Macdermid Enthone Inc. | Aqueous electrolyte composition having a reduced airborne emission, method and use of this composition |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2913377A (en) | Aqueous electrolytic process | |
| US2525942A (en) | Electrodepositing bath and process | |
| US2750334A (en) | Electrodeposition of chromium | |
| EP0035667A1 (en) | Trivalent chromium electroplating solution and bath | |
| US2750337A (en) | Electroplating of chromium | |
| US2728720A (en) | Method of producing an electroplate of nickel on magnesium and the magnesium-base alloys | |
| US2923671A (en) | Copper electrodeposition process and anode for use in same | |
| US3855089A (en) | Process for the electrolytic refining of heavy metals | |
| US2453757A (en) | Process for producing modified electronickel | |
| US3342711A (en) | Electrolytic polishing of stainless steel | |
| US3271279A (en) | Electrodeposition of copper from chromium-containing solution | |
| EP0045017B1 (en) | Process for surface treatment of stainless steel sheet | |
| US4422908A (en) | Zinc plating | |
| EP0088192B1 (en) | Control of anode gas evolution in trivalent chromium plating bath | |
| GB2115007A (en) | Trivalent chromium electroplating process | |
| US2436244A (en) | Metalworking and strippingplating process | |
| US2956935A (en) | Chromium plating | |
| US1466126A (en) | Electrolytic refining or depositing of tin | |
| US2429970A (en) | Silver plating | |
| US2398614A (en) | Electrodeposition of manganese | |
| US4405412A (en) | Removal of copper contamination from tin plating baths | |
| US2623848A (en) | Process for producing modified electronickel | |
| JPH03260100A (en) | Production of base for printing plate | |
| US3002901A (en) | Electroplating process and bath | |
| GB2133040A (en) | Copper plating bath process and anode therefore |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HOOKER CHEMICALS & PLASTICS CORP. Free format text: MERGER;ASSIGNOR:OXY METAL INDUSTRIES CORPORATION;REEL/FRAME:004075/0885 Effective date: 19801222 |
|
| AS | Assignment |
Owner name: OCCIDENTAL CHEMICAL CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:HOOKER CHEMICAS & PLASTICS CORP.;REEL/FRAME:004126/0054 Effective date: 19820330 |