US2903895A - Mechanical movement - Google Patents

Mechanical movement Download PDF

Info

Publication number
US2903895A
US2903895A US490451A US49045155A US2903895A US 2903895 A US2903895 A US 2903895A US 490451 A US490451 A US 490451A US 49045155 A US49045155 A US 49045155A US 2903895 A US2903895 A US 2903895A
Authority
US
United States
Prior art keywords
cam
clutch
shaft
jaws
nicking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US490451A
Inventor
Larsen Joseph Clarence
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gates and Sons Inc
Original Assignee
Gates and Sons Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gates and Sons Inc filed Critical Gates and Sons Inc
Priority to US490451A priority Critical patent/US2903895A/en
Application granted granted Critical
Publication of US2903895A publication Critical patent/US2903895A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/02Clutches in which the members have interengaging parts disengaged by a contact of a part mounted on the clutch with a stationarily-mounted member
    • F16D11/06Clutches in which the members have interengaging parts disengaged by a contact of a part mounted on the clutch with a stationarily-mounted member with clutching members movable otherwise than only axially, e.g. rotatable keys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/15Intermittent grip type mechanical movement
    • Y10T74/1503Rotary to intermittent unidirectional motion
    • Y10T74/1524Intermittently engaged clutch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating
    • Y10T74/18288Cam and lever
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8798With simple oscillating motion only
    • Y10T83/8804Tool driver movable relative to tool support
    • Y10T83/8805Cam or eccentric revolving about fixed axis

Definitions

  • This invention relates to a mechanical movement useful in wire nicking machines; and more particularly, for ma chines for use for nicking wire concrete form ties.
  • Wooden concrete forms are commonly held together by Wire form ties which prevent the forms from separting under the weight of the concrete; and also, provide a certain degree of reinforcement for the concrete. After the forms have been removed from the hardened concrete, however, the loops on the end of the wire form ties project beyond the face of the concrete thus making it necessary to clip or break off the projecting loops in most instances.
  • nicking the loops of the wire form tie on the top or the bottom weakens the tie to such an extent that they often break while they are being fastened to the forms. It has been found in accordance with the present invention that this difliculty can be eliminated by nicking the loop of the wire form tie either on the inside of the loop or on the outside rather than on the bottom or the top. Nicking the loop transversely of the plane of the loop does not weaken the wire sufficiently to cause it to break while the form tie is being placed on the form as the forces exerted generally bend the loops upward and downward rather than side to side in the plane of the loop.
  • the mechanical movement of the present invention has as its principal object the provision of a mechanism for rapidly and economically placing nicks of the required depth transverse to the plane of the closed loops of a wire concrete form tie.
  • a second object is the provision of a concrete form tie nicking mechanism which is simple to construct, inexpensive, rugged, simple to operate and readily adaptable to many different sizes of wire form ties.
  • Figure 1 is a side elevation of a wire nicking machine embodying the mechanical movement of the present invention with parts thereof broken away to conserve space and to show the details of construction more clearly;
  • Figure 2 is a section taken along line 22 of Figure 1;
  • Figure 3 is a section taken along line 33 of Figure 1 showing the nicking mechanism in detail
  • Figure 4 is a section of the clutch used in the machine taken along line 6-6 of Figure 1 with a portion of the housing broken away to better show the construction;
  • Figure 5 is a view of the clutch looking in the direction of arrow 7 in Figure 4 with portions of the housing broken away to better show the construction.
  • reference numeral 10 represents the frame which carries the motor 12, the single revolution clutch 14 and the nicking mechanism indicated in a general way by Patented Sept. 15, 1959 ICC numeral 16.
  • the motor 12 is preferably a gear motor which turns stub shaft 18 interconnecting the motor and driving member 20 of the single revolution clutch at relatively slow speeds.
  • Shaft 22 is mounted for rotation within bearings 24 carried by the frame.
  • the driven member 26 of the clutch is operatively connected to the driving member 20 thereof in a manner which will be described in detail in connection with Figures 6 and 7 and is rigidly connected to one end of shaft 22. Rotational movement is transmitted from shaft 22 to cam shaft 28 by means of chain and sprocket drive 30.
  • Sprocket 32 is preferably one-half the diameter of sprocket 34 so that cam shaft 28 will rotate one-half revolution or 180 for each complete revolution of shaft 22.
  • Cam shaft 28 is mounted for rotational movement within bearings 36 which are fastened to the frame.
  • Cam 38 is splined to cam shaft 28 for longitudinal adjustment thereon; whereas, cam 40 is keyed to the cam shaft.
  • Supporting members 42 and 44 are mounted on the frame in spaced substantially parallel relationship to form respectively a. head stock and a tail stock.
  • Supporting member 42 is rigidly connected to the frame by means of brackets 46.
  • Bolts 54 fasten brackets 48 to the frame through the aforementioned slots and openings.
  • Supporting members 44 and 42 carry the nicking mechanism 16 which will be described in detail in connection with Figure 3.
  • the gear motor 12 rotates stub shaft 18 and drives member 20 continuously.
  • Driven member 26, shaft 22, earn shaft 28 and cams 38 and 40 are normally stopped as the single revolution clutch 14 is disengaged.
  • Pressure upon foot pedal 56 causes the foot pedal linkage 58 to move into the dotted line position shown in Figure 2 thus moving pawl 60 out of engagement with clutch lever 62. This engages the clutch and permits the driving member 20 to rotate the driven member 26 through one complete revolution before the clutch again becomes disengaged.
  • One full revolution of driven member 26 and shaft 22 causes cam shaft 28 and cams 38 and 40 to rotate one-half revolution.
  • FIG. 3 shows the nicking mechanism in detail.
  • Two identical nicking mechanisms are mounted in opposed relation facing one another on each of the supporting members 42 and 44.
  • the nicking mechanism 16 consists of two jaws 64 attached to each of the supporting members 42 and 44 for rockable movement toward and away from one another about spaced pivots 66. The pivots are placed between the ends of the jaws so that the upper ends will move toward one another as the lower ends move away from one another.
  • Rollers 68 are mounted for rotational movement in the lower ends of each jaw in position to engage the elliptical cam surface 70 of earns 38 and 40.
  • the cams have identical cam surfaces and differ only in the manner in which they are attached to the cam shaft.
  • each cam with respect to the cam shaft in normal position i.e., with the single revolution clutch disengaged is preferably such that the rollers 68 are tangent to the elliptical cam surface on opposite sides of the cam at the ends of its minor axis.
  • Spring means 72 are connected between the jaws to hold the rollers 68 against the elliptical cam surface of the cams.
  • Lugs 74 may be used on one of the jaws to prevent cam 38 from moving along the splined cam shaft 28 during operation of the machine.
  • Each jaw is preferably provided with an adjustment head 76 in opposed relation to one another.
  • Each adjustment head is shown mounted for pivotal movement within the upper end of the jaws about pivot 78 so that they may be adjusted toward and away from one another by means of set screws 80 threaded into the jaws to vary the depth of the nick.
  • a number of other well known means for adjusting the depth of the nick may be used to replace the one shown.
  • An anvil 82 is rigidly attached to the support members and projecting upwardly between the jaws with the cutting edges 84 thereofsubstantially parallel to one another on opposite sidesjfacingithe adjustment heads.
  • Each adjustment head 76 maybe adjusted independently with respect to the anvil by-means of set screw 80in order to regulate the depth ofthe nick. 'Rotation of the cams through one-half revolution will spread.
  • one end of the jaws apart a distance equal to the major axis of the elliptical camsurface and. move the adjustment'heads on the other end toward the anvil thereby forcing portions of a loop against the cutting edges and causing nicks to'be formedin the loop.
  • spring means 72 acts to separatetheadjustment headsand free the form tie so that it may be withdrawn from the nickin-g, mechanism.
  • FIGS. 4 and 5 are illustrative of one typeof single revolutionclutch 14 that may be employed in the wire nicking machine of the present invention. It has already been mentioned that driving member 20 is continuously rotated. by the motor acting through stub shaft 18; whereas, driven member 26 rotates only when the clutch is engaged. Driven member 26 carries clutch lever 62 mounted for rockable movement upon pivot 100. The clutch lever projects beyond the periphery of the driven member and normally engages pawl 60. .A roller .102is mounted for rotation on the inner end of the clutch lever and is positioned to roll along the inside-rim of driving member .20.
  • the inside rim of the driving member is provided with teeth 10.4 whichengage the roller 102and .cause the driven member to rotate with, the drivingmemher one full revolution when pawl 60 is retracted by means of footpedal 56.
  • Roller 102 normally occupies .the dotted line position shown in Figure 4 when the .clutch is disengaged which permits the driving member to rotate independently of the driven member.
  • the clutch is disengaged when the jaws rotate in the direction of the curved arrow in Figure 4 and strike pawl 60. This causes .theclutch lever torock about pivot 100 against the action oftension spring 106 and moves roller 102 out of engagement with the teeth 10,4 of the driving member.
  • the pawl 60 is retracted to permit the tension spring 106 to rock the roller 102 upward where it, will be engaged by the teeth of the driving member.
  • cam shaft mounted for rotation between adjacent ends of the jaws on one side of the pivot points; drive means operatively connected to the cam shaft for effecting r0- tation thereof; clutch means interconnecting the drive means and cam shaft adapted to effect intermittent cyclic rotation thereof through approximately a single cam means mounted on the cam shaft for conjoint rotation therewith, said cam means being operatively connected to said adjacent ends of the jaws to simultaneouslyspread said ends and close. the opposite ends thereof on a work piece when saidcarn means is cyclically rotated; and spring means interconnecting the jaws to hold said adjacent ends in continual contact with the cam means.
  • two elongated jaw members mounted in opposed relation for rockable movement about spaced pivot points located between the ends thereof; a cam shaft mounted for rotation between adjacent. ends of the jaws on one side of the pivot points; drive means operatively connected to the cam shaft for effecting rotation thereof; clutch means interconnecting the drive means and said cam shaft; means for engaging said clutch means on command and for automatically disengaging said drive to effect intermittent cyclic operation thereof; a single cam means mounted on the cam shaft for conjoint rotation therewith, said cam means being operatively connected to said adjacent ends of the jaws to simultaneously spread said ends and close the opposite ends thereof on a work piece on each cyclic operation of the cam; and, spring means actively interconnecting and biasing the jaws to hold said adjacent ends in continual contact with the cam means.
  • cam means is elliptical-shaped and each cyclic operation of the cam shaft produces a rotation thereof of approximately 180".

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Adornments (AREA)

Description

l l l United States Patent MECHANICAL MOVEll/[ENT Joseph Clarence Larsen, Boulder, Colo., assignor to Gates and Sons Inc., Denver, Colo., a corporation of Colorado Application February 25, 1955, Serial No. 490,451
3 Claims. (Cl. 7454) This invention relates to a mechanical movement useful in wire nicking machines; and more particularly, for ma chines for use for nicking wire concrete form ties.
Wooden concrete forms are commonly held together by Wire form ties which prevent the forms from separting under the weight of the concrete; and also, provide a certain degree of reinforcement for the concrete. After the forms have been removed from the hardened concrete, however, the loops on the end of the wire form ties project beyond the face of the concrete thus making it necessary to clip or break off the projecting loops in most instances.
In order to facilitate removal of the projecting portions of the form tie either the top or bottom of the loop is often provided with nicks in the wire so that the loops may be broken off more easily and closer to the surface of the concrete. However, nicking the loops of the wire form tie on the top or the bottom weakens the tie to such an extent that they often break while they are being fastened to the forms. It has been found in accordance with the present invention that this difliculty can be eliminated by nicking the loop of the wire form tie either on the inside of the loop or on the outside rather than on the bottom or the top. Nicking the loop transversely of the plane of the loop does not weaken the wire sufficiently to cause it to break while the form tie is being placed on the form as the forces exerted generally bend the loops upward and downward rather than side to side in the plane of the loop.
The mechanical movement of the present invention has as its principal object the provision of a mechanism for rapidly and economically placing nicks of the required depth transverse to the plane of the closed loops of a wire concrete form tie.
A second object is the provision of a concrete form tie nicking mechanism which is simple to construct, inexpensive, rugged, simple to operate and readily adaptable to many different sizes of wire form ties.
Other objects will be in part apparent and in part pointed out specifically hereinafter in connection with a description of the drawing which follows, and in which:
Figure 1 is a side elevation of a wire nicking machine embodying the mechanical movement of the present invention with parts thereof broken away to conserve space and to show the details of construction more clearly;
Figure 2 is a section taken along line 22 of Figure 1;
Figure 3 is a section taken along line 33 of Figure 1 showing the nicking mechanism in detail;
Figure 4 is a section of the clutch used in the machine taken along line 6-6 of Figure 1 with a portion of the housing broken away to better show the construction;
Figure 5 is a view of the clutch looking in the direction of arrow 7 in Figure 4 with portions of the housing broken away to better show the construction.
Referring now in particular to Figures 1 and 2 of the drawing, reference numeral 10 represents the frame which carries the motor 12, the single revolution clutch 14 and the nicking mechanism indicated in a general way by Patented Sept. 15, 1959 ICC numeral 16. The motor 12 is preferably a gear motor which turns stub shaft 18 interconnecting the motor and driving member 20 of the single revolution clutch at relatively slow speeds. Shaft 22 is mounted for rotation within bearings 24 carried by the frame. The driven member 26 of the clutch is operatively connected to the driving member 20 thereof in a manner which will be described in detail in connection with Figures 6 and 7 and is rigidly connected to one end of shaft 22. Rotational movement is transmitted from shaft 22 to cam shaft 28 by means of chain and sprocket drive 30. Sprocket 32 is preferably one-half the diameter of sprocket 34 so that cam shaft 28 will rotate one-half revolution or 180 for each complete revolution of shaft 22. Cam shaft 28 is mounted for rotational movement within bearings 36 which are fastened to the frame. Cam 38 is splined to cam shaft 28 for longitudinal adjustment thereon; whereas, cam 40 is keyed to the cam shaft. The function and operation of the cams will be described more completely in connection with Figure 3. Supporting members 42 and 44 are mounted on the frame in spaced substantially parallel relationship to form respectively a. head stock and a tail stock. Supporting member 42 is rigidly connected to the frame by means of brackets 46. Bolts 54 fasten brackets 48 to the frame through the aforementioned slots and openings. Supporting members 44 and 42 carry the nicking mechanism 16 which will be described in detail in connection with Figure 3.
, The gear motor 12 rotates stub shaft 18 and drives member 20 continuously. Driven member 26, shaft 22, earn shaft 28 and cams 38 and 40 are normally stopped as the single revolution clutch 14 is disengaged. Pressure upon foot pedal 56 causes the foot pedal linkage 58 to move into the dotted line position shown in Figure 2 thus moving pawl 60 out of engagement with clutch lever 62. This engages the clutch and permits the driving member 20 to rotate the driven member 26 through one complete revolution before the clutch again becomes disengaged. One full revolution of driven member 26 and shaft 22 causes cam shaft 28 and cams 38 and 40 to rotate one-half revolution.
Figure 3 shows the nicking mechanism in detail. Two identical nicking mechanisms are mounted in opposed relation facing one another on each of the supporting members 42 and 44. The nicking mechanism 16 consists of two jaws 64 attached to each of the supporting members 42 and 44 for rockable movement toward and away from one another about spaced pivots 66. The pivots are placed between the ends of the jaws so that the upper ends will move toward one another as the lower ends move away from one another. Rollers 68 are mounted for rotational movement in the lower ends of each jaw in position to engage the elliptical cam surface 70 of earns 38 and 40. The cams have identical cam surfaces and differ only in the manner in which they are attached to the cam shaft. The position of each cam with respect to the cam shaft in normal position i.e., with the single revolution clutch disengaged, is preferably such that the rollers 68 are tangent to the elliptical cam surface on opposite sides of the cam at the ends of its minor axis. Spring means 72 are connected between the jaws to hold the rollers 68 against the elliptical cam surface of the cams. Lugs 74 may be used on one of the jaws to prevent cam 38 from moving along the splined cam shaft 28 during operation of the machine. Each jaw is preferably provided with an adjustment head 76 in opposed relation to one another. Each adjustment head is shown mounted for pivotal movement within the upper end of the jaws about pivot 78 so that they may be adjusted toward and away from one another by means of set screws 80 threaded into the jaws to vary the depth of the nick. A number of other well known means for adjusting the depth of the nick may be used to replace the one shown. An anvil 82 is rigidly attached to the support members and projecting upwardly between the jaws with the cutting edges 84 thereofsubstantially parallel to one another on opposite sidesjfacingithe adjustment heads. Each adjustment head 76 maybe adjusted independently with respect to the anvil by-means of set screw 80in order to regulate the depth ofthe nick. 'Rotation of the cams through one-half revolution will spread. one end of the jawsapart a distance equal to the major axis of the elliptical camsurface and. move the adjustment'heads on the other end toward the anvil thereby forcing portions of a loop against the cutting edges and causing nicks to'be formedin the loop. As the cams return to normal position, spring means 72 acts to separatetheadjustment headsand free the form tie so that it may be withdrawn from the nickin-g, mechanism.
.Figures 4 and 5 are illustrative of one typeof single revolutionclutch 14 that may be employed in the wire nicking machine of the present invention. It has already been mentioned that driving member 20 is continuously rotated. by the motor acting through stub shaft 18; whereas, driven member 26 rotates only when the clutch is engaged. Driven member 26 carries clutch lever 62 mounted for rockable movement upon pivot 100. The clutch lever projects beyond the periphery of the driven member and normally engages pawl 60. .A roller .102is mounted for rotation on the inner end of the clutch lever and is positioned to roll along the inside-rim of driving member .20. The inside rim of the driving member is provided with teeth 10.4 whichengage the roller 102and .cause the driven member to rotate with, the drivingmemher one full revolution when pawl 60 is retracted by means of footpedal 56. Roller 102 normally occupies .the dotted line position shown in Figure 4 when the .clutch is disengaged which permits the driving member to rotate independently of the driven member. The clutch is disengaged when the jaws rotate in the direction of the curved arrow in Figure 4 and strike pawl 60. This causes .theclutch lever torock about pivot 100 against the action oftension spring 106 and moves roller 102 out of engagement with the teeth 10,4 of the driving member. In
order to engage the clutch the pawl 60 is retracted to permit the tension spring 106 to rock the roller 102 upward where it, will be engaged by the teeth of the driving member.
It is obvious that the modification of Figure 3 may be adapted to place the nick in the form tie either in the outside or the inside.
Having thus described the wire nicking mechanism of the present invention in connection with the drawing it .will thus be seen that the many useful and novel objects for which it was. designed have been achieved; and therefore, I claim:
1. In combination: two elongated jaw members mounted in opposed relation for rockable movement about spaced pivot points located between the ends thereof; a
cam shaft mounted for rotation between adjacent ends of the jaws on one side of the pivot points; drive means operatively connected to the cam shaft for effecting r0- tation thereof; clutch means interconnecting the drive means and cam shaft adapted to effect intermittent cyclic rotation thereof through approximately a single cam means mounted on the cam shaft for conjoint rotation therewith, said cam means being operatively connected to said adjacent ends of the jaws to simultaneouslyspread said ends and close. the opposite ends thereof on a work piece when saidcarn means is cyclically rotated; and spring means interconnecting the jaws to hold said adjacent ends in continual contact with the cam means.
2. In combination: two elongated jaw members mounted in opposed relation for rockable movement about spaced pivot points located between the ends thereof; a cam shaft mounted for rotation between adjacent. ends of the jaws on one side of the pivot points; drive means operatively connected to the cam shaft for effecting rotation thereof; clutch means interconnecting the drive means and said cam shaft; means for engaging said clutch means on command and for automatically disengaging said drive to effect intermittent cyclic operation thereof; a single cam means mounted on the cam shaft for conjoint rotation therewith, said cam means being operatively connected to said adjacent ends of the jaws to simultaneously spread said ends and close the opposite ends thereof on a work piece on each cyclic operation of the cam; and, spring means actively interconnecting and biasing the jaws to hold said adjacent ends in continual contact with the cam means.
3. A device in accordance with claim 2, wherein'the cam means is elliptical-shaped and each cyclic operation of the cam shaft produces a rotation thereof of approximately 180".
References Cited in the file of this patent UNITED STATES PATENTS 252,741 Cross Ian. 24, 1882 276,249 Iope et al. Apr. 24, 1883 466,823 Gendron Jan. 12, 1892 671,330 Clemens Apr. 2,1901 970,702 -Goddu Sept. 20, 1910 977,851 Busfield Dec. 6, 1910 1,198,283 Shira Sept. 12, 1916 1,219,170 Shumann Mar. 13, 1917 1,260,260 Harmon Mar. 19, 1918 1,452,224 Smith Apr. 17, 1923 1,565,148 Hoffman Dec. 8, 1925 1,865,309 Evans et al June 28, 1932 1,866,360 Kranz July '5, 1932 2,177,356 Stone et a1. Oct. 24, 1939 2,289,076 Ryan July7, 1942 2,414,906 Seltzer J an. 28, 1947 2,570,919 Cliflord Oct.'9, 1951
US490451A 1955-02-25 1955-02-25 Mechanical movement Expired - Lifetime US2903895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US490451A US2903895A (en) 1955-02-25 1955-02-25 Mechanical movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US490451A US2903895A (en) 1955-02-25 1955-02-25 Mechanical movement

Publications (1)

Publication Number Publication Date
US2903895A true US2903895A (en) 1959-09-15

Family

ID=23948099

Family Applications (1)

Application Number Title Priority Date Filing Date
US490451A Expired - Lifetime US2903895A (en) 1955-02-25 1955-02-25 Mechanical movement

Country Status (1)

Country Link
US (1) US2903895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182543A (en) * 1962-07-11 1965-05-11 Shiokawa Shozo Shearing machine
US3315710A (en) * 1964-05-25 1967-04-25 Seniuta John Machine for making looping points
US4048862A (en) * 1975-10-14 1977-09-20 Sperry Rand Corporation Linkage for controlling two independent power units
US4085690A (en) * 1976-06-21 1978-04-25 The Singer Company Needle jogging mechanisms

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US252741A (en) * 1882-01-24 Machine for bending and punching arch-bars
US276249A (en) * 1883-04-24 william m
US466823A (en) * 1892-01-12 Machine
US671330A (en) * 1900-09-26 1901-04-02 Ferdinand Clemens Jr Power-transmitting device.
US970702A (en) * 1907-12-05 1910-09-20 United Shoe Machinery Ab Welt-attaching apparatus.
US977851A (en) * 1909-10-22 1910-12-06 James Busfield Welt-slitting machine.
US1198283A (en) * 1914-09-16 1916-09-12 William C Alexander Motion-converting device.
US1219170A (en) * 1914-12-14 1917-03-13 Standard Welding Company Machine for punching and setting tires.
US1260260A (en) * 1914-05-12 1918-03-19 Singer Mfg Co Variable-feed mechanism for eyeleting and other machines.
US1452224A (en) * 1919-10-20 1923-04-17 Smith Corp A O Punching press and die therefor
US1565148A (en) * 1925-04-01 1925-12-08 William L Hoffman Power-operated scissors
US1865309A (en) * 1928-07-25 1932-06-28 Powell Evans Machine for placing ripping wires in can tops
US1866360A (en) * 1929-11-04 1932-07-05 Cleveland Welding Co Mechanism for forming latch pivots
US2177356A (en) * 1937-07-20 1939-10-24 United Eng Foundry Co Composite metal strip and method and apparatus for trimming it
US2289076A (en) * 1940-10-14 1942-07-07 Cummins Perforator Company Coupon cutter
US2414906A (en) * 1944-09-15 1947-01-28 Taylor Winfield Corp Sheet feeding and notching
US2570919A (en) * 1947-11-28 1951-10-09 Western Electric Co Notching and embossing punch and die

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US252741A (en) * 1882-01-24 Machine for bending and punching arch-bars
US276249A (en) * 1883-04-24 william m
US466823A (en) * 1892-01-12 Machine
US671330A (en) * 1900-09-26 1901-04-02 Ferdinand Clemens Jr Power-transmitting device.
US970702A (en) * 1907-12-05 1910-09-20 United Shoe Machinery Ab Welt-attaching apparatus.
US977851A (en) * 1909-10-22 1910-12-06 James Busfield Welt-slitting machine.
US1260260A (en) * 1914-05-12 1918-03-19 Singer Mfg Co Variable-feed mechanism for eyeleting and other machines.
US1198283A (en) * 1914-09-16 1916-09-12 William C Alexander Motion-converting device.
US1219170A (en) * 1914-12-14 1917-03-13 Standard Welding Company Machine for punching and setting tires.
US1452224A (en) * 1919-10-20 1923-04-17 Smith Corp A O Punching press and die therefor
US1565148A (en) * 1925-04-01 1925-12-08 William L Hoffman Power-operated scissors
US1865309A (en) * 1928-07-25 1932-06-28 Powell Evans Machine for placing ripping wires in can tops
US1866360A (en) * 1929-11-04 1932-07-05 Cleveland Welding Co Mechanism for forming latch pivots
US2177356A (en) * 1937-07-20 1939-10-24 United Eng Foundry Co Composite metal strip and method and apparatus for trimming it
US2289076A (en) * 1940-10-14 1942-07-07 Cummins Perforator Company Coupon cutter
US2414906A (en) * 1944-09-15 1947-01-28 Taylor Winfield Corp Sheet feeding and notching
US2570919A (en) * 1947-11-28 1951-10-09 Western Electric Co Notching and embossing punch and die

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182543A (en) * 1962-07-11 1965-05-11 Shiokawa Shozo Shearing machine
US3315710A (en) * 1964-05-25 1967-04-25 Seniuta John Machine for making looping points
US4048862A (en) * 1975-10-14 1977-09-20 Sperry Rand Corporation Linkage for controlling two independent power units
US4085690A (en) * 1976-06-21 1978-04-25 The Singer Company Needle jogging mechanisms

Similar Documents

Publication Publication Date Title
US2903895A (en) Mechanical movement
US1826498A (en) Label strip feeding means for printing presses
US2414126A (en) Edging machine
US2721670A (en) Box blank taping machine
US2662597A (en) Means for severing or severing and conveying lengths of wire or similar stock
US2579541A (en) Control mechanism for the delivery stack of sheet working machines
US3405937A (en) Machine for processing sheets
US1476766A (en) Power-transmitting mechanism
US1823644A (en) Nailing machine
US2615353A (en) Semiautomatic rotary cable tool dresser
US2655773A (en) Apparatus for feeding cylindrical workpieces into centerless-grinding machines
US3031151A (en) Feeding apparatus
US1492411A (en) Machine for forming barrel clips
US2465707A (en) Gear cutting machine
US2346468A (en) Machine for forming resilient brackets
US2277218A (en) Semiautomatic wire stitcher
US2310990A (en) Drilling apparatus
US1058964A (en) Paper-cutting machine.
SU99797A1 (en) Pipe Straightening and Cutting Machine
US1659020A (en) File-cutting machine
US1225018A (en) Feeding device for stay-applying machines.
US2750818A (en) Wire feed mechanism and control of same
US1546036A (en) Asphalt cutter
SU33377A1 (en) Automatic riveting machine
US521233A (en) Nut-finishing machine