US2887606A - Electron tube for decimetre-and centimetre-waves - Google Patents

Electron tube for decimetre-and centimetre-waves Download PDF

Info

Publication number
US2887606A
US2887606A US361364A US36136453A US2887606A US 2887606 A US2887606 A US 2887606A US 361364 A US361364 A US 361364A US 36136453 A US36136453 A US 36136453A US 2887606 A US2887606 A US 2887606A
Authority
US
United States
Prior art keywords
rods
cathode
anode
waves
decimetre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US361364A
Inventor
Diemer Gesinus
Lemmens Hendrikus Johannes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
North American Philips Co Inc
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Priority to US361364A priority Critical patent/US2887606A/en
Application granted granted Critical
Publication of US2887606A publication Critical patent/US2887606A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/02Tubes with a single discharge path
    • H01J21/06Tubes with a single discharge path having electrostatic control means only
    • H01J21/065Devices for short wave tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/36Tubes with flat electrodes, e.g. disc electrode

Definitions

  • the invention relates to electron tubes for use at frequencies of more than 300 mc./s., more particularly to such tubes in which at least two electrodes are pressed, under the action of a spring, against spacing and insulating members and in which the cathode has a high operational temperature.
  • Such insulating bodies are cylindrical.
  • Such constructions have a limitation in that a comparatively large quantity of insulating material finds itself in the proximity of the discharge path, which may give rise to material losses at very high frequencies.
  • the use of materials of low losses is limited, since substantially only ceramic material can be used in such tubes, in which, in general, use is made of highly loaded cathodes having operational temperatures of more than 900 C.
  • a reduction of the quantity of insulating material by the use of thin rods of this material can not be carried out successfully, since the rods are soon deformed during the operation of the tube or during the formation of the cathode. Quartz is substantially unserviceable in such cases, since this material becomes too weak at the said temperatures and is deformed by the constant pressure of the spring.
  • an electron tube for use at frequencies of more than 300 mc./s. comprising an electrode system of which at least two electrodes-one of which has an operational temperature of more than 900 C.are pressed, under the action of a spring. against interpositioned insulating members and are spaced apart by a spacing foil, is characterised in that the insulating spacers between at least these two electrodes are formed in the shape of rods of synthetic sapphire, secured to one of these electrodes and ground to flatness together with this electrode.
  • synthetic sapphire as an insulating material has the advantage, in addition to low thermal conductivity, of low losses at high frequencies and even at high temperatures.
  • Fig. 1 shows a diode
  • Fig. 2 a triode according to the invention.
  • the cathode 1 is held spaced apart United States Patent from the anode 2 by a very small distance.
  • the cathode 1 is urged towards the anode 2 by spring 3.
  • the anode 2 is provided with, for example, three apertures 4, in which rods 5 of synthetic sapphire are secured by hard solder, for example, silver or copper.
  • the length of the rods is, for example, 5 mms. and the diameter is only 0.3 to 0.75 mm.
  • the rods project for example by 2 mms. from the bottom in the anode and are ground to flatness together with the bottom end of the anode, i.e., the bottom surfaces of the rods and the anode are flat and lie in the same plane.
  • the spacing foil 6 determines the distance between the anode and the cathode. Since the direction of length of the rods is at right angles to the ground electrode surface, such thin rods may be used, since the rods are subjected only to axial pressure.
  • the composition of the sapphire rods is very homogeneous and even at high temperatures they are fully resistant to deformation, in contradistinction to ceramic spacing members.
  • the anode-cathode distance may therefore be adjusted to 10p. with a tolerance of 1a.
  • the cathode can be only a cathode having a metallic emissive surface.
  • For the short waves concerned use is preferably made of strongly loaded cathodes at an operational temperature of 1050 C.
  • the temperature for the formation is much higher, i.e. about 1350 C. Since the electrodes 1 and 2 are constantly subjected to spring pressure, the insulating spacers 5 must not lose their rigidity even at this temperature. In this respect synthetic sapphire is very serviceable.
  • a further advantage is that a glass seal may be provided in close proximity to the rods of synthetic sapphire, so that the rods and the electrode may be ground to flatness before this electrode is sealed in.
  • the length of the electrode inside the tube may therefore be very small, which is a great advantage for the aforesaid high frequencies.
  • Fig. 2 shows a triode, in which the invention is used for spacing apart the cathode and the grid.
  • the sapphire rods 7 are secured in this case to extensions or to a ring 8 of the cathode 9, for example, by means of platinum solder.
  • the rods 7 are ground to flatness together with the metallic cathode surface and via a spacing foil 10 they press against the grid ring 11.
  • the anode 12 may in this case be secured in the conventional manner.
  • the pressure springs 13, which press the cathode and the grid against one another, apply preferably to the ends of the sapphire rods 7, in order to reduce the transfer of heat.
  • the tube according to the invention may be constructed in a different manner.
  • a high frequency electron discharge tube comprising anode and cathode electrodes having flat opposing parallel surfaces spaced apart by a relatively small distance; a plurality of thin rod-like synthetic sapphire insulating members secured to said anode, all of said insulating members having precisely fiat surfaces lying in the same plane as the flat surface of said anode, said insulating members being spaced around said anode immediately adjacent the discharge path of said tube, said insulating members each having a cross-sectional area which is small relative to the cross-sectional area of the discharge path so that the losses of electromagnetic energy in said insulating members will be small compared to the energy in said discharge path; a spacing tively small distance between said opposing surface of said anode and said cathode, said spacing member being interposed between said flat surface of each of said insulating member and said flat surface .of said cathode; and spring means coupled to said cathode for urging said electrodes toward each other whereby the space between the flat surface of said electrodes is determined by the spacing
  • An electron tube as claimed in claim 1 in which the electrode in which the sapphire rods are secured is sealed in glass in the immediate proximity of the area Where the rods are secured.

Description

May 19, 1959 ELECTRON TUBE FOR DECIMETRE-AND CEJNIIMEZTRE-WAVES Filed June 12, 1953 \x \Q 4 I a y 1 IIIII I 7 !l g z z I INVENTORS GESINUS DIEMER HENDRIKUS JOHANNES AGENT G. DIEMER ETAL 2,887,606
ELECTRON TUBE FOR DECIMETRE- AND CENTIMETRE-WAVES Gesinus Diemer and Hendrikus Johannes Lemmens, Eindhoven, Netherlands, assignors, by mesne assignments, to North American Philips Company, Inc., New York, N.Y., a corporation of Delaware Application June 12, 1953, Serial No. 361,364
3 Claims. (Cl. 313-256) The invention relates to electron tubes for use at frequencies of more than 300 mc./s., more particularly to such tubes in which at least two electrodes are pressed, under the action of a spring, against spacing and insulating members and in which the cathode has a high operational temperature.
In such tubes use is frequently made of insulating bodies of ceramic material or quartz, which are ground to flatness together with the electrode to which they are secured and which, with the interposition of a spacing foil press against a further electrode under the action of a spring.
As a rule, such insulating bodies are cylindrical. Such constructions have a limitation in that a comparatively large quantity of insulating material finds itself in the proximity of the discharge path, which may give rise to material losses at very high frequencies. In this case the use of materials of low losses is limited, since substantially only ceramic material can be used in such tubes, in which, in general, use is made of highly loaded cathodes having operational temperatures of more than 900 C. A reduction of the quantity of insulating material by the use of thin rods of this material can not be carried out successfully, since the rods are soon deformed during the operation of the tube or during the formation of the cathode. Quartz is substantially unserviceable in such cases, since this material becomes too weak at the said temperatures and is deformed by the constant pressure of the spring.
The invention permits of using very thin insulating rods. According to the invention, an electron tube for use at frequencies of more than 300 mc./s., comprising an electrode system of which at least two electrodes-one of which has an operational temperature of more than 900 C.are pressed, under the action of a spring. against interpositioned insulating members and are spaced apart by a spacing foil, is characterised in that the insulating spacers between at least these two electrodes are formed in the shape of rods of synthetic sapphire, secured to one of these electrodes and ground to flatness together with this electrode.
It has been found that, at high temperatures, such rods of synthetic sapphire have a very low degree of loss and do not Weaken or warp. These rods may, moreover, be very thin. Consequently, the quantity of insulating material in the proximity of the electron space may be extremely small, whilst the transfer of heat along these rods is also very small.
The use of synthetic sapphire as an insulating material has the advantage, in addition to low thermal conductivity, of low losses at high frequencies and even at high temperatures.
In order that the invention may be readily carried into effect, it will now be described with reference to the accompanying drawing, in which- Fig. 1 shows a diode and Fig. 2 a triode according to the invention.
As shown in Fig. 1, the cathode 1 is held spaced apart United States Patent from the anode 2 by a very small distance. The cathode 1 is urged towards the anode 2 by spring 3. The anode 2 is provided with, for example, three apertures 4, in which rods 5 of synthetic sapphire are secured by hard solder, for example, silver or copper. The length of the rods is, for example, 5 mms. and the diameter is only 0.3 to 0.75 mm. The rods project for example by 2 mms. from the bottom in the anode and are ground to flatness together with the bottom end of the anode, i.e., the bottom surfaces of the rods and the anode are flat and lie in the same plane. The spacing foil 6 determines the distance between the anode and the cathode. Since the direction of length of the rods is at right angles to the ground electrode surface, such thin rods may be used, since the rods are subjected only to axial pressure.
The composition of the sapphire rods is very homogeneous and even at high temperatures they are fully resistant to deformation, in contradistinction to ceramic spacing members. The anode-cathode distance may therefore be adjusted to 10p. with a tolerance of 1a. The cathode can be only a cathode having a metallic emissive surface. For the short waves concerned use is preferably made of strongly loaded cathodes at an operational temperature of 1050 C. The temperature for the formation, however, is much higher, i.e. about 1350 C. Since the electrodes 1 and 2 are constantly subjected to spring pressure, the insulating spacers 5 must not lose their rigidity even at this temperature. In this respect synthetic sapphire is very serviceable.
A further advantage is that a glass seal may be provided in close proximity to the rods of synthetic sapphire, so that the rods and the electrode may be ground to flatness before this electrode is sealed in. The length of the electrode inside the tube may therefore be very small, which is a great advantage for the aforesaid high frequencies.
Since only three very thin rods 5 are required, the transfer of heat from the cathode to the anode is very slight. Thus, moreover, a construction is obtained, in which an extremely small quantity of insulating material, which, moreover, has slight dielectric losses, is provided in the proximity of the electron space.
Fig. 2 shows a triode, in which the invention is used for spacing apart the cathode and the grid. Since the grid can not be ground to flatness, the sapphire rods 7 are secured in this case to extensions or to a ring 8 of the cathode 9, for example, by means of platinum solder. The rods 7 are ground to flatness together with the metallic cathode surface and via a spacing foil 10 they press against the grid ring 11. The anode 12 may in this case be secured in the conventional manner. The pressure springs 13, which press the cathode and the grid against one another, apply preferably to the ends of the sapphire rods 7, in order to reduce the transfer of heat.
It is obvious that as an alternative, the tube according to the invention may be constructed in a different manner.
What is claimed is:
1. A high frequency electron discharge tube comprising anode and cathode electrodes having flat opposing parallel surfaces spaced apart by a relatively small distance; a plurality of thin rod-like synthetic sapphire insulating members secured to said anode, all of said insulating members having precisely fiat surfaces lying in the same plane as the flat surface of said anode, said insulating members being spaced around said anode immediately adjacent the discharge path of said tube, said insulating members each having a cross-sectional area which is small relative to the cross-sectional area of the discharge path so that the losses of electromagnetic energy in said insulating members will be small compared to the energy in said discharge path; a spacing tively small distance between said opposing surface of said anode and said cathode, said spacing member being interposed between said flat surface of each of said insulating member and said flat surface .of said cathode; and spring means coupled to said cathode for urging said electrodes toward each other whereby the space between the flat surface of said electrodes is determined by the spacing of said spacing member.
2. An electron tube as claimed in claim 1, in which the direction of length of the rods of synthetic sapphire is at right angles to the flat surface of the one electrode.
3. An electron tube as claimed in claim 1 in which the electrode in which the sapphire rods are secured is sealed in glass in the immediate proximity of the area Where the rods are secured.
References Cited in the file of this patent UNITED STATES PATENTS 2,175,707 Shardlow Oct. 10, 1939 2,455,381 Morton et al Dec. 7, 1948 2,462,921 Taylor Mar. 1, 1949 2,699,517 Diemer Ian. 11, 1955 2,716,199 Diemeret al Aug. 23, 1955 2,754,349 Werner July 10, 1956
US361364A 1953-06-12 1953-06-12 Electron tube for decimetre-and centimetre-waves Expired - Lifetime US2887606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US361364A US2887606A (en) 1953-06-12 1953-06-12 Electron tube for decimetre-and centimetre-waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US361364A US2887606A (en) 1953-06-12 1953-06-12 Electron tube for decimetre-and centimetre-waves

Publications (1)

Publication Number Publication Date
US2887606A true US2887606A (en) 1959-05-19

Family

ID=23421735

Family Applications (1)

Application Number Title Priority Date Filing Date
US361364A Expired - Lifetime US2887606A (en) 1953-06-12 1953-06-12 Electron tube for decimetre-and centimetre-waves

Country Status (1)

Country Link
US (1) US2887606A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139554A (en) * 1960-12-07 1964-06-30 Philips Corp Electric discharge tube with accurately spaced electrodes
US3173032A (en) * 1959-09-14 1965-03-09 Smith Corp A O Means for close placement of electrode plates in a thermionic converter
US3176165A (en) * 1960-11-15 1965-03-30 Gen Electric Series connection and spacing techniques for thermionic converters
US3176164A (en) * 1958-11-03 1965-03-30 Gen Electric High vacuum thermionic converter
US3594603A (en) * 1968-04-29 1971-07-20 Desoto Inc Field emission circuit element and circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175707A (en) * 1938-02-26 1939-10-10 Rca Corp Spacer for electron discharge devices
US2455381A (en) * 1947-10-01 1948-12-07 Bell Telephone Labor Inc Cathode assembly for electron discharge devices
US2462921A (en) * 1946-05-03 1949-03-01 Standard Telephones Cables Ltd Electron discharge tube
US2699517A (en) * 1951-01-06 1955-01-11 Hartford Nat Bank & Trust Co Electric discharge tube with planar electrodes
US2716199A (en) * 1951-01-26 1955-08-23 Hartford Nat Bank & Trust Co Electric discharge tube for short waves
US2754349A (en) * 1951-03-28 1956-07-10 Leo C Werner Insulating spacers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175707A (en) * 1938-02-26 1939-10-10 Rca Corp Spacer for electron discharge devices
US2462921A (en) * 1946-05-03 1949-03-01 Standard Telephones Cables Ltd Electron discharge tube
US2455381A (en) * 1947-10-01 1948-12-07 Bell Telephone Labor Inc Cathode assembly for electron discharge devices
US2699517A (en) * 1951-01-06 1955-01-11 Hartford Nat Bank & Trust Co Electric discharge tube with planar electrodes
US2716199A (en) * 1951-01-26 1955-08-23 Hartford Nat Bank & Trust Co Electric discharge tube for short waves
US2754349A (en) * 1951-03-28 1956-07-10 Leo C Werner Insulating spacers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176164A (en) * 1958-11-03 1965-03-30 Gen Electric High vacuum thermionic converter
US3173032A (en) * 1959-09-14 1965-03-09 Smith Corp A O Means for close placement of electrode plates in a thermionic converter
US3176165A (en) * 1960-11-15 1965-03-30 Gen Electric Series connection and spacing techniques for thermionic converters
US3139554A (en) * 1960-12-07 1964-06-30 Philips Corp Electric discharge tube with accurately spaced electrodes
US3594603A (en) * 1968-04-29 1971-07-20 Desoto Inc Field emission circuit element and circuit

Similar Documents

Publication Publication Date Title
US3267308A (en) Thermionic energy converter
US2462921A (en) Electron discharge tube
US2887606A (en) Electron tube for decimetre-and centimetre-waves
US2884550A (en) Ionization gauges and method of operation thereof
US2455381A (en) Cathode assembly for electron discharge devices
US2870366A (en) Electric discharge tube of the kind comprising a cathode of the indirectly heated type
US2416661A (en) Dispenser type cathode electric discharge device
US2420311A (en) Conductive shield for external press type electron discharge tubes
US2441792A (en) Stacked electrode assembly for electron discharge devices
US2471037A (en) Electron discharge device employing cavity resonators
US2418117A (en) Electron discharge device
US2667593A (en) Electron tube
US2451556A (en) Electrode structure for gaseous discharge devices
US2130281A (en) Electron discharge tube
US2607902A (en) Gaseous discharge device
US2825832A (en) Thermionic cathode structure
US2108539A (en) Electron discharge device
US1916408A (en) Electric discharge tube
US2452062A (en) Electrical discharge tube
US2433634A (en) Electron discharge device of the cavity resonator type
US2784337A (en) Electron discharge device
US2761091A (en) Tube for ultra short waves
US3038098A (en) Electron tube
US2974250A (en) Electronic tube
US2532846A (en) Manufacture of electron discharge tubes