US2881599A - Device for thawing an ice separator used in a system comprising a cold gas refrigerator - Google Patents

Device for thawing an ice separator used in a system comprising a cold gas refrigerator Download PDF

Info

Publication number
US2881599A
US2881599A US481433A US48143355A US2881599A US 2881599 A US2881599 A US 2881599A US 481433 A US481433 A US 481433A US 48143355 A US48143355 A US 48143355A US 2881599 A US2881599 A US 2881599A
Authority
US
United States
Prior art keywords
ice separator
ice
thawing
refrigerator
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US481433A
Inventor
Bloem Aldert Teunis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
North American Philips Co Inc
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US2881599A publication Critical patent/US2881599A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention relates to a device for thawing an ice separator used in a system comprising a cold-gas refrigerator.
  • the term coldgas refrigerator is to be understood to mean herein a so-called refrigerator operating on the reversed hot-gas engine principle. It is known that these refrigerators may be constructed in various ways, for example in the form of a displacer-piston machine, of a double-acting machine, of a machine, the cylinders of which are at an angle to one another or of a machine of which the working space is combined with that of a hot-gas engine.
  • a large temperature difference for example of -.,-100 C. and even of --200 C. may be bridged in one step. Owing to this property these machines may be used successfully in systems for cooling and condensing gases or gaseous mixtures or in systems in which gaseous mixtures are separated into fractions.
  • These gaseous mixtures to be cooled, condensed or separated often contain impurities, which must not be contained in the final product. These impurities may be extracted from the gases, when they are still in the gaseous state. This may be carried out by means of chemical substances, but it is, as a rule, to be preferred to separate by freezing out those impurities which have a higher thaw point than the products to be obtained.
  • the constituents frozen out will accumulate, as a rule, in the ice separator, so that from time to time this ice separator must be cleaned.
  • the ice separators may for example be cleaned by heating them, so that the ice thaws or evaporates.
  • the device according to the invention may be employed successfully to this end.
  • This device has the feature that it comprises a fan, by which air is conveyed to a heating device after which the air thus heated can be supplied to the ice separator while the duct system of the device comprises a safety valve.
  • the ice separator may be filled locally with ice to such an extent that the resistance to the air to be blown through the ice separator may be too high. This may result in that the electric motor driving the fan is overloaded, while the heating device can draw only an insuflicient quantity of air, so that it may be overloaded.
  • the safety valve By means of the safety valve the air or part thereof may, in such a case be blown away.
  • the return valve is preferably arranged between the heating device and the ice separator so that the heating device is loaded invariably to the same extent.
  • the heating device may, of course, be constructed in various ways, but an electric heating helix will, as a rule, be preferred.
  • the fan may be driven by the motor driving the cold-gas refrigerator; however, since the thawing device need be used only periodically, it will, in general, be desirable to provide the fan with its own motor.
  • the heating air is pushed against the direction of flow of the gaseous mixture to be cooled through the ice separator.
  • Fig. 1 shows a cold-gas refrigerator, comprising a device according to the invention
  • Figure 2 shows a device for thawing the ice separator.
  • the cold-gas refrigerator shown is a displacer piston machine and comprises a displacer-piston 1 and a piston 2, which move up and down in a cylinder 3 with a substantially constant phase difference.
  • the displacer piston 1 is coupled by means of a connectingrod system 4 with ,a crank of a crankshaft 5, whereas the piston 2 is coupled by means of a connecting-rod system 6 with a crank of the same crankshaft 5.
  • the space 7 above the displacer piston is the so-called freezing space, which communicates through ducts 8' in a freezing section 9, a regenerator 10 and ducts 11 in a cooler 12 with a space 13, which is termed the cooled space.
  • the refrigerator is driven by a motor, for example an electric motor 14.
  • the refrigerator contains a suitable gas, for example hydrogen or helium and since the piston and the displacer piston move with a phase difference, expansion takes place mainly in the freezing space 7 and compression mainly in the cooled space 13, so that heat can be supplied to the freezer at a low temperature, for example at -200 C. and the machine operates as a refrigerator.
  • the freezer comprises two sections, i.e. a section 9 associatedwiththe ducts 8 and a section located outside the machine proper and constituted by a support, which has three parts in this embodiment, i.e. a part 15, a part 16 and a part 17.
  • the heat resistance of these parts is different.
  • the wall thickness of the part 15 for example is materially larger than that of the part 16 and the wall thickness of the latter exceeds that of the part 17.
  • the parts 16 and 17 are interconnected by means of a connecting piece 18, having satisfactory heat conductivity.
  • the parts of the support are provided with extensions, constructed in the form of transverse partitions, i.e. the transverse partitions 19,
  • the gas to be cooled is supplied through apertures 28 and flows through the apertures 25 of the transverse partitions 21 in upward direction, then through an aperture 29 in the connecting piece 18 and through the aperture 22 and 23 in the transverse partitions 19 and 20 respectively and along vanes 30 of the freezer section 9.
  • the cooled medium leaves the heat exchanger in the liquid state and is conducted away through the duct 31.
  • carbonic acid may be separated out; the transverse partitions 19 serve mainly for further cooling of the medium.
  • the relative temperature division among the transverse partitions 19, 20 and 21 is such that the mean temperature difference between the successive transverse partitions associated with one of these groups is not more than for example 10 C.
  • Patented Apr. 14, 1959- meantemperature-of that transverse partition at which the separation starts is not more than 20 preferably not more than C. lower than the separation point of that component of the medium as it is supplied to the extensions.
  • the separation will start, in accordance with the quantity of medium flowing through the heat exchanger, atom of the transverse partitions, located for example on the bottom side of the heat exchanger, where the medium enters. If, after some time, such a quantity of ice has been separated out in the heat exchanger, that one or more of the spaces 32 or 33 is substantially filled out, it will be desirable to stop the supply of medium to be cooled to the heat exchanger, while at the same time no cold must be any longer withdrawn from the heat exchanger.
  • the solid carbonic acid By blowing in hot air, the solid carbonic acid will volatilize in the space 33, while the icein the spaces 32 is changed into water, which flows down through apertures. in the, edges of the transverse partitions and can be conducted away from the ice separator through a duct 35.
  • the device for thawing the ice separator comprises a fan.36, which may be driven by an electric motor 37.
  • the fan comprises an outlet duct'38, having a heating element 39 and a duct 40 which can be connected to the ice separator.
  • the duct 40 has a safety valve 41, which is urged by a spring 42.
  • the duct 40 is connected to the outlet duct 31.
  • the fan 36thus pushes the air sucked in against the direction of flow of the gaseous mixture to be cooled through the, ice separator, so that the ice thaws and the carbonic acid evaporates.
  • the condensate produced is conducted away through the duct 35.
  • the device according to the invention may, as an alternative, be used with an ice separator, from the support "'of which heat is withdrawn in a different manner, for example by means of evaporating oxygen.
  • an ice separator from the support "'of which heat is withdrawn in a different manner, for example by means of evaporating oxygen.
  • use instead of using hot air, use may be made of other gases.
  • a heating device for thawing an ice separator associated with apparatus including a cold-gas refrigerator comprising; a fan, means for driving said fan, means for supplying the air produced by said fan tosaid ice separator, a heating device located in the last-mentioned means between said fan and said ice separator, and a normally closed, valve arranged in said last-mentioned means between said heating device and said ice separator and responsive to pressure to maintain the fan flow through said supply means and heater thereby preventing the overheating of said heating device.
  • a heating device as claimed in claim 1 further comprising a discharge pipe wherein hot air is expelled from said supply means through said discharge pipe and into one end of said ice separator and against the direction of flow of the gaseous mixture to be cooled through said ice separator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

April 14, 1959 BLOEM v DEVICE FOR THAWING AN ICE SEPARATOR USED IN A SYSTEM COMPRISING A COLD-GAS REFRIGERATOR Filed Jan. 12, 1955 INVENTOR ALDERT TEUNIS BLOEM AGENT United States Patent DEVICE FOR THAWING AN ICE SEPARATOR USED lN'A SYSTEM COMPRISING A COLD-' GAS REFRIGERATOR Application January 12, 1955, Serial No. 481,433
Claims priority, application Netherlands January 15, 1954 2 Claims. (Cl. 62-154) The invention relates to a device for thawing an ice separator used in a system comprising a cold-gas refrigerator. The term coldgas refrigerator is to be understood to mean herein a so-called refrigerator operating on the reversed hot-gas engine principle. It is known that these refrigerators may be constructed in various ways, for example in the form of a displacer-piston machine, of a double-acting machine, of a machine, the cylinders of which are at an angle to one another or of a machine of which the working space is combined with that of a hot-gas engine. By means of these machines a large temperature difference, for example of -.,-100 C. and even of --200 C. may be bridged in one step. Owing to this property these machines may be used successfully in systems for cooling and condensing gases or gaseous mixtures or in systems in which gaseous mixtures are separated into fractions.
These gaseous mixtures to be cooled, condensed or separated often contain impurities, which must not be contained in the final product. These impurities may be extracted from the gases, when they are still in the gaseous state. This may be carried out by means of chemical substances, but it is, as a rule, to be preferred to separate by freezing out those impurities which have a higher thaw point than the products to be obtained.
The constituents frozen out will accumulate, as a rule, in the ice separator, so that from time to time this ice separator must be cleaned.
The ice separators may for example be cleaned by heating them, so that the ice thaws or evaporates.
The device according to the invention may be employed successfully to this end. This device has the feature that it comprises a fan, by which air is conveyed to a heating device after which the air thus heated can be supplied to the ice separator while the duct system of the device comprises a safety valve.
According to the invention it has been found that sometimes the ice separator may be filled locally with ice to such an extent that the resistance to the air to be blown through the ice separator may be too high. This may result in that the electric motor driving the fan is overloaded, while the heating device can draw only an insuflicient quantity of air, so that it may be overloaded. By means of the safety valve the air or part thereof may, in such a case be blown away. The return valve is preferably arranged between the heating device and the ice separator so that the heating device is loaded invariably to the same extent.
The heating device may, of course, be constructed in various ways, but an electric heating helix will, as a rule, be preferred. The fan may be driven by the motor driving the cold-gas refrigerator; however, since the thawing device need be used only periodically, it will, in general, be desirable to provide the fan with its own motor.
According to one aspect of the invention, the heating air is pushed against the direction of flow of the gaseous mixture to be cooled through the ice separator.
The invention will be described with reference to one embodiment.
Fig. 1 shows a cold-gas refrigerator, comprising a device according to the invention,
Figure 2 shows a device for thawing the ice separator.
The cold-gas refrigerator shown is a displacer piston machine and comprises a displacer-piston 1 and a piston 2, which move up and down in a cylinder 3 with a substantially constant phase difference. To this end the displacer piston 1 is coupled by means of a connectingrod system 4 with ,a crank of a crankshaft 5, whereas the piston 2 is coupled by means of a connecting-rod system 6 with a crank of the same crankshaft 5. The space 7 above the displacer piston is the so-called freezing space, which communicates through ducts 8' in a freezing section 9, a regenerator 10 and ducts 11 in a cooler 12 with a space 13, which is termed the cooled space. The refrigerator is driven by a motor, for example an electric motor 14. The refrigerator contains a suitable gas, for example hydrogen or helium and since the piston and the displacer piston move with a phase difference, expansion takes place mainly in the freezing space 7 and compression mainly in the cooled space 13, so that heat can be supplied to the freezer at a low temperature, for example at -200 C. and the machine operates as a refrigerator. The freezer comprises two sections, i.e. a section 9 associatedwiththe ducts 8 and a section located outside the machine proper and constituted by a support, which has three parts in this embodiment, i.e. a part 15, a part 16 and a part 17. The heat resistance of these parts is different. The wall thickness of the part 15 for example is materially larger than that of the part 16 and the wall thickness of the latter exceeds that of the part 17. The parts 16 and 17 are interconnected by means of a connecting piece 18, having satisfactory heat conductivity. The parts of the support are provided with extensions, constructed in the form of transverse partitions, i.e. the transverse partitions 19, 20 and 21, in which apertures are provided.
It is evident from Fig. 2 that these apertures are in staggered positions in two successive extensions. The transverse partitions with the aperture 22 of the part 15 and the transverse partitions 20 with the apertures 23 of the part 16 extend to a wall 24 surrounding these parts whereas the transverse partitions 21 with the apertures 25 associated with the part 17 extend to a Wall 26. The part 17 is insulated from the wall 24. The heat exchanger is surrounded by a wall 27, having heat insulation properties.
The gas to be cooled is supplied through apertures 28 and flows through the apertures 25 of the transverse partitions 21 in upward direction, then through an aperture 29 in the connecting piece 18 and through the aperture 22 and 23 in the transverse partitions 19 and 20 respectively and along vanes 30 of the freezer section 9. The cooled medium leaves the heat exchanger in the liquid state and is conducted away through the duct 31. On the transverse partitions 21 associated with the support 17 the watervapour is deposited, if air is cooled and the spaces 32 between these plates are so large that it takes comparatively long time before these spaces are completely filled with ice. In the spaces 33 between the transverse partitions 20 carbonic acid may be separated out; the transverse partitions 19 serve mainly for further cooling of the medium. The relative temperature division among the transverse partitions 19, 20 and 21 is such that the mean temperature difference between the successive transverse partitions associated with one of these groups is not more than for example 10 C. The
Patented Apr. 14, 1959- meantemperature-of that transverse partition at which the separation starts is not more than 20 preferably not more than C. lower than the separation point of that component of the medium as it is supplied to the extensions. The separation will start, in accordance with the quantity of medium flowing through the heat exchanger, atom of the transverse partitions, located for example on the bottom side of the heat exchanger, where the medium enters. If, after some time, such a quantity of ice has been separated out in the heat exchanger, that one or more of the spaces 32 or 33 is substantially filled out, it will be desirable to stop the supply of medium to be cooled to the heat exchanger, while at the same time no cold must be any longer withdrawn from the heat exchanger. By blowing in hot air, the solid carbonic acid will volatilize in the space 33, while the icein the spaces 32 is changed into water, which flows down through apertures. in the, edges of the transverse partitions and can be conducted away from the ice separator through a duct 35.
The device for thawing the ice separator comprises a fan.36, which may be driven by an electric motor 37. The fan comprises an outlet duct'38, having a heating element 39 and a duct 40 which can be connected to the ice separator. The duct 40 has a safety valve 41, which is urged by a spring 42.
If the ice is to be removedfrom the ice separator, the duct 40 is connected to the outlet duct 31. The fan 36thus pushes the air sucked in against the direction of flow of the gaseous mixture to be cooled through the, ice separator, so that the ice thaws and the carbonic acid evaporates. The condensate produced is conducted away through the duct 35.
C.- lower,
It will be obvious that the device according to the invention may, as an alternative, be used with an ice separator, from the support "'of which heat is withdrawn in a different manner, for example by means of evaporating oxygen. As an alternative, instead of using hot air, use may be made of other gases.
What is claimed is: o 1
l. A heating device for thawing an ice separator associated with apparatus including a cold-gas refrigerator comprising; a fan, means for driving said fan, means for supplying the air produced by said fan tosaid ice separator, a heating device located in the last-mentioned means between said fan and said ice separator, and a normally closed, valve arranged in said last-mentioned means between said heating device and said ice separator and responsive to pressure to maintain the fan flow through said supply means and heater thereby preventing the overheating of said heating device.
2. A heating device as claimed in claim 1 further comprising a discharge pipe wherein hot air is expelled from said supply means through said discharge pipe and into one end of said ice separator and against the direction of flow of the gaseous mixture to be cooled through said ice separator.
References Cited in the file of this patent UNITED STATES PATENTS 1,594,906 Gross Aug. 3, 1926 2,113,680 De Baufre Apr. 12, 1938 2,337,474 Kornemann Dec. 21, 1943 2,563,042 Iaubert Au 7.
US481433A 1954-01-15 1955-01-12 Device for thawing an ice separator used in a system comprising a cold gas refrigerator Expired - Lifetime US2881599A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2881599X 1954-01-15

Publications (1)

Publication Number Publication Date
US2881599A true US2881599A (en) 1959-04-14

Family

ID=19876154

Family Applications (1)

Application Number Title Priority Date Filing Date
US481433A Expired - Lifetime US2881599A (en) 1954-01-15 1955-01-12 Device for thawing an ice separator used in a system comprising a cold gas refrigerator

Country Status (1)

Country Link
US (1) US2881599A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1594906A (en) * 1925-04-28 1926-08-03 Eastern Lab Inc Electric drier
US2113680A (en) * 1938-04-12 Method anx apparatus fob defrost-
US2337474A (en) * 1941-10-22 1943-12-21 Linde Air Prod Co Process of and apparatus for separating gas mixtures
US2563042A (en) * 1947-03-01 1951-08-07 George F Jaubert Device for drying hair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113680A (en) * 1938-04-12 Method anx apparatus fob defrost-
US1594906A (en) * 1925-04-28 1926-08-03 Eastern Lab Inc Electric drier
US2337474A (en) * 1941-10-22 1943-12-21 Linde Air Prod Co Process of and apparatus for separating gas mixtures
US2563042A (en) * 1947-03-01 1951-08-07 George F Jaubert Device for drying hair

Similar Documents

Publication Publication Date Title
US4674297A (en) Chemically assisted mechanical refrigeration process
US4707996A (en) Chemically assisted mechanical refrigeration process
US2794322A (en) Variable temperature refrigeration
US3153442A (en) Heating and air conditioning apparatus
US3768273A (en) Self-balancing low temperature refrigeration system
US3913351A (en) Air conditioning system having reduced driving requirement
US3283524A (en) Refrigeration system
CN1170860A (en) Dual inlet oil separator for chiller
KR910021565A (en) Cold Storage Air Conditioners
US5553457A (en) Cooling device
EP3492838A1 (en) A condenser device for a refrigeration system and method of controlling thereof
US3470707A (en) Refrigeration system
US2640327A (en) Dual evaporator refrigeration apparatus
US2881599A (en) Device for thawing an ice separator used in a system comprising a cold gas refrigerator
BR8100634A (en) REFRIGERATION METHOD AND SYSTEM FOR COOLING A LIQUID
US5275006A (en) Rotary two-phase refrigeration apparatus and method
RU2253075C2 (en) Stirling cooling plant
Kim et al. The performance analysis of a hydrocarbon refrigerant R-600a in a household refrigerator/freezer
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
US2836964A (en) Refrigerating device comprising a gas-refrigerator
EP0138041A2 (en) Chemically assisted mechanical refrigeration process
US2734354A (en) Refrigerator gas liquification device
US2117693A (en) Apparatus for refrigerating purposes
US1719818A (en) Refrigerating process and apparatus
US3713303A (en) Means for breaking down aqueous jelly-like solutions and thus separating water and solid constituents from each other by means of freezing and subsequent melting