US2880871A - Process and device for sifting solid and liquid materials - Google Patents

Process and device for sifting solid and liquid materials Download PDF

Info

Publication number
US2880871A
US2880871A US405947A US40594754A US2880871A US 2880871 A US2880871 A US 2880871A US 405947 A US405947 A US 405947A US 40594754 A US40594754 A US 40594754A US 2880871 A US2880871 A US 2880871A
Authority
US
United States
Prior art keywords
netting
screening
oscillations
liquid materials
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US405947A
Inventor
Bruninghaus Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinische Werkzeug & Maschf
RHEWUM RHEINISCHE WERKZEUG- und METALLWARENFABRIK GmbH
Original Assignee
Rheinische Werkzeug & Maschf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinische Werkzeug & Maschf filed Critical Rheinische Werkzeug & Maschf
Application granted granted Critical
Publication of US2880871A publication Critical patent/US2880871A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/34Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens jigging or moving to-and-fro perpendicularly or approximately perpendiculary to the plane of the screen
    • B07B1/346Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens jigging or moving to-and-fro perpendicularly or approximately perpendiculary to the plane of the screen with electromagnets

Definitions

  • a frame supporting a screen tightly drawn and firmly secured thereon is caused to vibrate by use of different mechanical means, for instance by knocking, beating, unbalanced weights, or electro-magnetic vibrators.
  • the vibrations are transmitted by secondary impact to the goods to be screened or onto the screening means, respectively.
  • fine and extra-fine screening operations where extremely small-mesh sieve nettings are used, a serious difficulty is encountered inasmuch as the nettings fail to follow the oscillations of the frame, more particularly where large areas and heavy goods are concerned. As a consequence, dead zones are formed on the netting where no screening action occurs. From the aspect of energy-economy, too, it is wasteful first to induce vibrations in a heavy frame, in order to cause vibration of the netting.
  • the device according to the invention provides a direct transmission of motion to the netting, causing such intense vibration of the goods to be screened that excellent screening results will thereby be obtained.
  • means are provided for starting the vibration of the netting and causing sinusoidal oscillations of high-frequency therein, which means, more particularly in the form of rods, are distributed in the device so as to have spaced points of attack.
  • the netting In order to provide the sinusoidal oscillations, it is necessary that the netting have a certain freedom of movement, that is to say: it should not have a special tension in any direction.
  • the netting has to be started at a cer tain minimum frequency in order to perform the required vibration. It is also desirable to superpose harmonics on the sinusoidal oscillation, which may be generated I electromagnetically as longitudinal vibration of the transmitter rods, said vibrations having limited amplitudes. This arrangement leads to progressive transverse waves which insure total motion of the entire netting due to their high capacity of reflection.
  • Dissipation of heat from the oscillating elements is effected by the use of light metals of high heat-conductivity. It is possible to provide a close contact of the magnets with the light metal, for instance by casting them together. In this case, the light metal serving for the dissipation of heat may be so designed that it will at the same time form a protective casing for the magnetic oscillator.
  • Fig. 1 is a diagrammatic showing of the screening de vice in front view
  • Fig. 2 is a side view of the device
  • Fig. 3 is a top view
  • Figs. 4-8 are diagrammatical representations of oscillatory curves
  • Fig. 9 shows a magnet in longitudinal section with a connection between the rod and screen below it;
  • Fig. 10 is a section along line X-X of Fig. 9;
  • Fig. 11 is a section, similar to Fig. 9, of a modified form.
  • Fig. 12 is a section along line XIIXII of Fig. 11.
  • the screening device is shown to comprise a netting 1, which is mounted between rubber pads 2 in a stationary frame 3 and secured therein by means of bolts 30.
  • a rigid bridging member 4 is likewise secured to the frame by said bolts.
  • an electromagnetic oscillator 7 is firmly anchored, whose energy is transmitted directly to the netting 1 through a vibrating rod 5 and the vibrating movement of a rigid connecting member 6-.
  • the vibrating rod of the oscillator is caused to perform natural motions which are superposed directly on the resulting sinusoidal oscillation. Due to this arrangement, the goods to be screened will be vigorously agitated so that in a very short time a maximum amount will be subjected to screening action at the surface of the screen.
  • I may for instance use electromagnetic vibrators operating at a frequency of oscillations per second.
  • Fig. 2 is a side view of a screening device thus driven, in slanting position; this arrangement causes residue to be removed automatically.
  • oscillating rods 5 are shown in this figure which act on the netting, not uniform ly, but with a phase displacement of This permits generation in the sieve netting of a more intense motion, as well as larger amplitudes, which have a similar course, as shown at the bottom of Fig. 2, at 5a.
  • the curve also shows superposed harmonics.
  • Fig. 3 is a top view showing a large screen surface to be excited at eleven points designated by 6.
  • the oscillators arranged in the center line operate in opposite rhythm to the oscillators arranged in a line on either side of the center line.
  • Figs. 4-8 illustrate the oscillations generated by the magnetic oscillator and executed by the netting.
  • Fig. 4 is a simple sinusoidal oscillation as generated by the magnetic oscillator.
  • the generated frequency of the oscillations will be 100 c.p.s.
  • Fig. 5 shows the limitation of the amplitude at a.
  • Figs. 9-12 show various magnetic oscillators.
  • Figs. 9 and 10 illustrate an oscillator having a rod 5 connected to a netting 1.
  • the outer casing is designated by 7, in which a magnetic coil 9 is arranged.
  • Rod 5 passes through coil 9 and supports at the other end an armature 10 which is attracted by the magnetic coil.
  • Rod 5 is suspended in springs 11 which are tuned to a fundamental frequency.
  • the generated sinusoidal oscillations are limited in their amplitude and strong harmonics are created by natural oscillation of the transmission members, so that in the netting 1, oscillations as shown in Figs. 7 and 8 will result.
  • the lower stops are designated and the upper stops 32 with the limited movement of the armature designated 34 and 36.
  • Figs. 11 and 12 the head of a rod 5 provided with an armature 10 is brought up close to the magnet coil 9 of an oscillator 7, said head being likewise held by springs 11.
  • the lower stops are designated 38 and the upper stops 40 with the limited armature movement indicated at 42 and 44.
  • the vibrating rods 5 pass through the netting, and a small hole is provided in the netting for each rod.
  • the small hole is for the passing through of the rod and, enclosing the rod, a plate 27 in Fig. 9 is arranged around the hole on top of and below the netting.
  • These plates are attached to the rods and curved in a manner to follow the oscillations thereof.
  • leaf type spring elements 28 are interposed on each side of the screening medium between it and the plates 27 so that the oscillations from each rod 5 will be resiliently distributed at each localized connection to the screen thereby reducing or practically eliminating wear at the point of connection.
  • a method of screening material with a pervious screening medium including the steps of imparting high frequency vibrations at generally right angles to the medium at well spaced localized points, creating at each such point radiating annular sinusoidal high frequency waves emanating from and concentric with such point, allowing uninterrupted interference of such waves from adjacent points as they converge and intersect in the areas of the medium intermediate the localized points, and feeding material to be screened to one side of said screening medium.
  • the method of claim 1 further characterized by and including the step of vibrating the screening medium simultaneously in opposite directions at right angles to said medium at adjacent localized points.
  • a method of screening materials which includes the steps of providing a pervious medium, supporting the medium in a plane in a condition of such tension as to permit unimpeded interference vibrations in certain areas, vibrating the medium positively at a high frequency at well spaced independent localized points generally at right angles to the plane of the medium, creating interference in the intermediate areas resulting from sinusoidal waves radiating in all directions from such points, and feeding material to be screened to the medium.
  • a screening device a base, a screen frame mounted rigidly on the base, a screen secured in said frame, means on the frame for clamping and holding the screen, a plurality of independent magnetic vibrating units attached directly to the screen for vibrating it at a high frequency at spaced and independent localized points in a direction, at each such point, generally perpendicular to the plane of the screen, said screen being held under a degree of tension such that annular high frequency sinusoidal concentric waves will emanate from each said point.
  • the structure of claim 5 further characterized in that the magnetic vibrating units are constructed to simultaneously vibrate the screen in opposite directions at adjacent localized points.

Description

April 7, 1959 Filed Jan. 25. 1954 P. BRUNINGHAUS PROCESS AND DEVICE FOR SIFTING SOLID AND LIQUID MATERIALS 3 Sheets-Sheet 1 INVENIOP BYHX/VAM M April 7, 1959 Fil ed Jan. 25, 1954 AND LIQUID MATERIALS 3 Sheets-Sheet 2 /V Z: l7 s w INVENTOIP m BMMgM K; ww 2 WWW April 1959 P. BRUNINGHAUS 2,
' PROCESS AND DEVICE FOR SIF'TING SOLID AND LIQUID MATERIALS Filed Jan. 25, 1954 5 Sheets-Sheet 3 f g z 9 9 Z 4 g 7 I I 4 5 2 j 40 z'nn. M 44 44 ZHIII Q /////////////Am| i 5 l H FIG. 72
A1? mm United States Patent PROCESS AND DEVICE FOR SIFTING SOLID AND LIQUID MATERIALS Paul Briininghaus, Remscheid-Lennep, Germany, asslgnor to lfhewum Rheinische Werkzeugund Metallwarenfabrlk G.m.b.H., Remscheid-Luttringhausen, Germany Application January 25, 1954, Serial No. 405,947 Claims priority, application Germany January 26, 1953 6 Claims. (Cl. 209-310) The present invention relates to a process and device for sifting solid and liquid materials.
In most of the known sifting apparatuses, screens are firmly secured in frames and are vibrated by means of the said frames. This method is derived from the old screening by hand. The only new features are the units for starting the vibrations, which are becoming increasingly more powerful and rapid in accordance with modern requirements.
In all these devices, a frame supporting a screen tightly drawn and firmly secured thereon is caused to vibrate by use of different mechanical means, for instance by knocking, beating, unbalanced weights, or electro-magnetic vibrators. The vibrations are transmitted by secondary impact to the goods to be screened or onto the screening means, respectively. In the case of fine and extra-fine screening operations, where extremely small-mesh sieve nettings are used, a serious difficulty is encountered inasmuch as the nettings fail to follow the oscillations of the frame, more particularly where large areas and heavy goods are concerned. As a consequence, dead zones are formed on the netting where no screening action occurs. From the aspect of energy-economy, too, it is wasteful first to induce vibrations in a heavy frame, in order to cause vibration of the netting.
These difficulties cannot be overcome by hitherto known methods for direct impulsion of the sieve netting by means of various mechanisms. These mechanisms transmit the vibrations by means of stiffener bands and cross-members which pass on the vibrations to the taut netting. In the frame transmission mentioned above, the movements between netting and goods to be screened act more or less by friction, such movements, when viewed in a plane, being of circular or elliptical or other form; but when the transmission occurs perpendicularly to the plane of the netting, a tossing effect will result which may keep the goods to be screened in suspension, but is not conducive to a rapid screening action.
It is the object of the present invention to provide a method and an apparatus for screening solid and liquid materials, which is capable of overcoming the abovementioned inconveniences.
The device according to the invention provides a direct transmission of motion to the netting, causing such intense vibration of the goods to be screened that excellent screening results will thereby be obtained.
According to the invention, means are provided for starting the vibration of the netting and causing sinusoidal oscillations of high-frequency therein, which means, more particularly in the form of rods, are distributed in the device so as to have spaced points of attack. In order to provide the sinusoidal oscillations, it is necessary that the netting have a certain freedom of movement, that is to say: it should not have a special tension in any direction. Furthermore, the netting has to be started at a cer tain minimum frequency in order to perform the required vibration. It is also desirable to superpose harmonics on the sinusoidal oscillation, which may be generated I electromagnetically as longitudinal vibration of the transmitter rods, said vibrations having limited amplitudes. This arrangement leads to progressive transverse waves which insure total motion of the entire netting due to their high capacity of reflection.
These oscillations will generate between netting and goods to be screened, various rolling, overturning, tossing and frictional motions, said motions being performed simultaneously in different planes. For the generation of such vibrations, it is necessary only to grip the netting at isolated points, since the oscillations are propagated in concentric circles.
Dissipation of heat from the oscillating elements is effected by the use of light metals of high heat-conductivity. It is possible to provide a close contact of the magnets with the light metal, for instance by casting them together. In this case, the light metal serving for the dissipation of heat may be so designed that it will at the same time form a protective casing for the magnetic oscillator.
The device made according to the invention is illustrated in the accompanying drawings by way of example, but it should be understood that many modifications in the details can be made without departing from the spirit of the invention.
In the drawings:
Fig. 1 is a diagrammatic showing of the screening de vice in front view;
Fig. 2 is a side view of the device;
Fig. 3 is a top view;
Figs. 4-8 are diagrammatical representations of oscillatory curves;
Fig. 9 shows a magnet in longitudinal section with a connection between the rod and screen below it;
Fig. 10 is a section along line X-X of Fig. 9;
Fig. 11 is a section, similar to Fig. 9, of a modified form; and
Fig. 12 is a section along line XIIXII of Fig. 11.
Referring now to Figs. 1-3, the screening device is shown to comprise a netting 1, which is mounted between rubber pads 2 in a stationary frame 3 and secured therein by means of bolts 30. A rigid bridging member 4 is likewise secured to the frame by said bolts. On said member 4, an electromagnetic oscillator 7 is firmly anchored, whose energy is transmitted directly to the netting 1 through a vibrating rod 5 and the vibrating movement of a rigid connecting member 6-.
Due to the limitation of the amplitude in such an arrangement, the vibrating rod of the oscillator is caused to perform natural motions which are superposed directly on the resulting sinusoidal oscillation. Due to this arrangement, the goods to be screened will be vigorously agitated so that in a very short time a maximum amount will be subjected to screening action at the surface of the screen.
As impulsion mechanisms, I may for instance use electromagnetic vibrators operating at a frequency of oscillations per second.
Fig. 2 is a side view of a screening device thus driven, in slanting position; this arrangement causes residue to be removed automatically. Four oscillating rods 5 are shown in this figure which act on the netting, not uniform ly, but with a phase displacement of This permits generation in the sieve netting of a more intense motion, as well as larger amplitudes, which have a similar course, as shown at the bottom of Fig. 2, at 5a. The curve also shows superposed harmonics.
Fig. 3 is a top view showing a large screen surface to be excited at eleven points designated by 6. The oscillators arranged in the center line operate in opposite rhythm to the oscillators arranged in a line on either side of the center line.
It is obvious that with this arrangement there cannot be any dead zones. By individual adjustment of separate groups, I provide the possibility of varying the intensity of motion at different points of the screening surface. It is, for example, possible to provide a large dissipation of conglomer-ated goods in the upper part of the sieve by heavier blows, so that in the center of the sieve there will be a sharp screening, whereas a rapid discharge will occur at the lower end.
Figs. 4-8 illustrate the oscillations generated by the magnetic oscillator and executed by the netting. Fig. 4 is a simple sinusoidal oscillation as generated by the magnetic oscillator.
Upon use of alternating current of 50 c.p.s., the generated frequency of the oscillations will be 100 c.p.s. Fig. 5 shows the limitation of the amplitude at a. By providing for such limitation, harmonics will be superposed on the oscillations and damped oscillations will result,
as shown in Fig. 6. When the oscillations are transmitted to the netting, oscillations as shown in Figs. 7 and 8 will result, in which the harmonics are combined completely with the oscillations over the entire range. In Fig. 7, the frequency of the harmonics reaches about 2000 c.p.s., and in Fig. 8, 4500 c.p.s., thus entering the range of the higher sonic waves.
It will be readily understood that with motions of such frequencies, every single mesh of the netting attains its fullest effectiveness, and there is no possibility that any mesh can be clogged or closed.
By changing the intensity, a simultaneous change occurs in the frequencies of the harmonics. It is thereby possible by providing individual units, which are necessary for exciting larger screening surfaces, to procure at the same time individual control by zones and to generate different oscillations in one and the same screen. This is particularly useful in longer sieves Where the top part is then adjusted for dissipation of conglomerations, the center part for sharp screening and the bottom part for prompt discharge of the residue.
Figs. 9-12 show various magnetic oscillators. Figs. 9 and 10 illustrate an oscillator having a rod 5 connected to a netting 1. The outer casing is designated by 7, in which a magnetic coil 9 is arranged. Rod 5 passes through coil 9 and supports at the other end an armature 10 which is attracted by the magnetic coil. Rod 5 is suspended in springs 11 which are tuned to a fundamental frequency. By single or double stops, the generated sinusoidal oscillations are limited in their amplitude and strong harmonics are created by natural oscillation of the transmission members, so that in the netting 1, oscillations as shown in Figs. 7 and 8 will result. For example, in Figures 9 and 10 the lower stops are designated and the upper stops 32 with the limited movement of the armature designated 34 and 36. In Figs. 11 and 12, the head of a rod 5 provided with an armature 10 is brought up close to the magnet coil 9 of an oscillator 7, said head being likewise held by springs 11. The lower stops are designated 38 and the upper stops 40 with the limited armature movement indicated at 42 and 44. By arranging one oscillator 7 as shown in Figs. 9 and 10, and one oscillator as shown in Figs. 11 and 12, an opposite sinusoidal curve is generated and an increase of amplitude by interferences results, since the oscillators are phase-displaced by 180.
The vibrating rods 5 pass through the netting, and a small hole is provided in the netting for each rod. The small hole is for the passing through of the rod and, enclosing the rod, a plate 27 in Fig. 9 is arranged around the hole on top of and below the netting. These plates are attached to the rods and curved in a manner to follow the oscillations thereof. In this arrangement, leaf type spring elements 28 are interposed on each side of the screening medium between it and the plates 27 so that the oscillations from each rod 5 will be resiliently distributed at each localized connection to the screen thereby reducing or practically eliminating wear at the point of connection.
What I claim is:
1. A method of screening material with a pervious screening medium, including the steps of imparting high frequency vibrations at generally right angles to the medium at well spaced localized points, creating at each such point radiating annular sinusoidal high frequency waves emanating from and concentric with such point, allowing uninterrupted interference of such waves from adjacent points as they converge and intersect in the areas of the medium intermediate the localized points, and feeding material to be screened to one side of said screening medium.
2. The method of claim 1 further characterized by and including the step of vibrating the screening medium simultaneously in opposite directions at right angles to said medium at adjacent localized points.
3. A method of screening materials, which includes the steps of providing a pervious medium, supporting the medium in a plane in a condition of such tension as to permit unimpeded interference vibrations in certain areas, vibrating the medium positively at a high frequency at well spaced independent localized points generally at right angles to the plane of the medium, creating interference in the intermediate areas resulting from sinusoidal waves radiating in all directions from such points, and feeding material to be screened to the medium.
4. The method of claim 3 further characterized by and including the step of vibrating said medium in opposite directions at the same time at adjacent localized points.
5. In a screening device, a base, a screen frame mounted rigidly on the base, a screen secured in said frame, means on the frame for clamping and holding the screen, a plurality of independent magnetic vibrating units attached directly to the screen for vibrating it at a high frequency at spaced and independent localized points in a direction, at each such point, generally perpendicular to the plane of the screen, said screen being held under a degree of tension such that annular high frequency sinusoidal concentric waves will emanate from each said point.
6. The structure of claim 5 further characterized in that the magnetic vibrating units are constructed to simultaneously vibrate the screen in opposite directions at adjacent localized points.
References Cited in the file of this patent UNITED STATES PATENTS 1,179,428 Hayes Apr. 18, 1916 1,482,607 Gow Feb. 5, 1924 1,597,826 Reynolds Aug. 31, 1926 1,864,940 Reynolds June 28, 1932 1,941,212 Johnson Dec. 26, 1933 2,109,395 Markley Feb. 22, 1938 FOREIGN PATENTS 444,170 Great Britain Mar. 13, 1936
US405947A 1953-01-26 1954-01-25 Process and device for sifting solid and liquid materials Expired - Lifetime US2880871A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2880871X 1953-01-26

Publications (1)

Publication Number Publication Date
US2880871A true US2880871A (en) 1959-04-07

Family

ID=8000328

Family Applications (1)

Application Number Title Priority Date Filing Date
US405947A Expired - Lifetime US2880871A (en) 1953-01-26 1954-01-25 Process and device for sifting solid and liquid materials

Country Status (1)

Country Link
US (1) US2880871A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984356A (en) * 1958-12-22 1961-05-16 Rheinische Werkzeug & Metallf Multi-story sifting device and method
US3024912A (en) * 1958-08-21 1962-03-13 Novo Ind Corp Screen structure
US3049235A (en) * 1958-05-27 1962-08-14 Novo Ind Corp Screening process for vibratory screens
US3121679A (en) * 1958-05-27 1964-02-18 Novo Ind Corp Method of operating screens
US3179251A (en) * 1961-07-07 1965-04-20 Schuchtermann & Kremer Baum Ag Sieve machine
US3241672A (en) * 1962-08-20 1966-03-22 United Shoe Machinery Corp Method of sifting fine powder
US3325007A (en) * 1963-12-13 1967-06-13 Rheinische Werkzeug & Maschf Screen with vibration-isolated vibration generator
US3490584A (en) * 1965-08-31 1970-01-20 Cavitron Corp Method and apparatus for high frequency screening of materials
US3495710A (en) * 1967-03-01 1970-02-17 Vladimir Alexeevich Bely Method and device for fluidization or separation of disperse materials
US3616905A (en) * 1968-02-26 1971-11-02 Prerovske Strojirny Np Arrangement for classifying of liquid suspensions and of solid materials
US3751694A (en) * 1971-04-26 1973-08-07 Rheinische Werkzeug & Maschf Apparatus for producing high frequency vibrations of a sieve screen
US4816144A (en) * 1986-02-13 1989-03-28 Russell Finex Limited Of Russell House Sieving apparatus
US5542548A (en) * 1993-07-20 1996-08-06 Sweco, Incorporated Fine mesh screening
US5595306A (en) * 1995-05-22 1997-01-21 Emerson Electric Co. Screening system
US6079569A (en) * 1998-10-21 2000-06-27 Russell Finex Limited Efficiency ultrasonic sieving apparatus
US20030213731A1 (en) * 2002-05-03 2003-11-20 M-I L.L.C. Screen energizer
US20060266284A1 (en) * 2005-05-31 2006-11-30 Durr Systems, Inc. Coating powder sieving device
US20080237095A1 (en) * 2006-09-29 2008-10-02 Carr Brian S Superimposed motion drive
US20140048015A1 (en) * 2011-02-23 2014-02-20 Gema Switzerland Gmbh Screen insert for a powder chamber of a powder supplying device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1179428A (en) * 1908-09-30 1916-04-18 Edgar B Hayes Screen.
US1482607A (en) * 1920-11-17 1924-02-05 American Agitation separator
US1597826A (en) * 1919-03-29 1926-08-31 Tyler Co W S Apparatus for screening materials
US1864940A (en) * 1927-05-04 1932-06-28 Tyler Co W S Apparatus for screening materials
US1941212A (en) * 1929-09-11 1933-12-26 Conrad L Johnson Means for the preparation of mica products from scrap mica
GB444170A (en) * 1934-06-13 1936-03-13 Tyler Co W S Improved apparatus for screening materials
US2109395A (en) * 1933-11-25 1938-02-22 George E Markley Mechanical movement applicable to material screening apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1179428A (en) * 1908-09-30 1916-04-18 Edgar B Hayes Screen.
US1597826A (en) * 1919-03-29 1926-08-31 Tyler Co W S Apparatus for screening materials
US1482607A (en) * 1920-11-17 1924-02-05 American Agitation separator
US1864940A (en) * 1927-05-04 1932-06-28 Tyler Co W S Apparatus for screening materials
US1941212A (en) * 1929-09-11 1933-12-26 Conrad L Johnson Means for the preparation of mica products from scrap mica
US2109395A (en) * 1933-11-25 1938-02-22 George E Markley Mechanical movement applicable to material screening apparatus
GB444170A (en) * 1934-06-13 1936-03-13 Tyler Co W S Improved apparatus for screening materials

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049235A (en) * 1958-05-27 1962-08-14 Novo Ind Corp Screening process for vibratory screens
US3121679A (en) * 1958-05-27 1964-02-18 Novo Ind Corp Method of operating screens
US3024912A (en) * 1958-08-21 1962-03-13 Novo Ind Corp Screen structure
US2984356A (en) * 1958-12-22 1961-05-16 Rheinische Werkzeug & Metallf Multi-story sifting device and method
US3179251A (en) * 1961-07-07 1965-04-20 Schuchtermann & Kremer Baum Ag Sieve machine
US3241672A (en) * 1962-08-20 1966-03-22 United Shoe Machinery Corp Method of sifting fine powder
US3325007A (en) * 1963-12-13 1967-06-13 Rheinische Werkzeug & Maschf Screen with vibration-isolated vibration generator
US3490584A (en) * 1965-08-31 1970-01-20 Cavitron Corp Method and apparatus for high frequency screening of materials
US3495710A (en) * 1967-03-01 1970-02-17 Vladimir Alexeevich Bely Method and device for fluidization or separation of disperse materials
US3616905A (en) * 1968-02-26 1971-11-02 Prerovske Strojirny Np Arrangement for classifying of liquid suspensions and of solid materials
US3751694A (en) * 1971-04-26 1973-08-07 Rheinische Werkzeug & Maschf Apparatus for producing high frequency vibrations of a sieve screen
US4816144A (en) * 1986-02-13 1989-03-28 Russell Finex Limited Of Russell House Sieving apparatus
US5542548A (en) * 1993-07-20 1996-08-06 Sweco, Incorporated Fine mesh screening
US5915566A (en) * 1993-07-20 1999-06-29 Sweco Incorporated Fine mesh screening
US5595306A (en) * 1995-05-22 1997-01-21 Emerson Electric Co. Screening system
US6079569A (en) * 1998-10-21 2000-06-27 Russell Finex Limited Efficiency ultrasonic sieving apparatus
US20030213731A1 (en) * 2002-05-03 2003-11-20 M-I L.L.C. Screen energizer
US7182206B2 (en) 2002-05-03 2007-02-27 M-I L.L.C. Screen energizer
US20060266284A1 (en) * 2005-05-31 2006-11-30 Durr Systems, Inc. Coating powder sieving device
US7802687B2 (en) * 2005-05-31 2010-09-28 Durr Systems Inc. Coating powder sieving device
US20080237095A1 (en) * 2006-09-29 2008-10-02 Carr Brian S Superimposed motion drive
US8151994B2 (en) * 2006-09-29 2012-04-10 M-I L.L.C. Superimposed motion drive
US20140048015A1 (en) * 2011-02-23 2014-02-20 Gema Switzerland Gmbh Screen insert for a powder chamber of a powder supplying device
US9597696B2 (en) * 2011-02-23 2017-03-21 Gema Switzerland Gmbh Screen insert for a powder chamber of a powder supplying device

Similar Documents

Publication Publication Date Title
US2880871A (en) Process and device for sifting solid and liquid materials
US2187717A (en) Vibratory electrical apparatus
US3330411A (en) Screen with spring supported vibratory drive
US2766881A (en) Acoustic separatory methods and apparatus
US3650401A (en) Apparatus for vibrating a material separator
US2077678A (en) Screening apparatus
US3616905A (en) Arrangement for classifying of liquid suspensions and of solid materials
CN206652700U (en) Vibrate flip-flow screening machine
US2211000A (en) Screening apparatus
US3049235A (en) Screening process for vibratory screens
US1983676A (en) Method of and apparatus for screening
US3370706A (en) Vibrating screen drive
CN205253536U (en) Multistage sorting shale shaker
US3024912A (en) Screen structure
US1597826A (en) Apparatus for screening materials
RU74085U1 (en) VIBRATION PULSES
US1589962A (en) Radiating member of sound-signaling apparatus
US1864940A (en) Apparatus for screening materials
SU1235555A1 (en) Vibratory screen
US2741926A (en) Oscillating device with two oscillating masses adapted periodically to approach each other and to recede from each other
EA020936B1 (en) Resonant vibration screen
UA132951U (en) VIBRATION CLASSIFIER
CN106391457B (en) A kind of vibrating screen with Multi-frequency vibrator
CN213255661U (en) Double-mass circular vibrating screen
US2538760A (en) Method and apparatus fob con