US2878889A - Apparatus for de-aeration of liquids - Google Patents
Apparatus for de-aeration of liquids Download PDFInfo
- Publication number
- US2878889A US2878889A US502269A US50226955A US2878889A US 2878889 A US2878889 A US 2878889A US 502269 A US502269 A US 502269A US 50226955 A US50226955 A US 50226955A US 2878889 A US2878889 A US 2878889A
- Authority
- US
- United States
- Prior art keywords
- fuel
- chamber
- separator
- air
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 title description 15
- 238000005273 aeration Methods 0.000 title description 3
- 239000000446 fuel Substances 0.000 description 49
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 238000000926 separation method Methods 0.000 description 12
- 239000002828 fuel tank Substances 0.000 description 4
- 238000005553 drilling Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C3/00—Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0042—Degasification of liquids modifying the liquid flow
- B01D19/0052—Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
- B01D19/0057—Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/007—Venting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K24/00—Devices, e.g. valves, for venting or aerating enclosures
- F16K24/04—Devices, e.g. valves, for venting or aerating enclosures for venting only
- F16K24/042—Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float
Definitions
- a centrifugal separator for de -aerating liquid comprises a separator chamber, preferably in the form of alhollow body of revolution, means for Withdrawing airfrom the upper end of the separator chamber, and'for withdrawing de-aerated liquid from the lower end thereof, and meansfor supplying aerated liquid to the chamber comprising at least one inlet passage ar-' ranged with a substantial tangential component of direction, so as to impart rotary motionto the liquid within the chambenat least one of the walls of "the inlet passage being movable and being resiliently urged towardsv the opposite wall of the passage, so, as to restrict the crosssectional area of the passage'whenthe pressure of liquid inthe passage falls, and thus 'to tend to mairitaina high velocity of flow through the passage and consequent high rotary velocities in the chamber, even when the volumetric rate of flow through the passage falls.
- the movable wall of the passage is consti tuted by a leaf spring, and the leaf spring is preferably pre-stressed with its end in close contact with the opposite wall' of the passage when there'is no flow through the passage.
- the separator includes an upper air separation chamber, arranged'above the main chamber, and means for returning the de aeratedli'quid from the upper air-separa tion chamber to the main chamber comprising a conduit leading from theair-separatingchamber and emerging into the inlet passage 'at a point adjacent the thro at there: of formed between the movable wall'and the opposite wall.
- the separator may include means for admitting addi tional liquidto the main separator chamber, preferably through one or more make-uppass'ages above the level of the inlet passage.
- the invention is particularly applicable therefore to fuel supply systems of internal combustionengines of the fuel injection type.
- fuel In such engines it is customary for fuel to be delivered to the fuel injection pumps from the main fuel tanks and for excess fuel to be returned from the injection pumps to an auxiliary tank where air separation occurs,or through an air separator to the main fuel" tanks.
- a fuel system for"an internalconibustion engine of the In 'such case the separato r preferably includes afloat-1 controlled valve in an upper part of the air-separation ice fuel injection comprises a fuel injection pump, an
- ceive de-aerated fuel fromflthe separator and to supply, fuel under pressure to the injection pump, and means for returning excess fuel (which is liable .to beaerated) from the fuel injection, pump to the separator, and in-, cluding means for supplying make-up fuel to the circulatory system from'a fuel tank.
- the separator' is preferably as outlined above. ,r
- the fuel system moreover preferably includes a fuel delivery pump between; the fuel tank. and the separator,
- bypass.return conduit between the twoisides of this. fuel delivery pump, and a control valvein said by-pass conduit arranged to. open oulygwhen the pressure on the outlet side of the pump reaches "a predetermined value, so as to maintainasubstantially constant pressure in the main separator chamber,
- Figure 2 is a-sectional side elevation through the air separator unit
- F1gure 3 is a plan viewon thelinesg III--III of Figure 2 with the upper. part of the unit removed.
- the fuelsystem includes normal main fuel tanks (not.
- whieh fuel is delivered to a main supply line 10 by a booster pump (not shown) arranged to main tain a pressure of (say) .IOIbsy/sq. in, in the line.
- a pri-' mary fuel filter ll is fitted in this main supplyline, and having passed through this filterthe fuel is then delivered to an engine driven fuel delivery pump 12 of the gear type, the outlet side r which is connected to make-up passages13 leading into a centrifugal separator 14.
- a by-pass return conduit 15 which includes a control valve 16 subject on one" side to the pressure 'at the outlet side of the pump 12, and connected also to a diaphragm 1 7 I which. is, acted upon in the opposite direction by thejljair-press ure in' an air. venting line 18, andspring "pressedinto its closed position so as to maintain ,a pressure at the outlet sitle ,of the pump.
- the centrifugal air ,separ'ator' 14 is provided with an upper air escape port 20, which communicates withthe air vent line 18 referred to, 'arid' a lower de-aerated fuel outlet port 21 whicheommunieates with a second engine,
- the centrifugal separator 14 as shown in more devt ail in Figures 2 and 3, corn'prises a generally cylindrical Y mainseparator chamber 26 closed at .its upper end by a plate 27 with a small central aperture 28, which communicates with an upper air separation chamber 29 arranged directly above the main chamber 26.
- the upper partof the cylindricalside wall of the main chamber is 'curved inwards to form a part-spherical head 30, while Patented Mar. 24,1959
- Each inlet passage is provided with a fixed wall and an opposite movable wall, the movable wall being constituted by the free end of a leaf spring'36.
- Each leaf spring is formed with a length slightly less than a quarter of the circumference of the separator chamber and is secured or rigidly attached at one end to a fixed block 37 mounted adjacent the inner periphery of the annular inlet passageway.
- each leaf spring 36 is pro-stressed into contact with the inner face of the next block 37, and the face of each block at the point where the free end of thenextadjacent spring contacts it, is approximately tangential to the inner wall of the separator chamber.
- the leaf springs 36 may be tapered somewhat from their fixed to their free ends, and their resilience is arranged so as to maintain the pressure in the annular inlet passageway 35 at approximately 35 lbs/sq. in. above the pressure in the separator chamber 26.
- the arrangement thus tends to maintain a substantial and approximately constant flow velocity through the throats of the inlet passages 38, and consequent high rotary velocities in the separator chamber, even when the volumetric rate of flow falls, due for example to increased fuel consumption by the injection pumps.
- Make-up fuel for the circulatory system including the separator circulating pump 22, and fuel injection pumps 24, is supplied tothe main separator chamber 26 from the engine driven fuel delivery pump 12.
- the make-up fuel is supplied to an annular make-up passageway 40 adjacent the upper end'of the separator chamber, and above the annular inlet passageway 35.
- a series of circumferentially spaced make-up passages 13, which have a tangential component of direction, are provided in the wall of the separator chamber leading from the make-up passageway into the interior of the chamber in the part-spherical portion 30 of the side wall. The make-up fuel is thus caused to rotate with the main mass of fuel in the chamber 26 under the influence of the tangential streams issuing through the inlet passages 38.
- the upper air separation chamber 29 is provided, as mentioned above, with an air escape port 20 at its upper end having an intake portion 20a opening into chamber 29.
- the flow of air through port 20 is controlled by an air escape valve 41 which is actuated by a float 42 mounted within the chamber.
- Both the main separator chamber 26 and the air separation chamber 29 are normally flooded under the pressure maintained by the fuel delivery pump 12, and air which is separated in the main chamber rises in the central core of the vortex through the central aperture 28 in the upper closure plate and separates out into the upper part 4 of the air separation chamber 29.
- the air escape valve is opened and air is discharged through the air escape port 20 into the air vent line 18.
- a cylindrical fine mesh filter screen 43 is provided in the upper chamber 29 surrounding the float 42 to exclude air bubbles from the annular space 44 surrounding the screen, and a series of passages 45 lead from this annular space downwards through the wall of the main separator chamber into vertical drillings 46 provided in the blocks 37 to which the leaf springs 36 are connected.
- Each vertical drilling 46 communicates with one or more outlet drillings 47 which emerge at the inner tangential face of the respective block 37 adjacent the point. where the free tip of the next adjacent leaf spring 36 contacts this surface. This point is adjacent the throat of each inlet passage 38, and by venturi effect the reduced pressure at this throat thus draws the deaerated fuel from the air-separation chamber 29 into the streams of fuel issuing through the inlet passages 38.
- the fuel supply system also includes a priming line 50 between the primary fuel filter 11 and the secondary fuel filter 23, and a pressure relief valve 51 in this priming line arranged to open when the pressure in the main supply line 10 reaches a predetermined value.
- the engine driven circulating pump 22 is thus primed as soon as the pressure in the main supply line 10 reaches an appreciable value.
- a centrifugal separator for de-aerating liquid comprising a hollow body defining a generally cylindrical main separator chamber, means for withdrawing air from the upper end of said chamber, means for withdrawing deaerated liquid from the lower end of the chamber, said body being formed with an annular inlet passageway around said chamber, said passageway being separated from the chamber by an inner peripheral wall between it and the chamber including a plurality of fixed wall portions and movable wall portions, said fixed and movable wall portions being relatively circumferentially spaced around said passageway and alternating with each other around said inner peripheral wall, said movable wall portions each comprising a leaf spring having a cylindrical curvature generally conforming to that of said chamber, said leaf spring being fixedly secured at one end to one fixed wall portion and having a free end extending therefrom circumferentially in overlapping normally contiguous relation with another fixed wall portion, said free end extending radially inwardly of said other fixed Wall portion and cooperating therewith to define a generally tangentially projected variable size inlet passage from said
- a centrifugal separator as claimed in claim 1 including an upper air-separation chamber, arranged above the main chamber, and means for returning the de-aerated liquid from the upper air-separation chamber to the main chamber comprising a passage leading from said air-separating chamber and emerging into said inlet passage at a point adjacent the throat thereof formed between said movable wall portion, and said fixed wall portion.
- a centrifugal separator as claimed in claim 1 including means for admitting additional liquid to the main separator chamber, through a make-up passage above the level of said inlet passage.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Degasification And Air Bubble Elimination (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2878889X | 1954-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2878889A true US2878889A (en) | 1959-03-24 |
Family
ID=10917027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US502269A Expired - Lifetime US2878889A (en) | 1954-04-26 | 1955-04-19 | Apparatus for de-aeration of liquids |
Country Status (2)
Country | Link |
---|---|
US (1) | US2878889A (en, 2012) |
NL (1) | NL94822C (en, 2012) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3073376A (en) * | 1957-04-08 | 1963-01-15 | Yarrow & Co Ltd | Oil burning installations for furnaces |
US3126942A (en) * | 1964-03-31 | X f fuel supply systems for spill burner nozzles | ||
US3161490A (en) * | 1960-11-01 | 1964-12-15 | Edmund F Dudek | Gas-liquid separator |
US3177919A (en) * | 1960-09-30 | 1965-04-13 | Clayton Manufacturing Co | Method of and apparatus for removing nonliquid constituents from fuel oil |
US3302373A (en) * | 1963-07-03 | 1967-02-07 | American Mach & Foundry | Distillation apparatus |
US3379375A (en) * | 1964-07-28 | 1968-04-23 | Babcock & Wilcox Ltd | Ignition burner |
US3489128A (en) * | 1966-07-16 | 1970-01-13 | Daimler Benz Ag | Fuel supply installation for injection-type internal combustion engines |
US4279232A (en) * | 1978-02-03 | 1981-07-21 | Robert Bosch Gmbh | Fuel system for internal combustion engines |
US4312644A (en) * | 1979-05-04 | 1982-01-26 | Constructions Mecaniques Pernin Sarl | Gas separator for liquid dispensing device |
US4450820A (en) * | 1981-05-26 | 1984-05-29 | Haynes Hendrick W | Engine fuel conditioner and monitor |
FR2539650A1 (fr) * | 1983-01-21 | 1984-07-27 | Amtrol Inc | Appareil a vortex pour separer et eliminer un gaz d'un liquide, et installation en comportant l'application |
US4543938A (en) * | 1984-02-02 | 1985-10-01 | Stant Inc. | In-line fuel reservoir |
US4555253A (en) * | 1983-01-21 | 1985-11-26 | Amtrol, Inc. | Gas-liquid vortex separator-eliminator |
US4880449A (en) * | 1988-11-09 | 1989-11-14 | Elliott Turbomachinery Co., Inc. | Compressor seal oil degassing tank vent gas recovery by method of level control |
US4984554A (en) * | 1988-10-17 | 1991-01-15 | Hino Judosha Kogyo Kabushiki Kaisha | Automatic air bleeding device for fuel feed system of diesel engine |
US5000766A (en) * | 1989-05-30 | 1991-03-19 | Mitsubishi Oil Co., Ltd. | Suction system gas separator from fluid |
US5095880A (en) * | 1991-08-22 | 1992-03-17 | Ricks Robert C | Air purging and shut-down system for diesel engines |
US5119790A (en) * | 1990-07-12 | 1992-06-09 | Outboard Marine Corporation | Fuel feed system |
US5137002A (en) * | 1988-04-11 | 1992-08-11 | Outboard Marine Corporation | Vapor separator |
US5146901A (en) * | 1992-02-03 | 1992-09-15 | General Motors Corporation | Vapor suppressing fuel handling system |
US5203306A (en) * | 1990-03-02 | 1993-04-20 | Outboard Marine Corporation | Fuel feed system |
US5307782A (en) * | 1992-03-16 | 1994-05-03 | Davco Manufacturing Corporation | Combined pressure wave suppressor, air/vapor purge and check valve |
US5339787A (en) * | 1993-02-26 | 1994-08-23 | Westinghouse Electric Corporation | Method and apparatus for distributing fuel in a diesel engine |
US5535724A (en) * | 1995-08-23 | 1996-07-16 | Davco Manufacturing L.L.C. | Fuel pulsation dampener |
US5730106A (en) * | 1995-09-27 | 1998-03-24 | Gonzalez; Jose M. | Fuel/vapor separator apparatus for diesel engines |
US6125827A (en) * | 1997-09-12 | 2000-10-03 | Honda Giken Kogyo Kabushiki Kaisha | Air vent apparatus for auxiliary fuel tank in power unit |
US6290760B1 (en) * | 1999-04-30 | 2001-09-18 | Tokheim Corporation | Air separator system |
US6325051B1 (en) * | 1998-10-21 | 2001-12-04 | Toyota Jidosha Kabushiki Kaisha | High-pressure fuel supplying apparatus and method for internal combustion engine |
EP1304452A1 (de) * | 2001-10-18 | 2003-04-23 | Dr. Schrick Gmbh | Schmierölkreislauf für die Verbrennungskraftmaschine eines Fahrzeugs |
US6622709B2 (en) * | 2001-12-20 | 2003-09-23 | Caterpillar Inc | Fuel conditioning module for reducing air in a fuel injection system |
US20080098893A1 (en) * | 2006-10-30 | 2008-05-01 | Rhett Dakota Ringenberger | Air separator |
US20110146628A1 (en) * | 2009-12-17 | 2011-06-23 | Denso International America, Inc. | Return fuel diffusion device and fuel guide |
WO2012076085A1 (de) * | 2010-12-09 | 2012-06-14 | Rt-Filtertechnik Gmbh | Vorrichtung zur medientrennung |
US20160252051A1 (en) * | 2013-12-06 | 2016-09-01 | Sikorsky Aircraft Corporation | Bubble collector for suction fuel system |
US10711605B2 (en) * | 2014-04-04 | 2020-07-14 | Halliburton Energy Services, Inc. | Isotopic analysis from a controlled extractor in communication to a fluid system on a drilling rig |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB497473A (en) * | 1937-07-28 | 1938-12-20 | Bosch Gmbh Robert | Improvements in or relating to fuel delivery plants for injection internal combustion engines |
US2215756A (en) * | 1937-04-29 | 1940-09-24 | Bosch Gmbh Robert | Fuel delivery apparatus for injection internal combustion engines |
US2262617A (en) * | 1936-06-16 | 1941-11-11 | L Orange Rudolf | System for feeding liquids in gasfree condition to devices using or disposing of the same |
US2334220A (en) * | 1940-12-13 | 1943-11-16 | Samiran David | Fuel system |
US2494427A (en) * | 1945-02-07 | 1950-01-10 | Gen Motors Corp | Deaerator |
US2556319A (en) * | 1947-08-08 | 1951-06-12 | Curtiss Wright Corp | Deaerating tank |
US2590754A (en) * | 1943-08-30 | 1952-03-25 | Clayton Manufacturing Co | Deaerating apparatus |
US2599699A (en) * | 1947-05-13 | 1952-06-10 | Gen Motors Corp | Fuel system for combustion apparatus |
US2627907A (en) * | 1948-10-07 | 1953-02-10 | Jr Alexander S King | Gas turbine fuel feed system with vapor removing means |
-
0
- NL NL94822D patent/NL94822C/xx active
-
1955
- 1955-04-19 US US502269A patent/US2878889A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2262617A (en) * | 1936-06-16 | 1941-11-11 | L Orange Rudolf | System for feeding liquids in gasfree condition to devices using or disposing of the same |
US2215756A (en) * | 1937-04-29 | 1940-09-24 | Bosch Gmbh Robert | Fuel delivery apparatus for injection internal combustion engines |
GB497473A (en) * | 1937-07-28 | 1938-12-20 | Bosch Gmbh Robert | Improvements in or relating to fuel delivery plants for injection internal combustion engines |
US2334220A (en) * | 1940-12-13 | 1943-11-16 | Samiran David | Fuel system |
US2590754A (en) * | 1943-08-30 | 1952-03-25 | Clayton Manufacturing Co | Deaerating apparatus |
US2494427A (en) * | 1945-02-07 | 1950-01-10 | Gen Motors Corp | Deaerator |
US2599699A (en) * | 1947-05-13 | 1952-06-10 | Gen Motors Corp | Fuel system for combustion apparatus |
US2556319A (en) * | 1947-08-08 | 1951-06-12 | Curtiss Wright Corp | Deaerating tank |
US2627907A (en) * | 1948-10-07 | 1953-02-10 | Jr Alexander S King | Gas turbine fuel feed system with vapor removing means |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126942A (en) * | 1964-03-31 | X f fuel supply systems for spill burner nozzles | ||
US3073376A (en) * | 1957-04-08 | 1963-01-15 | Yarrow & Co Ltd | Oil burning installations for furnaces |
US3177919A (en) * | 1960-09-30 | 1965-04-13 | Clayton Manufacturing Co | Method of and apparatus for removing nonliquid constituents from fuel oil |
US3161490A (en) * | 1960-11-01 | 1964-12-15 | Edmund F Dudek | Gas-liquid separator |
US3302373A (en) * | 1963-07-03 | 1967-02-07 | American Mach & Foundry | Distillation apparatus |
US3379375A (en) * | 1964-07-28 | 1968-04-23 | Babcock & Wilcox Ltd | Ignition burner |
US3489128A (en) * | 1966-07-16 | 1970-01-13 | Daimler Benz Ag | Fuel supply installation for injection-type internal combustion engines |
US4279232A (en) * | 1978-02-03 | 1981-07-21 | Robert Bosch Gmbh | Fuel system for internal combustion engines |
US4312644A (en) * | 1979-05-04 | 1982-01-26 | Constructions Mecaniques Pernin Sarl | Gas separator for liquid dispensing device |
US4450820A (en) * | 1981-05-26 | 1984-05-29 | Haynes Hendrick W | Engine fuel conditioner and monitor |
FR2539650A1 (fr) * | 1983-01-21 | 1984-07-27 | Amtrol Inc | Appareil a vortex pour separer et eliminer un gaz d'un liquide, et installation en comportant l'application |
US4555253A (en) * | 1983-01-21 | 1985-11-26 | Amtrol, Inc. | Gas-liquid vortex separator-eliminator |
US4543938A (en) * | 1984-02-02 | 1985-10-01 | Stant Inc. | In-line fuel reservoir |
US5137002A (en) * | 1988-04-11 | 1992-08-11 | Outboard Marine Corporation | Vapor separator |
US4984554A (en) * | 1988-10-17 | 1991-01-15 | Hino Judosha Kogyo Kabushiki Kaisha | Automatic air bleeding device for fuel feed system of diesel engine |
US4880449A (en) * | 1988-11-09 | 1989-11-14 | Elliott Turbomachinery Co., Inc. | Compressor seal oil degassing tank vent gas recovery by method of level control |
US5000766A (en) * | 1989-05-30 | 1991-03-19 | Mitsubishi Oil Co., Ltd. | Suction system gas separator from fluid |
EP0400202A3 (en) * | 1989-05-30 | 1991-10-02 | Mitsubishi Oil Company, Limited | Gas liquid separator |
US5203306A (en) * | 1990-03-02 | 1993-04-20 | Outboard Marine Corporation | Fuel feed system |
US5119790A (en) * | 1990-07-12 | 1992-06-09 | Outboard Marine Corporation | Fuel feed system |
US5095880A (en) * | 1991-08-22 | 1992-03-17 | Ricks Robert C | Air purging and shut-down system for diesel engines |
US5146901A (en) * | 1992-02-03 | 1992-09-15 | General Motors Corporation | Vapor suppressing fuel handling system |
US5307782A (en) * | 1992-03-16 | 1994-05-03 | Davco Manufacturing Corporation | Combined pressure wave suppressor, air/vapor purge and check valve |
US5372116A (en) * | 1992-03-16 | 1994-12-13 | Davco Manufacturing Corporation | Combined pressure wave suppressor air/vapor purge and check valve |
US5339787A (en) * | 1993-02-26 | 1994-08-23 | Westinghouse Electric Corporation | Method and apparatus for distributing fuel in a diesel engine |
US5535724A (en) * | 1995-08-23 | 1996-07-16 | Davco Manufacturing L.L.C. | Fuel pulsation dampener |
US5730106A (en) * | 1995-09-27 | 1998-03-24 | Gonzalez; Jose M. | Fuel/vapor separator apparatus for diesel engines |
WO1998010178A3 (en) * | 1996-08-22 | 1998-07-02 | Gonzalez Jose M | Fuel/vapor separator apparatus for diesel engines |
US6125827A (en) * | 1997-09-12 | 2000-10-03 | Honda Giken Kogyo Kabushiki Kaisha | Air vent apparatus for auxiliary fuel tank in power unit |
US6325051B1 (en) * | 1998-10-21 | 2001-12-04 | Toyota Jidosha Kabushiki Kaisha | High-pressure fuel supplying apparatus and method for internal combustion engine |
US6290760B1 (en) * | 1999-04-30 | 2001-09-18 | Tokheim Corporation | Air separator system |
EP1304452A1 (de) * | 2001-10-18 | 2003-04-23 | Dr. Schrick Gmbh | Schmierölkreislauf für die Verbrennungskraftmaschine eines Fahrzeugs |
US6622709B2 (en) * | 2001-12-20 | 2003-09-23 | Caterpillar Inc | Fuel conditioning module for reducing air in a fuel injection system |
US20080098893A1 (en) * | 2006-10-30 | 2008-05-01 | Rhett Dakota Ringenberger | Air separator |
US7713335B2 (en) * | 2006-10-30 | 2010-05-11 | Caterpillar Inc. | Air separator |
US20110146628A1 (en) * | 2009-12-17 | 2011-06-23 | Denso International America, Inc. | Return fuel diffusion device and fuel guide |
US8469008B2 (en) * | 2009-12-17 | 2013-06-25 | Denso International America, Inc. | Return fuel diffusion device and fuel guide |
WO2012076085A1 (de) * | 2010-12-09 | 2012-06-14 | Rt-Filtertechnik Gmbh | Vorrichtung zur medientrennung |
CN103269763A (zh) * | 2010-12-09 | 2013-08-28 | Rt-过滤器技术有限公司 | 用于介质分离的设备 |
US20160252051A1 (en) * | 2013-12-06 | 2016-09-01 | Sikorsky Aircraft Corporation | Bubble collector for suction fuel system |
US10711605B2 (en) * | 2014-04-04 | 2020-07-14 | Halliburton Energy Services, Inc. | Isotopic analysis from a controlled extractor in communication to a fluid system on a drilling rig |
Also Published As
Publication number | Publication date |
---|---|
NL94822C (en, 2012) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2878889A (en) | Apparatus for de-aeration of liquids | |
US4279232A (en) | Fuel system for internal combustion engines | |
US2323525A (en) | Feeding of fuel to engines | |
US2578568A (en) | Gas-liquid separator | |
US3075489A (en) | Method and apparatus for reducing drag on submerged vehicles | |
US2969748A (en) | Ejector | |
US2595737A (en) | Jet pump | |
US2442379A (en) | Segregator system | |
GB1079635A (en) | Centrifugal pumping systems | |
US2096711A (en) | Fuel pump for injectors | |
GB1477869A (en) | Air bubble separating device | |
US2419146A (en) | Booster pump with vapor separating means | |
US2961130A (en) | Fuel booster pumps | |
US2442639A (en) | Aircraft booster pump and tank assembly | |
US2403556A (en) | Centrifugal pump | |
US2563665A (en) | Valve | |
US2556319A (en) | Deaerating tank | |
US2264953A (en) | Self-priming centrifugal pump | |
US3181468A (en) | Fuel supply system | |
US3443778A (en) | Systems for supplying fuel to aircraft engines | |
US1845668A (en) | Carburetor | |
US1974585A (en) | Carburetor | |
US2208984A (en) | Cooling system | |
US1713377A (en) | Humidifying device | |
US2874766A (en) | Liquid fuel supply systems for gas turbine engines |