US2869017A - Thermionic dispenser cathode - Google Patents
Thermionic dispenser cathode Download PDFInfo
- Publication number
- US2869017A US2869017A US618072A US61807256A US2869017A US 2869017 A US2869017 A US 2869017A US 618072 A US618072 A US 618072A US 61807256 A US61807256 A US 61807256A US 2869017 A US2869017 A US 2869017A
- Authority
- US
- United States
- Prior art keywords
- disc
- cathode
- refractory
- heater
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 claims description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 239000011733 molybdenum Substances 0.000 claims description 13
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 12
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- 239000003870 refractory metal Substances 0.000 description 33
- 238000003466 welding Methods 0.000 description 18
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 16
- 230000005012 migration Effects 0.000 description 10
- 238000013508 migration Methods 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 9
- 229910052788 barium Inorganic materials 0.000 description 8
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 241001663154 Electron Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011876 fused mixture Substances 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical class [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/20—Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
- H01J1/28—Dispenser-type cathodes, e.g. L-cathode
Definitions
- This invention relates. to a thermionic cathode and method of making same, and in. particular to a thermionic cathode of the. dispenser type containing a refractorym-metal. body of which a surface constitutes the emitting surface of the cathode.
- United States PatentNo..2,700,000 describes a thermionic, dispenser cathodeofthe type comprising a porous, refractory-metal body, for example, of tungsten, which body is impregnatedandits. pores thus filled with an alkaline earth metal composition capable of reacting The refractorypatent functions exceedingly well in many discharge tubes.
- emission-enhancing material may It will also: be appreciated that any One object ofthe invention is to provide an improved construction of thermionic dispenser cathode wherein heater-cathode-leakage current is substantially eliminated.
- Afurther object of the invention is to provide a simple andinexpensivemethod for manufacturing a. thermionic dispenser cathode of the type described, which at the same timeobviates the problem of heater-cathode-lealcage current.
- a fusion process which preferably comprises welding together the members atth eir junctions.
- Fig. l is a cross-sectional view of oneform of thermionic dispenser cathode according to the invention
- Fig. 2 is a cross-sectional view of Fig. 1 along the line 2-2; i
- Fig. 3 is an exploded view showing the elements constituting the cathode of Fig. 1 just prior to assembly;
- Fig. 4 is a view partly in cross-section and partly schematic showing a modification ofthe cathode illustrated in Fig. I mounted between the electrodes of a welding generator.
- Fig. l shows oneform of thermionic dispenser cathode, a planar type, in accordance with the invention.
- This cathode is particularly suitable for incorporation in an electron gun of a cathoderay tube.
- the cathode comprises a refractory-metal matrix or body, 10.
- Thisbody 10 is pereferably constifrom that patent, the pores of the porous body are then .filled with a fused mixture of barium oxide and aluminum oxide in a 5:2 mole ratio.
- the body 10 may be made as described in connection with Fig. 4 of United States Patent No. 2,700,118, which comprises pressing andsintering a mixture of tungsten and barium aluminate in powdered form.
- the alkaline earth materialdispersed throughout thebody 10 reactswith the refractory metal of said body to produce free alkaline earth metalvapor, which diffuses to the surface ofthe body it ⁇ to form a monat omic layer thereon.
- the emitting surface .of the cathode is designated by reference numeral 11, and it is from this surface that the majority of usable electrons areextracted.
- the accelerating anode of the electrongun (not shown) will be located in front of the emitting surface 11. It will also, be evident that alkaline earth metal also diffuses to the outer, peripheral surface 1210f the refractory-metal body 10,, asw'ell as to the bottomsurface 13 thereof, and hence-electrons may emanate fromthose surfaces also. H
- The. cathode. is supported by a hollow, ,tube-likeor sleeve member 15, which ispreferably constitutedof a Suitable materials, for the support 15 are n olybdenurrr, or tantalum, and molybdenum is preferred.
- Mounted bemember or disc 16 tween thesupport member 15 and the refractory-metal body is a solid, non-planar, in this case slightly-curved, disc-like member 16.
- This member 16 may also be of molybdenum or tantalum for the same reasons as the support 15, and with the additional restricition that it not react unfavorably with the body 10 containing the ennssive material, and again molybdenum is preferred.
- the disc-like member 16 has an outside diameter which is greater than the outside diameter of the support member by a predetermined amount, the purpose of which will be explained later. I
- Fig. 3 shows an exploded view of the cathode ofFig. 1 prior to assembly.
- the disc-like is preferably in the shape of a segment of a sphere ordish-shaped, and is placed on top of the hollow, cylindrical, open-ended, support member 15 with the concave portion of the disc facing upwardly.
- the disc 16 closes off one end of the cylinder 15.
- the disc 16 is, of course, preferably centered on the support 15, though this is not essential since the oversize dimensions of the disc 16 permit some slight misalignment in its position.
- the refractory-metal body 10 is in turn placed centrally on top of the disc 16. The parts may be held together and aligned in a suitable jig (not shown).
- a pair of welding electrodes 17, shown schematically in phantom, are positioned above and below the assembly, the electrodes 17 urged together, thereby slightly flattening the portions of the disc 16 lying between its periph- 1 cry and its contact area with the refractory-metal body 10 and end of the support 15, a drop of alcohol placed over the assembled elementsto provide a protective atmosphere during the actual formation of the weld and then a pulse of Welding current caused to traverse the assembly.
- the portions of the disc 16 lying between and contacting the refractory-metal body 10 and the end of the support 15, in this case an annular region, are fused, effecting a strong, solid, welded connection between the three elements in a single operation and resulting in the cathode structure depicted in Fig. 1.
- the welding pressure and current are not critical in value, and -will, as usual, depend on the size of the elements constituting the cathode.
- the heater 20 is then mounted in the cylinder 15.
- the slight curvature of the disc 16 assists in enabling the three parts to be assembled by a welding process in the manner just described. That is to say, the slight curvature of the disc 16 enables a line contact to be established between the, in this case, flat, refractory-metal body 10 and the disc 16. Under these circumstances, upon the passage of the welding current through the assembly, only the line-contacted portions of the disc 16 are fused, thereby establishing the weld at the area desired. It is also possible to effect a weld with a flat disc 16 and a flat, refractory-metal body 10; however, a largearea surface contact is present, and the current requirements to effect fusion of the disc 16 to the body 10 as described above in a single step would be increased.
- the cathode construction is such that the support 15 defining the heater cavity is spaced from any portion of the body 10 or disc 16 on which may be found a product evaporated from the cathode by at least a small distance, which is preferably of the order of or greater than the migration lengt of the evaporated product on the material concerned at the operating temperature of the cathode.
- the term migration length stems from the known ability of barium and barium oxide to diffuse or migrate along a hot, metal surface, before being evaporated, at a rate dependent on the composition and condition of the said metal surface, so that the barium and barium oxide will thus travel a certain distance from its area of deposition before being reevaporated. This distance is known as the migration lengt and is an experimentally determined quantity for many materials on various metal surfaces. In particular, for a molybdenum surface at a temperature in the operating range of the cathode, namely 850 to 1100 C., the migration length of barium and barium oxide is about 0.4 mm.
- the edge of the disc 16 is extended beyond the inner surface of the support 15 by a distance of the order of or greater than the aforementioned migration length of the evaporated products of the cathode.
- the upper surface of the disc 16 to its outer edge will probably be covered with evaporated products from the refractorymetal of the body 10 reacting with the alkaline earth metal composition with which it is associated, but, since the edge'of the disc 16 is spaced from the support 15 by a distance, indicated by reference numeral 21 in Fig.
- the likelihood of evaporated products entering the heater cavity is substantially reduced to zero, and thus low heater-cathodeleakage current is ensured.
- the operating temperature of the cathode was 1000 C.
- the refractory-metal body 10 had a diameter of 0.134 inch, and a thickness of 0.040 inch.
- the outside diameter of the sleeve 15 was also 0.134 inch and the thickness of the wall was 0.009 inch.
- the disc 16 had a thickness of 0.005 inch and a radius of curvature of 2.47 inches.
- the outside diameter of the disc was 0.144 inch.
- the overhang of the disc 16 was about 0.005 inch.
- This value together with the thickness of the disc 16 and the thickness of the wall of the sleeve 15 constitutes the length of path between the inner surface of the support 15 facing the heater 20 and the nearest portion of the body 10 or disc 16 from which evaporated products may migrate, and this path length in the specific example is about 0.019 inch, which-value is of the order of the migration length.
- the welding generator for the welding step which in the usual manner is operated by charging-up a capacitor to a high voltage, and then discharging the capacitor via a step-down transformer and through the electrodes across the assembled cathode elementscontained about 1000 microfarads of capacitance, which was charged up to about 700 volts.
- the energy available at the electrodes was thus about 245 watt-seconds.
- This construction whereby the disc 16 assists in preventing evaporated products from entering the heater cavity offers the additional advantage of enabling a more inexpensive form of support to be employed.
- the nature of the support 15 was not clearly indicated, but it obviously could be a simple, drilled rod having a solid wall.
- Other forms of support are the so-called lapped-seam or butt-seam sleeve.
- the former is simply a flat sheet of molybdenum, for example, which is wrapped around a mandrel so that the edges overlap one another to form a cylinder. The overlapped edges need not be secured together. This is illustrated in Fig. 2, with the reference numeral 22 indicating the seam where the edges of the sheet overlap.
- the seam 22 constitutes an-opening in the wall of the support 15 whereby evaporated products from the refractory-metal body 10 may have access to the heater cavity.
- the disc construction 16 shown in Fig. 1 this difiiculty is eliminated, and thus it becomes possible to provide a further reduction in cost of such cathodes, an important factorafi'ording wider use of such form of electron emitters.
- the lip or overhang of the disc 16 may also serve to locate the emitting surface of the cathode or to support a heat shield.
- a space or small cavity is present between the body 10 and the disc 16.
- a space or small cavity is present between the body 10 and the disc 16.
- a cathode construction is produced as described in United States Patent No. 2,543,728.
- Such a cathode may be manufactured in a very inexpensive manner by a similar welding technique to that described earlier. That is, the support 15 is placed in position on top of one electrode 33 coupled to a welding generator 34.
- the dish-shaped disc 16 On top of the support 15, which may be a lapped-seam sleeve, is centered the dish-shaped disc 16. A small quantity of mixed barium and strontium carbonates 31 is then placed in the center of the disc 16, and then a porous body 30, i. e., with empty pores, is placed over the carbonates and forms a circular line contact with the disc 16. Then, a second electrode 35 is placed over the assembly, pressure applied, and a pulse of welding current passed through the assembly. The contacted areas of the disc 16 fuse, and the three metal elements are secured together.
- the invention has solved an important problem existing in the art, in that a simple and inexpensive technique for the manufacture of such cathodes now exists, and that cathodes made by such method are substantially free of heater-cathode-leakage current.
- the latter results from the positioning of the solid disc 16 between the emitting, refractory-metal body 10 and the heater 20, thereby preventing electrons or evaporation products from the emitting body 10 from reaching the heater 20 or its cavity.
- the lip or overhang provided by the oversized disc 16 ensures that, in the event of an opening in the Wall of the support 15, evaporation products from the refractory-metal body 10 will not be able to reach the interior of the heater cavity.
- the welding techniquejust described which dependsfupon the internal generation of heat by welding current to fuse the refractory-metal members together, does: not appear to affect deleteriously the-refractory-metal body containing the alkalineearth metal composition.
- This result is somewhat surprising, since the welding current traverses the refractory-metal body while the latter is associated with the alkaline earth metal composition, and the sensitivity of those associated members to liightemper-atures is well known in the art.
- the excellent welds that result between the three elements in the single-step welding operation is another important and unexpected result of the invention.
- a thermionic dispenser cathode comprising a substantially-cylindrical, hollow, open-ended, support member, a solid, disc-like member welded to and closing off substantially completely one end of said support member, a heater within said support member, a refractory-metal body welded to the outer surface of said disc-like memher, and an alkaline earth metal composition associated with said refractory-metal body and adapted to cooperate therewith when heated to generate electrons, said disc-like member having an outer diameter greater than the outer diameter of said support member and at which the distance between the rim of said disc-like member and the inner surface of said.
- support member is at least of the order of the migration length of evaporation products from said cooperating alkaline earth metal composition and said refractory-metal body on said disc-like member at the operating temperature of the cathode, whereby said evaporation products are prevented from entering within the support member and thereby increasing the heatercathode-leakage current.
- a thermionic dispenser cathode comprising a hollow, substantially cylindrical, open-ended, support member constituted of a metal selected from the group consisting of molybdenum and tantalum, a substantially circular, solid, disc-like member welded to and closing of]?
- said disc-like member also being constituted of a metal selected from the group consisting of molybdenum and tantalum, a heater within said support member, a metal body containing pores and consisting principally of tungsten welded to the outer surface of said disc-like member, and an alkaline earth metal composition in the pores of said tungsten body and adapted to cooperate therewith when heated to generate electrons, said disc-like member having an outer diameter greater than the outer diameter of said support member and at which the distance between the rim of said disc-like member and the inner surface of said support member is of the order of the migration length of evaporation products from said cooperating alkaline earth metal composition and said tungsten body on said disc-like member at the operating temperature of the cathode, whereby said evaporation products are prevented from entering within the support member and thereby increasing the heater-cathode-leakage current.
- a thermionic dispenser cathode comprising a hollow, cylindrical, open-ended, seamed, support member, a slightly curved, solid, disc-like member welded to and closing ofi substantially completely one end of said support member, a heater within said support member, a fiat, refractory-metal body forming only a circular line contact with and welded to the outer surface of said disc-like member, and an alkaline earth metal composition associated with said refractory-metal body and adapted to cooperate therewith when heated to generate electrons, said disc-like member having an outer dimension greater than the outer diameter of said support and at which the distance between the rim of said disc-like member and the inner surface of said support member is of the order of themigration length of evaporation products from said cooperating alkaline earth metal composition and said refractory-metal body on said disc-like member at the operating temperature of the cathode, whereby said evaporation products are prevented fromentering within the support member and thereby increasing the heater-cathode-
Landscapes
- Electrolytic Production Of Metals (AREA)
- Solid Thermionic Cathode (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE561832D BE561832A (is") | 1956-10-24 | ||
NL100722D NL100722C (is") | 1956-10-24 | ||
US618072A US2869017A (en) | 1956-10-24 | 1956-10-24 | Thermionic dispenser cathode |
DEN14223A DE1042136B (de) | 1956-10-24 | 1957-10-19 | Vorratskathode, deren emittierende Oberflaeche aus einem poroesen Metallkoerper besteht, und Verfahren zur Herstellung einer Kathode |
GB32781/57A GB857090A (en) | 1956-10-24 | 1957-10-21 | Improvements in or relating to thermionic dispenser cathodes |
CH355529D CH355529A (de) | 1956-10-24 | 1957-10-21 | Kathode, deren emittierende Oberfläche aus einem porösen Metallkörper besteht, in dem oder hinter dem ein Vorrat an Erdalkalimetallverbindungen vorhanden ist, sowie Verfahren zur Herstellung einer solchen Kathode |
FR1185028D FR1185028A (fr) | 1956-10-24 | 1957-10-22 | Cathode à réserve et son procédé de fabrication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US618072A US2869017A (en) | 1956-10-24 | 1956-10-24 | Thermionic dispenser cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
US2869017A true US2869017A (en) | 1959-01-13 |
Family
ID=24476212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US618072A Expired - Lifetime US2869017A (en) | 1956-10-24 | 1956-10-24 | Thermionic dispenser cathode |
Country Status (7)
Country | Link |
---|---|
US (1) | US2869017A (is") |
BE (1) | BE561832A (is") |
CH (1) | CH355529A (is") |
DE (1) | DE1042136B (is") |
FR (1) | FR1185028A (is") |
GB (1) | GB857090A (is") |
NL (1) | NL100722C (is") |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971246A (en) * | 1957-01-26 | 1961-02-14 | Philips Corp | Method of producing cavity-type dispenser cathode |
US5114742A (en) * | 1991-07-17 | 1992-05-19 | The United States Of America As Represented By The Secretary Of The Army | Preparing a scandate cathode by impregnating a porous tungsten billet with Ba3 Al2 O6, coating the top surface with a mixture of Sc6 WO12, Sc2 (WO4)3, and W in a 1:3:2 mole ratio, and heating in a vacuum |
US5171180A (en) * | 1991-04-23 | 1992-12-15 | Gold Star Co., Ltd. | Method for manufacturing impregnated cathodes |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100329A (ja) * | 1981-12-11 | 1983-06-15 | Toshiba Corp | 電子管用陰極構体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2673277A (en) * | 1949-10-25 | 1954-03-23 | Hartford Nat Bank & Trust Co | Incandescible cathode and method of making the same |
US2700000A (en) * | 1952-02-27 | 1955-01-18 | Philips Corp | Thermionic cathode and method of manufacturing same |
US2716716A (en) * | 1951-11-29 | 1955-08-30 | Philips Corp | Cathode containing a supply of an electron-emissive material |
US2737607A (en) * | 1951-07-17 | 1956-03-06 | Hartford Nat Bank & Trust Co | Incandescible cathode |
US2808531A (en) * | 1952-03-24 | 1957-10-01 | Siemens Ag | Cathode for electrical discharge tubes |
-
0
- BE BE561832D patent/BE561832A/xx unknown
- NL NL100722D patent/NL100722C/xx active
-
1956
- 1956-10-24 US US618072A patent/US2869017A/en not_active Expired - Lifetime
-
1957
- 1957-10-19 DE DEN14223A patent/DE1042136B/de active Pending
- 1957-10-21 GB GB32781/57A patent/GB857090A/en not_active Expired
- 1957-10-21 CH CH355529D patent/CH355529A/de unknown
- 1957-10-22 FR FR1185028D patent/FR1185028A/fr not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2673277A (en) * | 1949-10-25 | 1954-03-23 | Hartford Nat Bank & Trust Co | Incandescible cathode and method of making the same |
US2737607A (en) * | 1951-07-17 | 1956-03-06 | Hartford Nat Bank & Trust Co | Incandescible cathode |
US2716716A (en) * | 1951-11-29 | 1955-08-30 | Philips Corp | Cathode containing a supply of an electron-emissive material |
US2700000A (en) * | 1952-02-27 | 1955-01-18 | Philips Corp | Thermionic cathode and method of manufacturing same |
US2808531A (en) * | 1952-03-24 | 1957-10-01 | Siemens Ag | Cathode for electrical discharge tubes |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971246A (en) * | 1957-01-26 | 1961-02-14 | Philips Corp | Method of producing cavity-type dispenser cathode |
US5171180A (en) * | 1991-04-23 | 1992-12-15 | Gold Star Co., Ltd. | Method for manufacturing impregnated cathodes |
US5114742A (en) * | 1991-07-17 | 1992-05-19 | The United States Of America As Represented By The Secretary Of The Army | Preparing a scandate cathode by impregnating a porous tungsten billet with Ba3 Al2 O6, coating the top surface with a mixture of Sc6 WO12, Sc2 (WO4)3, and W in a 1:3:2 mole ratio, and heating in a vacuum |
Also Published As
Publication number | Publication date |
---|---|
DE1042136B (de) | 1958-10-30 |
BE561832A (is") | |
CH355529A (de) | 1961-07-15 |
GB857090A (en) | 1960-12-29 |
NL100722C (is") | |
FR1185028A (fr) | 1959-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2543728A (en) | Incandescible cathode | |
US4185223A (en) | Electron gun structure | |
US2275864A (en) | Cathode ray tube | |
US2741717A (en) | Dispenser type cathode having gettercoated parts | |
US2869017A (en) | Thermionic dispenser cathode | |
US3005926A (en) | Cathode for electron discharge device | |
US2546828A (en) | Target assembly for cathode-ray tubes | |
US5113110A (en) | Dispenser cathode structure for use in electron gun | |
US3846006A (en) | Method of manufacturing of x-ray tube having thoriated tungsten filament | |
US2200911A (en) | Sealed lead-in for cathode-ray tubes and the like | |
US2840739A (en) | Cathode ray tube gun assembly | |
US2874077A (en) | Thermionic cathodes | |
US5668434A (en) | Directly heated cathode for cathode ray tube | |
US3914638A (en) | Cathode structure for cathode ray tube | |
US4379980A (en) | Quick operating cathode | |
US3821589A (en) | Storage cathode particularly a mk cathode | |
US3076915A (en) | Cathode assembly and method of making same | |
US2176199A (en) | Electron-discharge tube | |
US2693546A (en) | Electron emitter for electron tubes | |
US2949557A (en) | Equipotential cathode for electric discharge tubes | |
US5793157A (en) | Cathode structure for a cathode ray tube | |
US2381632A (en) | Electron discharge device | |
US2768321A (en) | Indirectly heated electron emitter for power tubes and the like | |
US5131878A (en) | Process for manufacturing dispenser cathode | |
US2892115A (en) | Cathode structures |