US2864773A - Semi-conductor composition - Google Patents

Semi-conductor composition Download PDF

Info

Publication number
US2864773A
US2864773A US406338A US40633854A US2864773A US 2864773 A US2864773 A US 2864773A US 406338 A US406338 A US 406338A US 40633854 A US40633854 A US 40633854A US 2864773 A US2864773 A US 2864773A
Authority
US
United States
Prior art keywords
parts
composition
semi
glass
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US406338A
Inventor
William E Counts
Robert W Smith
Schwartzwalder Karl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US406338A priority Critical patent/US2864773A/en
Priority to FR1118238D priority patent/FR1118238A/en
Application granted granted Critical
Publication of US2864773A publication Critical patent/US2864773A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • H01C17/0658Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding

Definitions

  • This invention relates to a semi-conductor composition and more particularly to a glass-phase ceramic composition having special electrical and physical properties.
  • the ceramic compositions disclosed in our parent application are basically titanates and stanno-titanates which have been modified to obtain semi-conductor materials having stable and reproducible electrical characteristics, i. e. resistance, low thermal coefficient of conductivity and low voltage coefficient of resistivity.
  • Ta+ reduces the resistivity of the titanate and stanno-titanate material to a marked extent.
  • Ta+ has about the same ionic radius as Ti+ but has a higher ionic charge and is visualized as going into the titanium crystal structure with an incomplete bond thus forming electronic imperfections or holes. It has been found that as little as 2% of Ta O lowers the resistivity considerably and the addition of said compound in the amount of 10% reduces the resistance to of that without the addition. Such addition was found to have no efiect on the voltage coefficient of resistivity of the composition.
  • V acts in a manner similar to Ta O though to a lesser degree. For this reason we prefer to use Ta O It was also found that the presence of molybdenum or tungsten oxides, alone or in combination, in the titanate or stanno-titanate compositions greatly reduced the voltage coetficient of resistivity. We prefer to use the molybdenum oxide inasmuch as its effect on the voltage coefiicient is greater than that of the tungsten oxide.
  • the preferred composition varies with the particular application in mind.
  • the composition may be Parts 2 -T----- 60 SnO 20 T121205 M903 A1 0 4
  • the semi-conductor material in accordance with this invention may be prepared, after weighing out the desired amounts, by thoroughly dry mixing'in a Lancaster mill, the constituents being of such size as to pass a 325 mesh screen (43 microns) with most particles being less than 10 microns.
  • the batch is then placed in a suitable container and calcined at a temperature of around 1400" C. in an atmosphere that may be slightly oxidizing, though this is not essential and we do not wish to be limited thereto.
  • a reducing atmosphere may be used thereby giving further control of the resistivity of the material.
  • the calcined material is then ground to the desired state of subdivision, preferably finer than 200 mesh. If desired, the material may be briquetted before firing.
  • the semi-conductor material so formed is then suitable for application in whatever form desired.
  • the use of a barium? borate glass in admixture with our semi-conductor material yields a structure which has a very low range of electrical resistance whereas the use of an alkali-boro silicate glass yields a structure which has a very high range of resistance.
  • a magnesium-borate glass in contrast to the barium-borate, gives a high range of electrical resistance.
  • a boro-aluminum-silicate glass has a very high range of resistance.
  • the coarse resistance range can be varied widely by a change in composition of the glass phase.
  • coarse control of the resistance of the composition is obtained by vary ing the amount of Ta O in our semi-conductor material.
  • the fine control of the resistance of our final composition is obtained by the addition of reducing agents, the resistance being lowered as the amount of reducer is increased.
  • reducing agents as powdered aluminum and carbon, the latter having a particle size of about 0.3 micron and being available commercially as Thermax, enables almost precision-like control of the resistance of the final product.
  • the amount of reducer added should be so small as to exist in the product as a discontinuous phase and function not as a conductor material but solely, as a reducing agent.
  • the glass phase acts to form a multi-- tude of reaction bombs each containing reducer and semi-conductor material which react in the course of hot-pressing the desired element to form a glass-like semi conducting structure.
  • the reaction in the glass-phase apparently also results in the materials being integrated therewith.
  • the mold or die contains ing the semi-conductor composition is heated at a definite temperature necessary to develop the plastic flow characteristics of the glass phase.
  • Various types of glasses require different temperatures and we have found that a temperature of 1550 F. to 1850 F. sufiices for most glasses.
  • a pressure sufficient to cause the glass to flow into the mold contour and produce a relatively non-porous article is applied, the article being kept under pressure while cooling until the glass has become rigid.
  • the amount of the particular glass used as distinguished from the amount of reducer used, has no appreciable effect on the resistance of the composition within the limits of about 25 to 40 parts by weight of the composition.
  • the composition of the glass phase does not affect the temperature coefficient of resistance or voltage coefficient of resistance of the semiconductor composition, it is undesirable to mix two or more types of glass since we have found that such mixing tends to reduce the stability of the temperature and voltage coefiicients otherwise obtained.
  • the fluidity of the final composition is controlled by the presence of a filler or diluent material which does not react chemically with the other constituents of the composition.
  • a filler or diluent material which does not react chemically with the other constituents of the composition.
  • the filler or diluent material may be added to the semi-conductor composition or may be only that amount present in the semi-conductor (stanno-titanate) material. It has been noted that the filler also increases the temperature resistance of the formed element after hot pressing, the composition becoming more refractory and less fluid than on the first heating.
  • a binder such as bentonite, a very plastic aluminum silicate, is added to bond the particles together during processing.
  • composition may vary widely depending on the electrical, thermal and voltage characteristics desired. We have found the following range to be suitable for most purposes:
  • the semiconductor composition of our invention may be prepared in granular form by first dry mixing the materials and then adding water to make a plastic mass.
  • materials may be dry mixed and formed into a free-flowing slip by addition of water.
  • the slip is then passed into a spray-drying tower where the desired agglomerates are formed.
  • the sizing of the semiconductor composition of our invention may be varied in accordance with the requirements of the specific application.
  • the semi-conductor composition being then formed by a hot pressing operation into a vitrified article of the desired shape and having the required physical and electrical characteristics.
  • a ceramic composition exhibiting stable electrical properties consisting essentially of a substantially electrically stable mixed metal oxide semi-conductor material in admixture with glass and a reducing agent which latter constituent controls the resistance of the composition and is present in such small amount as to act as a discontinu ous reducer phase, said semiconductor material consisting essentially of 15-60 parts of TiO 0-50 parts of SnO up to 15 parts of Ta O O-10 parts of M00 and 20-40 parts of A1 0 2.
  • a composition of matter consisting essentially of 25 to 40 parts glass, 25 to parts of a substantially electrically stable semi-conductor material, 0 to 40 parts filler, 0 to 6 parts reducing agent selected from the group consisting of aluminum and carbon and 0 to 6 parts binder, said semi-conductor material consisting essentially of 15-60 parts of Ti0 0-50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 9.
  • parts filler 0.8 part powdered aluminum, 0.8 part carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semiconductor material consisting essentially of 15-60 parts of TiO -50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 10.
  • a composition of matter composed of 25 parts magnesium borate glass, 50 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 25 parts filler, 1 part aluminum, 1 part carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semi-conductor material consisting essentially of -60 parts of TiO 0-50 parts of smo up to 15 parts of Ta O 0-10 parts of M00 and -40 parts of A1 0 11.
  • a composition of matter composed of parts boro-aluminum-silicate glass, 75 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 3 parts powdered aluminum, 3 parts carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semi-conductor material consisting essentially of 15-60 parts of TiO;, 0-50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 12.
  • a composition of matter composed of 25 parts boro-aluminum-silicate glass, 75 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 1 part powdered aluminum, 1 part carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semi-conductor material consisting essentially of 15-60 parts of TiO 0-50 parts of smo up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 13.
  • a resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 to 40 parts glass, 25 to 75 parts of a substantially electrically stable semi-conductor material, 0 to 40 parts filler, 0 to 6 parts reducing agent and 0 to 6 parts binder, said semiconductor material consisting essentially of 15-60 parts of TiO 0-50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 14.
  • a resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 parts barium borate glass, 45 parts semi-conductor material, parts filler, 0.8 part aluminum, 0.8 part carbon and 3 parts bentonite, said semi-conductor material consisting essentially of about 60 parts TiO about 20 parts SnO about 10 parts Ta O about 4 parts M00 and about 40 parts A1203.
  • a resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 parts borosilicate glass, 75 parts semi-conductor material, 1 part aluminum, 1 part carbon and 3 parts bentonite, said semiconductor material consisting essentially of about 60 parts Ti O, about 20 parts SnO about 10 parts Ta O about 4 parts M00 and about 40 parts A1 0 18.
  • a ceramic composition having a semi-conductor material in admixture with glass
  • the improvement which consists of using an electrically stable mixed metal oxide semi-conductor together with a small amount of reducing agent selected from the group consisting of carbon and aluminum sufiicient to produce the desired resistance upon hot-pressing the composition, said reducing agent being present as a discontinuous reducing phase and said semiconductor material consisting essentially of 15-60 parts of TiO 0-50 parts of S up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 References Cited in the file of this patent UNITED STATES PATENTS 2,205,308 Pirani June 18, 1940 2,311,918 Wainer et a1. Feb. 23, 1943 2,371,660 Wainer Mar.

Description

United States atent SEMI-CONDUCTGR COMPOSITION William E. Counts and Robert W. Smith, Flint, and Karl Schwartzwalder, Holly, Mich, assignors to General Motors Corporation, Detroit, Mich, a corporation of Delaware 18 Qiaims. (Cl. 252-503) No Drawing.
This is a continuation-in-part of our co-pending application S. N. 357,906 filed May 27, 1953, now abandoned.
This invention relates to a semi-conductor composition and more particularly to a glass-phase ceramic composition having special electrical and physical properties.
It is an object of our invention to provide a composition, the resistance of which is readily controlled within wide limits. It is another object of our invention to provide a glass phase-ceramic composition, the resistance of which is accurately controlled to within narrow limits by the addition of reducing agents.
The ceramic compositions disclosed in our parent application are basically titanates and stanno-titanates which have been modified to obtain semi-conductor materials having stable and reproducible electrical characteristics, i. e. resistance, low thermal coefficient of conductivity and low voltage coefficient of resistivity.
We have found that the presence of Ta+ reduces the resistivity of the titanate and stanno-titanate material to a marked extent. Ta+ has about the same ionic radius as Ti+ but has a higher ionic charge and is visualized as going into the titanium crystal structure with an incomplete bond thus forming electronic imperfections or holes. It has been found that as little as 2% of Ta O lowers the resistivity considerably and the addition of said compound in the amount of 10% reduces the resistance to of that without the addition. Such addition was found to have no efiect on the voltage coefficient of resistivity of the composition.
It was also found that V acts in a manner similar to Ta O though to a lesser degree. For this reason we prefer to use Ta O It was also found that the presence of molybdenum or tungsten oxides, alone or in combination, in the titanate or stanno-titanate compositions greatly reduced the voltage coetficient of resistivity. We prefer to use the molybdenum oxide inasmuch as its effect on the voltage coefiicient is greater than that of the tungsten oxide.
In order to obtain the characteristics desired, it is necessary to thermally react the semi-conductor constituents. However, it has been found that the reacted composition was not as stable as required for some applications. Stability has been attained by the introduction of certain ceramic materials into the mixture prior to calcination. Such materials as tabular corundum, magnesia, mullite, zircon, chrome oxide, etc., have been found to be suitable. We prefer to use tabular corundum, a high temperature calcined alumina, on the basis of results obtained from test,
The range of compositions yielding the best results are as follows:
ice
The preferred composition varies with the particular application in mind. As an example, where the semiconductor material is to be utilized in a creep gap or resistor the composition may be Parts 2 -T----- 60 SnO 20 T121205 M903 A1 0 4 The semi-conductor material in accordance with this invention may be prepared, after weighing out the desired amounts, by thoroughly dry mixing'in a Lancaster mill, the constituents being of such size as to pass a 325 mesh screen (43 microns) with most particles being less than 10 microns. The batch is then placed in a suitable container and calcined at a temperature of around 1400" C. in an atmosphere that may be slightly oxidizing, though this is not essential and we do not wish to be limited thereto. For example, a reducing atmosphere may be used thereby giving further control of the resistivity of the material. The calcined material is then ground to the desired state of subdivision, preferably finer than 200 mesh. If desired, the material may be briquetted before firing. The semi-conductor material so formed is then suitable for application in whatever form desired.
We have found that the admixture of our semi-cone ductor material with glass not only produces a dense, nonporous structure but also results in a composition the resistance range of which is subject to ready control by selection of the type of glass used. t
In accordance with our invention, the use of a barium? borate glass in admixture with our semi-conductor material yields a structure which has a very low range of electrical resistance whereas the use of an alkali-boro silicate glass yields a structure which has a very high range of resistance. However, a magnesium-borate glass, in contrast to the barium-borate, gives a high range of electrical resistance. Likewise, a boro-aluminum-silicate glass has a very high range of resistance. Thus, it can be seen that the coarse resistance range can be varied widely by a change in composition of the glass phase. Likewise, as pointed out hereinbefore, coarse control of the resistance of the composition is obtained by vary ing the amount of Ta O in our semi-conductor material.
The fine control of the resistance of our final composition is obtained by the addition of reducing agents, the resistance being lowered as the amount of reducer is increased. We have found that the addition in very small quantity of such reducing agents as powdered aluminum and carbon, the latter having a particle size of about 0.3 micron and being available commercially as Thermax, enables almost precision-like control of the resistance of the final product. The amount of reducer added should be so small as to exist in the product as a discontinuous phase and function not as a conductor material but solely, as a reducing agent. Though the exact nature of the inter action of the materials in the composition is not known, it is theorized that the glass phase acts to form a multi-- tude of reaction bombs each containing reducer and semi-conductor material which react in the course of hot-pressing the desired element to form a glass-like semi conducting structure. The reaction in the glass-phase apparently also results in the materials being integrated therewith. g
It has been noted that the aluminum has a greater effect in reducing the resistance than has the carbon and we have been able to obtain very satisfactory results'by using quantities of each, though it should be understood that this is not essential.
In the hot pressing operation, the mold or die contains ing the semi-conductor composition is heated at a definite temperature necessary to develop the plastic flow characteristics of the glass phase. Various types of glasses require different temperatures and we have found that a temperature of 1550 F. to 1850 F. sufiices for most glasses. At the same time, a pressure sufficient to cause the glass to flow into the mold contour and produce a relatively non-porous article is applied, the article being kept under pressure while cooling until the glass has become rigid.
We have found that the amount of the particular glass used, as distinguished from the amount of reducer used, has no appreciable effect on the resistance of the composition within the limits of about 25 to 40 parts by weight of the composition. Likewise, though the composition of the glass phase does not affect the temperature coefficient of resistance or voltage coefficient of resistance of the semiconductor composition, it is undesirable to mix two or more types of glass since we have found that such mixing tends to reduce the stability of the temperature and voltage coefiicients otherwise obtained.
The fluidity of the final composition, as exhibited during the hot pressing operation, is controlled by the presence of a filler or diluent material which does not react chemically with the other constituents of the composition. We have been able to obtain very satisfactory results with a 48 to +100 mesh mullite though other materials such as borolon, zircon, chromium oxide and 7 aluminum oxide, etc. may be used. The filler or diluent material may be added to the semi-conductor composition or may be only that amount present in the semi-conductor (stanno-titanate) material. It has been noted that the filler also increases the temperature resistance of the formed element after hot pressing, the composition becoming more refractory and less fluid than on the first heating.
Since the glass phase semi-conductor composition is best handled in a granulated form, a binder such as bentonite, a very plastic aluminum silicate, is added to bond the particles together during processing.
The range of composition may vary widely depending on the electrical, thermal and voltage characteristics desired. We have found the following range to be suitable for most purposes:
Parts Glass -40 Semi-conductor material 25-75 Filler 0-40 Reducing agent 0-6 The preferred composition varies with the particular application in mind and the following are examples of compositions preferred for use in resistors and creep gaps:
Y The semiconductor composition of our invention may be prepared in granular form by first dry mixing the materials and then adding water to make a plastic mass.
.suitable for uniform volumetric feed. Alternatively, the
materials may be dry mixed and formed into a free-flowing slip by addition of water. The slip is then passed into a spray-drying tower where the desired agglomerates are formed.
At this point it should be noted that the sizing of the semiconductor composition of our invention may be varied in accordance with the requirements of the specific application. Likewise, it should be understood that while we have disclosed our invention as it relates to particular glasses, other glasses may be used, the semi-conductor composition being then formed by a hot pressing operation into a vitrified article of the desired shape and having the required physical and electrical characteristics.
It is thus apparent from the above description that we have provided a glass phase semi-conductor composition adapted to be readily formed with a substantially non porous, vitrified, ceramic article of manufacture, the electrical properties of which may be readily controlled to satisfy predetermined requirements.
While we have disclosed our invention with reference to certain preferred embodiments thereof, it is to be understood that modification may be made within the limits of our disclosure and as defined by the scope of the attached claims which follow.
What is claimed is:
1. A ceramic composition exhibiting stable electrical properties consisting essentially of a substantially electrically stable mixed metal oxide semi-conductor material in admixture with glass and a reducing agent which latter constituent controls the resistance of the composition and is present in such small amount as to act as a discontinu ous reducer phase, said semiconductor material consisting essentially of 15-60 parts of TiO 0-50 parts of SnO up to 15 parts of Ta O O-10 parts of M00 and 20-40 parts of A1 0 2. A ceramic composition as set forth in claim 1 wherein said glass is of the group consisting of the borate and silicate type glasses.
3. A ceramic composition as set forth in claim 1 wherein said glass is a borate type glass.
4. A ceramic composition as set forth in claim 1 wherein said glass is a silicate type glass.
5. A ceramic composition as set forth in claim 1 wherein said reducing agent is at least one of the materials from the group consisting of aluminum and carbon and said glass is a barium borate glass.
6. A ceramic composition as set forth in claim 1 wherein said reducing agent is at least one of the materials from the group consisting of aluminum and carbon and said glass is a magnesium borate glass.
7. A ceramic composition as set forth in claim 1 wherein said reducing agent is at least one of the mate rials from the group consisting of aluminum and carbon and said glass is a boro-aluminum-silicate glass.
8. A composition of matter consisting essentially of 25 to 40 parts glass, 25 to parts of a substantially electrically stable semi-conductor material, 0 to 40 parts filler, 0 to 6 parts reducing agent selected from the group consisting of aluminum and carbon and 0 to 6 parts binder, said semi-conductor material consisting essentially of 15-60 parts of Ti0 0-50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 9. A composition of matter composed of 25, parts barium borate glass, 45 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 30
. parts filler, 0.8 part powdered aluminum, 0.8 part carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semiconductor material consisting essentially of 15-60 parts of TiO -50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 10. A composition of matter composed of 25 parts magnesium borate glass, 50 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 25 parts filler, 1 part aluminum, 1 part carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semi-conductor material consisting essentially of -60 parts of TiO 0-50 parts of smo up to 15 parts of Ta O 0-10 parts of M00 and -40 parts of A1 0 11. A composition of matter composed of parts boro-aluminum-silicate glass, 75 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 3 parts powdered aluminum, 3 parts carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semi-conductor material consisting essentially of 15-60 parts of TiO;,, 0-50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 12. A composition of matter composed of 25 parts boro-aluminum-silicate glass, 75 parts of a substantially electrically stable mixed metal oxide semi-conductor material, 1 part powdered aluminum, 1 part carbon and 3 parts bentonite, said aluminum and carbon being present as a discontinuous reducer phase, and said semi-conductor material consisting essentially of 15-60 parts of TiO 0-50 parts of smo up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 13. A resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 to 40 parts glass, 25 to 75 parts of a substantially electrically stable semi-conductor material, 0 to 40 parts filler, 0 to 6 parts reducing agent and 0 to 6 parts binder, said semiconductor material consisting essentially of 15-60 parts of TiO 0-50 parts of SnO up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 14. A resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 parts barium borate glass, 45 parts semi-conductor material, parts filler, 0.8 part aluminum, 0.8 part carbon and 3 parts bentonite, said semi-conductor material consisting essentially of about 60 parts TiO about 20 parts SnO about 10 parts Ta O about 4 parts M00 and about 40 parts A1203.
15. A resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 parts magnesium borate glass, parts semi-conductor material, 25 parts filler, 1 part aluminum, 1 part carbon and 3 partsbentonite, said semi-conductor material consisting essentially of about parts TiO about 20 parts SnO about 10 parts Ta O about 4 parts M00 and about 40 parts A1 0 16, A resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 parts boroaluminum-silicate glass, parts mixed metal oxide semiconductor material, 3 parts aluminum, 3 parts carbon and 3 parts binder, said semi-conductor material consisting essentially of about 60 parts TiO about 20 parts SnO about 10 parts Ta 0 about 4 parts M00 and about 40 parts A1 0 17. A resistance element having stable electrical properties formed by hot-pressing a composition consisting essentially of a dense vitrified mixture of 25 parts borosilicate glass, 75 parts semi-conductor material, 1 part aluminum, 1 part carbon and 3 parts bentonite, said semiconductor material consisting essentially of about 60 parts Ti O, about 20 parts SnO about 10 parts Ta O about 4 parts M00 and about 40 parts A1 0 18. In a ceramic composition having a semi-conductor material in admixture with glass, the improvement which consists of using an electrically stable mixed metal oxide semi-conductor together with a small amount of reducing agent selected from the group consisting of carbon and aluminum sufiicient to produce the desired resistance upon hot-pressing the composition, said reducing agent being present as a discontinuous reducing phase and said semiconductor material consisting essentially of 15-60 parts of TiO 0-50 parts of S up to 15 parts of Ta O 0-10 parts of M00 and 20-40 parts of A1 0 References Cited in the file of this patent UNITED STATES PATENTS 2,205,308 Pirani June 18, 1940 2,311,918 Wainer et a1. Feb. 23, 1943 2,371,660 Wainer Mar. 20, 1945 2,376,815 Roman May 22, 1945 2,459,282 McDougal et al. Jan. 18, 1949 2,480,166 Schwartzwalder Augr30, 1949 2,590,893 Sanborn Apr. 1, 1952 UNITED STATES PATENT OFFICE QERTIHQATE or 'QUREEC'HQN Patent No., 2 864 773 Dcember 16, 1958 William E Counts et ale It is hereby certified that error a of the above numbered patent requiring c Patent should read as corrected below.
ppears in the -printed specification orrection and that the said Letters Column 3, line '71 for Signed and sealed this 14th day of April 195% (SEAL) Attest:
KARL 5L, AXLINE ROBERT C. WATSON Attesting Oflicer Commissioner of Patents

Claims (1)

1. A CERAMIC COMPOSITION EXHIBITING STABLE ELECTRICAL PROPERTIES CONSISTING ESSENTIALLY OF A SUBSTANTIALLY ELECTRICALLY STABLE MIXED METAL OXIDE SEMI-CONDUCTOR MATERIAL IN ADMIXTURE WITH GLASS AND A REACTING AGENT WHICH LATTER CONSTITUENT CONTROLS THE RESISTANCE OF THE COMPOSITION AND IS PRESENT IN SUCH SMALL AMOUNT AS TO ACT AS A DISCONTINUOUS REDUCER PHASE, SAID SEMICONDUCTOR MATERIAL CONSISTING ESSENTIALLY OF 15-60 PARTS OF TIO2, 0-50 PARTS OF SNO2, UP TO 15 PARTS OF TA2O5, 3-10 PARTS OF M0O3 AND 20-40 PARTS OF AL2O3.
US406338A 1954-01-26 1954-01-26 Semi-conductor composition Expired - Lifetime US2864773A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US406338A US2864773A (en) 1954-01-26 1954-01-26 Semi-conductor composition
FR1118238D FR1118238A (en) 1954-01-26 1955-01-25 Semiconductor compositions and resistance elements made using these compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US406338A US2864773A (en) 1954-01-26 1954-01-26 Semi-conductor composition

Publications (1)

Publication Number Publication Date
US2864773A true US2864773A (en) 1958-12-16

Family

ID=23607548

Family Applications (1)

Application Number Title Priority Date Filing Date
US406338A Expired - Lifetime US2864773A (en) 1954-01-26 1954-01-26 Semi-conductor composition

Country Status (2)

Country Link
US (1) US2864773A (en)
FR (1) FR1118238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235655A (en) * 1962-12-31 1966-02-15 Gen Motors Corp Resistor composition and devices embodying same
US3915721A (en) * 1972-09-22 1975-10-28 Nippon Denso Co Resistor for spark plug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205308A (en) * 1937-07-26 1940-06-18 Gen Electric Electrical resistor
US2311919A (en) * 1939-06-23 1943-02-23 Victor F Zahodiakin Device for compressing rings or the like
US2371660A (en) * 1941-02-07 1945-03-20 Titanium Alloy Mfg Co Composition and article for electric use
US2376815A (en) * 1942-09-15 1945-05-22 Westinghouse Electric & Mfg Co Molded lightning-arrester block
US2459282A (en) * 1949-01-18 Resistor and spabk plug embodying
US2480166A (en) * 1945-01-08 1949-08-30 Gen Motors Corp Resistor for thermogauges
US2590893A (en) * 1949-09-20 1952-04-01 Paul H Sanborn Insulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459282A (en) * 1949-01-18 Resistor and spabk plug embodying
US2205308A (en) * 1937-07-26 1940-06-18 Gen Electric Electrical resistor
US2311919A (en) * 1939-06-23 1943-02-23 Victor F Zahodiakin Device for compressing rings or the like
US2371660A (en) * 1941-02-07 1945-03-20 Titanium Alloy Mfg Co Composition and article for electric use
US2376815A (en) * 1942-09-15 1945-05-22 Westinghouse Electric & Mfg Co Molded lightning-arrester block
US2480166A (en) * 1945-01-08 1949-08-30 Gen Motors Corp Resistor for thermogauges
US2590893A (en) * 1949-09-20 1952-04-01 Paul H Sanborn Insulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235655A (en) * 1962-12-31 1966-02-15 Gen Motors Corp Resistor composition and devices embodying same
US3915721A (en) * 1972-09-22 1975-10-28 Nippon Denso Co Resistor for spark plug

Also Published As

Publication number Publication date
FR1118238A (en) 1956-06-01

Similar Documents

Publication Publication Date Title
US3290171A (en) Method and materials for metallizing ceramics
US3378385A (en) High alumina brick
US2864773A (en) Semi-conductor composition
US2981699A (en) Positive temperature coefficient thermistor materials
US3279930A (en) Ceramic product and its preparation
US2327972A (en) High strength ceramic surface
US2413441A (en) Vitreous and vitrifiable composi
US2818345A (en) Refractory cement
US1942879A (en) Refractory material and batch and method for making the same
US2567592A (en) Process of molding zirconia
US3251700A (en) Refractory compositions
US2463979A (en) Process of making porous refractory alumina material
JPS63201060A (en) Low expansion zrtio4-al2tio5-zro2 base composition
US2785080A (en) Thermal shock resistant ceramic body
US2434451A (en) Refractories
US2848586A (en) Non-metallic electrical heating elements
US2966420A (en) Ceramic dielectric process
US1774607A (en) Method of bonding refractories
US2281834A (en) Self-hardening cement for spark plugs
US3852080A (en) Method for making magnesite brick
US2812241A (en) Process for forming crystalline magnesia of high purity and of high density
GB1151475A (en) Refractory Ceramic Materials
US3703387A (en) Method for processing resistor glass seal compositions employing organic liquid
US3135616A (en) Refractory x
US2860999A (en) Silicon carbide refractories