US2859884A - Method and means for the erection of tip up walls - Google Patents

Method and means for the erection of tip up walls Download PDF

Info

Publication number
US2859884A
US2859884A US346986A US34698653A US2859884A US 2859884 A US2859884 A US 2859884A US 346986 A US346986 A US 346986A US 34698653 A US34698653 A US 34698653A US 2859884 A US2859884 A US 2859884A
Authority
US
United States
Prior art keywords
slab
wall
edge
floor
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US346986A
Inventor
John H Pearce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US346986A priority Critical patent/US2859884A/en
Application granted granted Critical
Publication of US2859884A publication Critical patent/US2859884A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/167Tools or apparatus specially adapted for working-up plates, panels or slab shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/167Tools or apparatus specially adapted for working-up plates, panels or slab shaped building elements
    • E04G21/168Tools or apparatus specially adapted for working-up plates, panels or slab shaped building elements used for tilting, e.g. from horizontal to vertical position or vice versa

Definitions

  • This invention solves the problem of tip up concrete wall structures by casting the wall section with the outer surface of the wall on the bottom of the slab as it is cast; again, in common distinction from the usual methods, raising the upper margin of the slab which is close to the final resting place, vertically, and providing antifriction means for permitting the lower margin of the slab to follow the upper margin of the slab until the entire slab is in a vertical position above its final resting place.
  • the antifriction means usually consists of wheeled means which are then removed, and the wall slab lowered into its final resting place.
  • a supporting framework is assembled from pipe or similar lightweight units so that it is readily portable from job to job and can be moved about on the job under construction. Hoisting means, normally manually operated, are provided for raising the slab slowly into the vertical position so that the whole operation is a slow, smooth one which avoids shock to the supporting structure and most especially to the slab itself during the raising period.
  • the principal object of my present invention therefore is to provide a method and means for raising cast wall sections from the horizontal to the vertical position with a minimum of shock to the slab and with the minimum of equipment involved.
  • a further object of this invention is to provide a method and means for raising the edge of a pre-cast wall slab nearest its final resting place andraising it substantially in a vertical plane to its nal upright position.
  • a further object of my invention is to provide means to facilitate moving the trailing edge of a pre-cast wall section as it is moved into the vertical position with the minimum of friction or vibration.
  • a further object of this invention is to provide a skeletonized dolly which can be easily assembled to meet the conditions of the moment and will carry allv the hoisting equipment necessary to raise a wall section so that the section may be kept under the intimate control of the operator of the hoisting equipment at all times and with which the slab can be moved a considerable distance from its casting position.
  • Figure 1 is an end elevation of a cast concrete wall slab as it is being raised into position and shows the supporting and maneuvering dolly employed therewith;
  • Figure 2 is a perspective view showing, in a diagrammatic manner, the general method employed in forming walls of tip up slab when using the principles of this present invention
  • Figure 3 is a front elevational View, partly broken away, illustrating some of the equipment used in this method and the general mode in which the wall slab is handled;
  • Figure 4 is a transverse sectional view through the dolly employed with this method and showing a slab in a partially raised position without the attendant hoisting equipment which has been eliminated in the interest of clarity of the illustration;
  • Figure 5 is a perspective view showing a lifter or strong-back member, and a portion of the hoisting equipment used in perfecting this method;
  • FIG. 6 is a fragmentary View, in perspective form, illustrating the general arrangement of the hoisting gear used with this equipment
  • Figure 7 is a diagrammatic sectional view illustrating the employment of the hoisting cable 60
  • Figure 8 is a perspective view illustrating in diagrammatic form the two carriages employed to move the wall section longitudinally and also illustrating the cable used to control the same;
  • Figure 9 illustrates in vertical, sectional View, one of the spiders, of which a plurality is used, to engage the wall section;
  • Figure l() is an enlarged, fragmentary view showing a portion of Figure 9 andkshowing the connection as made to the strong-back which braces the wall section.
  • the reference character S designates a typical wall ⁇ section or slab.
  • these may be a complete slab, or, more commonly, they take the .form illustrated in Figure 3 wherein a large window opening is provided and this reduces the wall section to a fr amenas it were, having the opposite end portions as 12 and 14, the top ⁇ portion 15, and' the bottom' portion 17.
  • Members-18 are preferably formed 'of two channel members as 20 and 22 which are bolted together by a plurality of bolts 23 so that the overalllength as a unit can be varied as occasion requires.
  • a dolly portion 24 This is preferably formed of channel members as 25 similar in size to members 20 and 22 and it is bolted preferably to member 22 by bolts 26 so that the same may be removed when desired.
  • the underside of dolly 24 is provided with supporting wheels 28 which are usually mounted on anti-friction bearings so that friction will be reduced to a minimum and smoothness of operation will be assured. ⁇ Wheels 28 are suitably supported from panel 2S as by bracket members 30.
  • At its upper end lifter 18 is provided with the hanger member 32.
  • This member is preferably xedly secured to channel 20 as by welding thereto and is provided with a plurality of lifting openings 34 which are offset with respect to channels 20 and 22 so thatY they will be on the line of the combined mass of slab S and the lifter 18. This will permit the wall slab to hang in a perfertcly upright position which is very desirable during the final stages of setting the same in place.
  • This built-up dolly is provided with a plurality of wheeled members, some of which may be constructed as caster wheels for more convenience in handling. For this present use Vit has been found most satisfactory to provide a plurality of wheels at each of the front ends of the dolly. These are indicated at 40.
  • single wheel units as 42 may be employed spaced along the rear margin as they only need to carry usually the weight of the open framework which is a very light load, plus such counterbalance as is required.
  • This counterbalance is indicated at 44 in Figure l and can most conveniently be made up of bags of sand or cement which are usually readily available on such works. Then too, the amount of the counter-balance can be quite closely adjusted so as to be ample without needless weight.
  • each beam following the practice well kno-wn in demountable scaffolding, is usually provided as a unitary structure involving spaced members 46 and 47, with an adequate number of spacing members 48, so that the whole unit is one of great structural strength considering the weight involved. It is often found desirable to use diagonal bracing as 49 and S0 to further support the lifting trackage 52.
  • the lifting track 52 is conveniently made from channels which face each other after the showing of Figures 1 and 6 so that travelling carriages as 54 may be employed and be capable of longitudinal movement therein. This arrangement has been found very desirable in that in placing the slab in its final position it is very commonly necessary to move the same lengthwise to its exact resting position.
  • FIGs l,- 6 and 7. A preferred arrangement of the lifting gear is illustrated in Figures l,- 6 and 7. Disposed within trackage 52 are two or more lifting carriages 54. These are provided with opposed and spaced bearing wheels 56 and are further provided with the guide rollers 58 so as to prevent the carriages from binding within trackage 52.
  • a practical ararngement of the lifting cable 60 is shown in Figures 6 and 7 and in this arrangement it will be noted that the lifting blocks 62 are provided with two sheaves so that a mechanical advantage of four is obtained. Such an arrangement requires the use of three separate sheaves in carriage 54. However they may all be supported on a single shaft 64. In use one end of the cable is anchored fixedly as at 66 as to one of the cross members 68 formed as part of the trackage assembly 52.
  • a single cable 93 is employed to control the longitudinal movement of carriages 54 within trackway 52. This is normally secured near its midpoint to drum 94 and is led over a plurality of sheaves 95 so as to finally properly' engage sheaves S2 and 83 which are fixtures within trackway 52. With such an arrangement it will be apparent that turning crank 96 in either direction will have the effect of moving carriages 54 together with their appended hoisting equipment and that the slab S itself will be moved.
  • FIG. 9 and l0 A very good attachment means is illustrated in Figures 9 and l0 in which a spring bushing 100 is employed and to it is welded, preferably, a plurality of spider arms as 102. These spider arms radiate out from the axis of bushing 100 and are normally provided with what in effect are chaplets 104 which space them wellwithin the slab S. As the slab is poured a removable plug 106 is inserted Within the bushing 100, and after the slab is set the required minimum after pouring, screw 106 is removed and in place thereof a cap screw 108 is employed.
  • This cap screw is provided with an arcuate thread which will engage in the threadlike arrangement the inner helical surface provided by bushing 100.
  • a plurality of these units is employed to engage each strong-back or lifter 1S. This arrangement gives the whole unit a degree of elasticity that, when a Vnumber are used -in coaction, assures that the: strains are well distributed throughout the slab.
  • the dolly D is maneuvered over the horizontal slab or wall section S.
  • This slab of necessity must have cured sufficiently so that it can be handled without danger of cracking.
  • the lifting members 18 are suitably secured, by a plurality of bolts 108, to what will be the inside wall of the slab or the top of the slab as it lies horizontal in the position where it is was cast. Blocks 62 through their linkage 78 and 80 are connected to one of the openings 34 in the hanger members 32. Power is then applied to drum 74 and the top portion of the slab S is raised from the casting floor F. At is is raised the center part of the slab will move toward its final resting place with the bottom end of the same supported on wheels 28 of lifter dolly 24.
  • the frame means of dolly D is arranged to overhang the lower end of slab S so that the slab can be swung through the course it will naturally take when it is raised. It is desired to point out that a relatively slow raising operation is desirable and for most work a single man can provide the motive power required after the showing of Figurey 1. This workman is in a favorable position to observe the movement of the slab. This operation provides the slow smooth movement required to avoid shock to the slab and this is particularly important as the slab will not have normally reached its full strength through curing. When the slab has reached the vertical position it will hang truly vertical if its positioning in respect to holes 34 has been properly determined.
  • the whole weight of the slab S and lifter 18 is now on the carriages 54 and their supporting trackage 52.
  • the lifter dolly 24 on each lifter 18 can now be disconnected by removing bolts 26, thus freeing the bottom edge 80 of vslab S.
  • the main dolly D is now moved until slab S is in axial alignment with its nal position in notch 110. Endwise placement of slab S is diicult to achieve with dolly D and the second cable 93 is now brought into use by operating winch 94.
  • the slab may then be moved endwise on trackage 52 by suitable handling of winch 94 which moves cable 93 through sheaves 82 and 83, one at each end of the trackage. When the proper endwise position has been reached, the slab can be lowered in place.
  • the lifters 18 are disposed somewhat back from the ends of slab S so that the joining means may be cast in place to include the protruding steel bar ends 112, or clamp means may be employed to temporarily hold the slab in position until its nal securing means is provided.
  • Means for raising concrete tip-up wall slabs comprising: a framework formed of demountable tube-shaped scaffolding and wheel means supporting said framework whereby said framework can be moved as a unit from one section of a wall structure to another, said framework having at its front side an overhanging upper portion and having in its rear portion weight means for counterbalancing the weight of objects suspended from said overhanging portion, and means secured to said overhanging upper portion adapted to be secured to such a wall slab and operative to lift the same, said wheel means comprises a four wheel dolly positioned under each forward corner of said framework and a single wheel under each rear corner of said framework, some of said wheels being of a caster type rotatable about a vertical axis so as to permit turning of said framework.
  • the method of raising a concrete, tip-up wall slab to its position in the plane of the wall at the edge of a floor of a building comprising: casting a concrete slab outside-face-down on said floor near said floor edge; lifting the edge of the slab nearest to said floor edge and slowly raising and moving said nearest edge to a position near the position it is to occupy in the Wall and trailing the edge of the slab farthest from said oor edge along said floor toward said floor edge until the slab is suspended above the floor completely in the plane of the wall with the face of the slab previously abutting the floor forming the outside face of the wall slab and with said nearest edge uppermost, and adjusting the position of the slab longitudinally of said wall and lowering it into iinal position.
  • the method of raising a concrete, tip-up wall slab to its position in the plane of a wall comprising: casting a concrete slab face-down on the floor; lifting the edge of the slab nearest to the wall plane and slowly raising and moving said nearest edge to a position near the level of the top of the wall in the plane of the wall and trailing the edge of the slab farthest from said Wall plane along the floor toward said wall plane until the slab lies completely in the plane of the wall with said nearest edge uppermost.
  • the method of claim 4 including the step of removably securing a strongback to the upper face of said slab and applying the lifting force to a portion of the strongback at said nearest edge of said slab and securing wheel means to said strong-back adjacent the farthest edge of said concrete slab in position to engage the floor when said nearest edge is raised for supporting said slab as it is trailed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Description

Nov. 11, 1958 J. H. PEARCE 2,859,884
METHOD AND MEANS FOR TEE ERECTION OF TIP UP WALLS Filed April 6, 1953 5 sheets-sheet 1 FIG -II-Ill-l-IIL-IEIII 72 JDHN H. PEARGE INVENTOR Nov. 11, 1958 J. H. PEARCE 2,859,884
METHOD AND MEANS FOR THE ERECTION oF TIP UP WALLS Filed April e. 1953 `5 sheets-sheet 2 L-ILE; JOHN Nov. 11, 1958 J. H. PEARCE 2,359,884
I METHOD AND MEANS FOR THE ERECTION OF TIP UP WALLS Filed April 6. 1953 5 Sheets-Sheet 3 JoHN H. PEARcE INVENTOR www Nov. 1l, 1958 J. H. PEARcE METHOD AND MEANS FOR THE ERECTION oF TIP uP WALLS Filed April 6. 195:5
5 Sheets-Sheet 4 JOHN H. PEARGE l NYENTOR #M Nov. 411, 1958 J. H. PEARCE 42,859,334
METHOD AND MEANS FOR 'r1-IE:v ERECTION oF TIP UP wALLs Filed April e, 1955 5 sheets-sheet 5 New JOHN. H. PEARCE INVENTOR United States METHGD AND MEANS FOR THE ERECTION F TIP UP WALLS This present invention relates to the general art of concrete building construction and more particularly to atent O a novel method and the essential means required to v accomplish this method. This invention solves the problem of tip up concrete wall structures by casting the wall section with the outer surface of the wall on the bottom of the slab as it is cast; again, in common distinction from the usual methods, raising the upper margin of the slab which is close to the final resting place, vertically, and providing antifriction means for permitting the lower margin of the slab to follow the upper margin of the slab until the entire slab is in a vertical position above its final resting place. The antifriction means, usually consists of wheeled means which are then removed, and the wall slab lowered into its final resting place. To achieve this end result a supporting framework is assembled from pipe or similar lightweight units so that it is readily portable from job to job and can be moved about on the job under construction. Hoisting means, normally manually operated, are provided for raising the slab slowly into the vertical position so that the whole operation is a slow, smooth one which avoids shock to the supporting structure and most especially to the slab itself during the raising period.
In recent years the construction of concrete buildings is making increased use of the well known plan of casting a wall section on the building oor with the use only of marginal forms and then raising this wall slab into position where it is securely joined to the adjacent wall slabs, usually by pouring a concrete joiner portion to join together the intertwined ends of the protruding reinforcing bars, and means is thus provided to give adequate security to the slab to retain it in the vertical position. The absence of expensive forms on each side of the wall slab makes this a most economical way of building structures from poured concrete. In the past, however, the raising of such slabs in place has required very expensive and powerful equipment and in those cases where the bottom of the slab is Close to its final resting place required extreme skill on the part of the erectors to prevent shock to the slab especially as it approached the near vertical position. This was due in part to the fact that the heavy cranes usually used are not themselves subject to the niceties of control desired in such an operation, and the operators themselves are too far away from the actual work to be able to control the operation so as to prevent shock to the slab.
It is normal in tip up wall structures to employ a previously finished floor of the building as the curing surface upon which the new slab is formed. Parting means are disposed upon the floor usually in the form of paper especially treated with any of a variety of parting agents, and then marginal forms are provided, and the slab formed, and then struck level with the marginal forms to form the wall section. It will be understood it is believed that very quickly the entire working floor is largely lled with these wall portions that are curing. lt is therefore very desirable to put the walls in place` "ice with the minimum curing time, and this condition in turn creates one of the hazards in this form of structure, namely, the handling of a slab that has not had the benefit of thirty days or so of curing time. It is under certain conditions that my present method, which insures the most careful handling of the slab, shows especial appreciable gain over the methodspreviously used in this line of construction work.
The principal object of my present invention therefore is to provide a method and means for raising cast wall sections from the horizontal to the vertical position with a minimum of shock to the slab and with the minimum of equipment involved.
A further object of this invention is to provide a method and means for raising the edge of a pre-cast wall slab nearest its final resting place andraising it substantially in a vertical plane to its nal upright position.
A further object of my invention is to provide means to facilitate moving the trailing edge of a pre-cast wall section as it is moved into the vertical position with the minimum of friction or vibration.
A further object of this invention is to provide a skeletonized dolly which can be easily assembled to meet the conditions of the moment and will carry allv the hoisting equipment necessary to raise a wall section so that the section may be kept under the intimate control of the operator of the hoisting equipment at all times and with which the slab can be moved a considerable distance from its casting position. l
Further objects, advantages and -capabilities will be apparent from the description and disclosure in the drawings, or may be comprehended or are inherent in the device.
In the drawings:
Figure 1 is an end elevation of a cast concrete wall slab as it is being raised into position and shows the supporting and maneuvering dolly employed therewith;
Figure 2 is a perspective view showing, in a diagrammatic manner, the general method employed in forming walls of tip up slab when using the principles of this present invention;
Figure 3 is a front elevational View, partly broken away, illustrating some of the equipment used in this method and the general mode in which the wall slab is handled;
Figure 4 is a transverse sectional view through the dolly employed with this method and showing a slab in a partially raised position without the attendant hoisting equipment which has been eliminated in the interest of clarity of the illustration;
Figure 5 is a perspective view showing a lifter or strong-back member, and a portion of the hoisting equipment used in perfecting this method;
Figure 6 is a fragmentary View, in perspective form, illustrating the general arrangement of the hoisting gear used with this equipment;
Figure 7 is a diagrammatic sectional view illustrating the employment of the hoisting cable 60;
Figure 8 is a perspective view illustrating in diagrammatic form the two carriages employed to move the wall section longitudinally and also illustrating the cable used to control the same;
Figure 9 illustrates in vertical, sectional View, one of the spiders, of which a plurality is used, to engage the wall section; and
Figure l() is an enlarged, fragmentary view showing a portion of Figure 9 andkshowing the connection as made to the strong-back which braces the wall section.
Referring more particularly to the disclosure Vin the drawings, the reference character S designates a typical wall` section or slab. For certain types of building these may be a complete slab, or, more commonly, they take the .form illustrated in Figure 3 wherein a large window opening is provided and this reduces the wall section to a fr amenas it were, having the opposite end portions as 12 and 14, the top`portion 15, and' the bottom' portion 17. Secured to slab S by a plurality of bolts which are embedded in the slab or pass through'the same, are two or more lifting members 18. Members-18 are preferably formed 'of two channel members as 20 and 22 which are bolted together by a plurality of bolts 23 so that the overalllength as a unit can be varied as occasion requires. At its lower end lifter 18 is provided with a dolly portion 24. This is preferably formed of channel members as 25 similar in size to members 20 and 22 and it is bolted preferably to member 22 by bolts 26 so that the same may be removed when desired. The underside of dolly 24 is provided with supporting wheels 28 which are usually mounted on anti-friction bearings so that friction will be reduced to a minimum and smoothness of operation will be assured.` Wheels 28 are suitably supported from panel 2S as by bracket members 30. At its upper end lifter 18 is provided with the hanger member 32. This member is preferably xedly secured to channel 20 as by welding thereto and is provided with a plurality of lifting openings 34 which are offset with respect to channels 20 and 22 so thatY they will be on the line of the combined mass of slab S and the lifter 18. This will permit the wall slab to hang in a perfertcly upright position which is very desirable during the final stages of setting the same in place.
In order to provide means that will overcome the deciencies of the cranes, derricks, lifting booms and the like that have been used in the past, it has been found most expeditious to employ a built-up dolly D such as is illustrated in Figures l, 3, and 4. In using this form of equipment Athe usual structural shapes employed in scaffolding of the demountable type can be successfully employed. These are usually formed of tubing or pipe sections which have clamped members, Vnot illustrated, which securely fasten the vertical and horizontal members together at their intersections in a secure, but demountable manner. Demountable scalfolding of this order has been in common use for quite a period and many different plan arrangements have been employed which may be used in this structure. This built-up dolly is provided with a plurality of wheeled members, some of which may be constructed as caster wheels for more convenience in handling. For this present use Vit has been found most satisfactory to provide a plurality of wheels at each of the front ends of the dolly. These are indicated at 40. At the rear margin of the dolly, single wheel units as 42 may be employed spaced along the rear margin as they only need to carry usually the weight of the open framework which is a very light load, plus such counterbalance as is required. This counterbalance is indicated at 44 in Figure l and can most conveniently be made up of bags of sand or cement which are usually readily available on such works. Then too, the amount of the counter-balance can be quite closely adjusted so as to be ample without needless weight.
At its uppermost extent the dolly is provided with preferably two mutually supportng beams. Each beam, following the practice well kno-wn in demountable scaffolding, is usually provided as a unitary structure involving spaced members 46 and 47, with an adequate number of spacing members 48, so that the whole unit is one of great structural strength considering the weight involved. It is often found desirable to use diagonal bracing as 49 and S0 to further support the lifting trackage 52. The lifting track 52 is conveniently made from channels which face each other after the showing of Figures 1 and 6 so that travelling carriages as 54 may be employed and be capable of longitudinal movement therein. This arrangement has been found very desirable in that in placing the slab in its final position it is very commonly necessary to move the same lengthwise to its exact resting position.
A preferred arrangement of the lifting gear is illustrated in Figures l,- 6 and 7. Disposed within trackage 52 are two or more lifting carriages 54. These are provided with opposed and spaced bearing wheels 56 and are further provided with the guide rollers 58 so as to prevent the carriages from binding within trackage 52. A practical ararngement of the lifting cable 60 is shown in Figures 6 and 7 and in this arrangement it will be noted that the lifting blocks 62 are provided with two sheaves so that a mechanical advantage of four is obtained. Such an arrangement requires the use of three separate sheaves in carriage 54. However they may all be supported on a single shaft 64. In use one end of the cable is anchored fixedly as at 66 as to one of the cross members 68 formed as part of the trackage assembly 52. The other end of the cable .after leaving the last carriage usually passes over a horizontal sheave 70 and then a vertically disposed sheave 72 where it is directed to the drum 74 of a suitable winch. For all practical purposes this winch can be manually operated as indicated in Figure l although it is apparent of course that any of the small forms of power driven hoists might also be similarly employed. The becket 76 of block 62 is connected by the usual double linkage formed of members 78 and 80 to through openings 34 in hanger 32. The arrangement of the carriage shifting cable which makes it possible to move the slab endwise for considerable distance is illustrated in Figure 8. For all ordinary work it is necessary to employ at least two carirages 54 and any adidtional number may be employedto hang a single slab if the same are necessary. It will be noted for instance in reference to Figure 7 that cable 60 is continuous from its anchorage 66 to the drum 74 which controls it. The cable could of course pass througha plurality of sheaves 62 and 64, and as it is continuous, the same lifting strain will be available on all the various pulleys 62. For the same reason the center to `center distance of the sheaves supported on shafts 64 can be changed to meet the requirements of the moment without in any way disturbing the lifting ability of cable 60 or its ability to place equal strain on the various pulleys or` blo-cks 62. It is desirable to have a connector between carriages 54 and to have it reasonably fixed for each job. This is usually accomplished by providing cable clamps to clamp the cable into its engagement with each of the carriages and for convenience a turnbuckle for nal adjustment, as 91, may be employed. Y
To control the longitudinal movement of carriages 54 within trackway 52, a single cable 93 is employed. This is normally secured near its midpoint to drum 94 and is led over a plurality of sheaves 95 so as to finally properly' engage sheaves S2 and 83 which are fixtures within trackway 52. With such an arrangement it will be apparent that turning crank 96 in either direction will have the effect of moving carriages 54 together with their appended hoisting equipment and that the slab S itself will be moved.
In most constructions of this order there will be reoccurring window openings and many of the slabs will not have within themselves very great structural strength. Therefore special pains must be employed to assure equal distribution of the lifting load. A very good attachment means is illustrated in Figures 9 and l0 in which a spring bushing 100 is employed and to it is welded, preferably, a plurality of spider arms as 102. These spider arms radiate out from the axis of bushing 100 and are normally provided with what in effect are chaplets 104 which space them wellwithin the slab S. As the slab is poured a removable plug 106 is inserted Within the bushing 100, and after the slab is set the required minimum after pouring, screw 106 is removed and in place thereof a cap screw 108 is employed. This cap screw is provided with an arcuate thread which will engage in the threadlike arrangement the inner helical surface provided by bushing 100. A plurality of these units is employed to engage each strong-back or lifter 1S. This arrangement gives the whole unit a degree of elasticity that, when a Vnumber are used -in coaction, assures that the: strains are well distributed throughout the slab.
Method of operation Using this equipment and the method related thereto, the dolly D is maneuvered over the horizontal slab or wall section S. This slab of necessity must have cured sufficiently so that it can be handled without danger of cracking. The lifting members 18 are suitably secured, by a plurality of bolts 108, to what will be the inside wall of the slab or the top of the slab as it lies horizontal in the position where it is was cast. Blocks 62 through their linkage 78 and 80 are connected to one of the openings 34 in the hanger members 32. Power is then applied to drum 74 and the top portion of the slab S is raised from the casting floor F. At is is raised the center part of the slab will move toward its final resting place with the bottom end of the same supported on wheels 28 of lifter dolly 24. It will be noted, particularly inFigure 4, that the frame means of dolly D is arranged to overhang the lower end of slab S so that the slab can be swung through the course it will naturally take when it is raised. It is desired to point out that a relatively slow raising operation is desirable and for most work a single man can provide the motive power required after the showing of Figurey 1. This workman is in a favorable position to observe the movement of the slab. This operation provides the slow smooth movement required to avoid shock to the slab and this is particularly important as the slab will not have normally reached its full strength through curing. When the slab has reached the vertical position it will hang truly vertical if its positioning in respect to holes 34 has been properly determined.
The whole weight of the slab S and lifter 18 is now on the carriages 54 and their supporting trackage 52. At this time the lifter dolly 24 on each lifter 18 can now be disconnected by removing bolts 26, thus freeing the bottom edge 80 of vslab S. The main dolly D is now moved until slab S is in axial alignment with its nal position in notch 110. Endwise placement of slab S is diicult to achieve with dolly D and the second cable 93 is now brought into use by operating winch 94. The slab may then be moved endwise on trackage 52 by suitable handling of winch 94 which moves cable 93 through sheaves 82 and 83, one at each end of the trackage. When the proper endwise position has been reached, the slab can be lowered in place. It will be noted in Figure 3 that the lifters 18 are disposed somewhat back from the ends of slab S so that the joining means may be cast in place to include the protruding steel bar ends 112, or clamp means may be employed to temporarily hold the slab in position until its nal securing means is provided.
It is to be observed that in raising the slab in the manner illustrated it can be done with a minimum of shock to the slab and further by providing the lifting members as 18 in association with the movable dolly D this technique may be employed in multiple storied buildings without any regard to the ground line of the building. This is an important advantage of this building technique.
It is believed that it will be clearly apparent from the above description and the disclosure in the drawings that the invention comprehends a novel construction of a -method and means for the erection of tip up walls.
Having thus disclosed my invention, I claim:
1. Means for raising concrete tip-up wall slabs, comprising: a framework formed of demountable tube-shaped scaffolding and wheel means supporting said framework whereby said framework can be moved as a unit from one section of a wall structure to another, said framework having at its front side an overhanging upper portion and having in its rear portion weight means for counterbalancing the weight of objects suspended from said overhanging portion, and means secured to said overhanging upper portion adapted to be secured to such a wall slab and operative to lift the same, said wheel means comprises a four wheel dolly positioned under each forward corner of said framework and a single wheel under each rear corner of said framework, some of said wheels being of a caster type rotatable about a vertical axis so as to permit turning of said framework.
2. The method of raising a concrete, tip-up wall slab to its position in the plane of the wall at the edge of a floor of a building, comprising: casting a concrete slab outside-face-down on said floor near said floor edge; lifting the edge of the slab nearest to said floor edge and slowly raising and moving said nearest edge to a position near the position it is to occupy in the Wall and trailing the edge of the slab farthest from said oor edge along said floor toward said floor edge until the slab is suspended above the floor completely in the plane of the wall with the face of the slab previously abutting the floor forming the outside face of the wall slab and with said nearest edge uppermost, and adjusting the position of the slab longitudinally of said wall and lowering it into iinal position.
3. The method of raising a concrete, tip-up wall slab toits position in the plane of the Wall at the edge of a floor `of a building, comprising: positioning a concrete slab face-down on said floor near said oor edge; lifting the edge of the slab nearest to said floor edge and slowly raising and moving said nearest edge to the position it is to occupy in the wall and trailing the edge of the slab farthest from said floor edge along said floor toward said floor edge until the slab lies completely in the plane of the wall with the face of the slab previously abutting the oor forming the outside face Iof the wall slab and with said nearest edge uppermost.
4. The method of raising a concrete, tip-up wall slab to its position in the plane of a wall, comprising: casting a concrete slab face-down on the floor; lifting the edge of the slab nearest to the wall plane and slowly raising and moving said nearest edge to a position near the level of the top of the wall in the plane of the wall and trailing the edge of the slab farthest from said Wall plane along the floor toward said wall plane until the slab lies completely in the plane of the wall with said nearest edge uppermost.
5. The method of claim 4 including the step of removably securing a strongback to the upper face of said slab and applying the lifting force to a portion of the strongback at said nearest edge of said slab and securing wheel means to said strong-back adjacent the farthest edge of said concrete slab in position to engage the floor when said nearest edge is raised for supporting said slab as it is trailed.
References Cited in the le of this patent UNITED STATES PATENTS 577,192 Miller Feb. 16, 1897 841,827 True Ian. 22, 1907 1,519,248 Fox Dec. 16, 1924 1,565,454 Hoisington Dec. 15, 1925 1,769,134 Haff July 1, 1930 1,798,456 Carroll Mar. 31, 1931 1,801,309 Gipe Apr. 21, 1931 1,853,086 Scannell Apr. 12, 1932 1,935,990 Pomeroy Nov. 21, 1933 1,971,437 Wright Aug. 28, 1934 2,100,614 Schenk Nov. 30, 1937 2,497,887 Hilpert Feb. 21, 1950 l 2,504,232 Smith Apr. 18, 1950 2,574,473 Getz et al Nov. V13, 1951 2,589,954 Neil Mar. 18, 1952 2,593,022 Grivel Apr. 15, 1952 FOREIGN PATENTS 514,650 France Mar. 13, 1921 524,929 France May 24, 1921 897,530 Germany Nov. 23, 1953 1,097,591 France Feb. 16, 1955
US346986A 1953-04-06 1953-04-06 Method and means for the erection of tip up walls Expired - Lifetime US2859884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US346986A US2859884A (en) 1953-04-06 1953-04-06 Method and means for the erection of tip up walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US346986A US2859884A (en) 1953-04-06 1953-04-06 Method and means for the erection of tip up walls

Publications (1)

Publication Number Publication Date
US2859884A true US2859884A (en) 1958-11-11

Family

ID=23361864

Family Applications (1)

Application Number Title Priority Date Filing Date
US346986A Expired - Lifetime US2859884A (en) 1953-04-06 1953-04-06 Method and means for the erection of tip up walls

Country Status (1)

Country Link
US (1) US2859884A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386595A (en) * 1966-01-03 1968-06-04 Richier Sa Lifting apparatus
US3600870A (en) * 1970-05-06 1971-08-24 William Greenhalgh Building erection method
US3712482A (en) * 1970-11-24 1973-01-23 F Bondowski Storm sash handler
US3895721A (en) * 1970-12-01 1975-07-22 Aquarius Inc Indexing panel installer
US3926318A (en) * 1974-04-22 1975-12-16 Ronald R Kister Panel handling device and method
US3997959A (en) * 1975-05-19 1976-12-21 Case James E Apparatus for releasing tilt-up panel hoisting
US5489032A (en) * 1993-10-06 1996-02-06 International Masonry Institute Manipulator for masonry wall construction and the like
US5630696A (en) * 1996-02-26 1997-05-20 Tampa Hall Limited Apparatus for positioning an object
US6089809A (en) * 1999-06-18 2000-07-18 Dellinger; John W. Apparatus for lifting walls to a vertical position
EP2402113A1 (en) * 2009-02-27 2012-01-04 Mitsubishi Heavy Industries, Ltd. Turnover apparatus
US9975272B1 (en) * 2009-04-28 2018-05-22 Natural Stone Wall Solutions Stone wall construction method
US20180346293A1 (en) * 2015-12-03 2018-12-06 Sky-Line Cranes & Technologies Ltd. Balanced Cantilevered Feeding Apparatus
US20200102762A1 (en) * 2018-09-27 2020-04-02 Terex South Dakota, Inc. Positioner for mobile work platforms

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US577192A (en) * 1897-02-16 Conveying apparatus
US841827A (en) * 1906-05-14 1907-01-22 Northern Engineering Works Gauntree-crane.
FR514650A (en) * 1918-05-07 1921-03-15 Rudolph Winternitz Construction of reinforced concrete buildings
FR524929A (en) * 1919-02-21 1921-09-13 Gerard Krol Lifting and transporting device
US1519248A (en) * 1923-12-08 1924-12-16 Pittsburgh Plate Glass Co Process and apparatus for handling glass plates
US1565454A (en) * 1923-09-21 1925-12-15 Anson P Hoisington Hoist and conveyer
US1769134A (en) * 1929-06-12 1930-07-01 Ambler Asbestos Shingle & Shea Lifting device
US1798456A (en) * 1928-01-21 1931-03-31 Peter Frantz Hoisting apparatus
US1801309A (en) * 1929-06-27 1931-04-21 Libbey Owens Ford Glass Co Glass-handling apparatus
US1853086A (en) * 1929-03-11 1932-04-12 Albert T Scannell Tower for elevating construction materials
US1935990A (en) * 1932-12-05 1933-11-21 John H Pomeroy Apparatus for constructing large hangars
US1971437A (en) * 1933-04-03 1934-08-28 Globe Oil Tools Co Device for use on a core barrel
US2100614A (en) * 1937-01-14 1937-11-30 Richmond Screw Anchor Co Inc Form tie
US2497887A (en) * 1943-06-30 1950-02-21 Hilpert Meler George Paneled building construction
US2504232A (en) * 1946-05-18 1950-04-18 Smith Michael Self-loading apparatus for motor trucks
US2574473A (en) * 1948-10-11 1951-11-13 Alfred J Getz Traveling shop hoist
US2589954A (en) * 1949-10-15 1952-03-18 William P Neil Lifting apparatus
US2593022A (en) * 1948-11-15 1952-04-15 Richmond Screw Anchor Co Inc Concrete reinforcement anchorage
DE897530C (en) * 1951-02-15 1953-11-23 Ludwig Dipl-Ing Boelkow Conveyor system, especially for buildings
FR1097591A (en) * 1954-04-06 1955-07-07 Equipment for the construction, flat, of walls and partitions

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US577192A (en) * 1897-02-16 Conveying apparatus
US841827A (en) * 1906-05-14 1907-01-22 Northern Engineering Works Gauntree-crane.
FR514650A (en) * 1918-05-07 1921-03-15 Rudolph Winternitz Construction of reinforced concrete buildings
FR524929A (en) * 1919-02-21 1921-09-13 Gerard Krol Lifting and transporting device
US1565454A (en) * 1923-09-21 1925-12-15 Anson P Hoisington Hoist and conveyer
US1519248A (en) * 1923-12-08 1924-12-16 Pittsburgh Plate Glass Co Process and apparatus for handling glass plates
US1798456A (en) * 1928-01-21 1931-03-31 Peter Frantz Hoisting apparatus
US1853086A (en) * 1929-03-11 1932-04-12 Albert T Scannell Tower for elevating construction materials
US1769134A (en) * 1929-06-12 1930-07-01 Ambler Asbestos Shingle & Shea Lifting device
US1801309A (en) * 1929-06-27 1931-04-21 Libbey Owens Ford Glass Co Glass-handling apparatus
US1935990A (en) * 1932-12-05 1933-11-21 John H Pomeroy Apparatus for constructing large hangars
US1971437A (en) * 1933-04-03 1934-08-28 Globe Oil Tools Co Device for use on a core barrel
US2100614A (en) * 1937-01-14 1937-11-30 Richmond Screw Anchor Co Inc Form tie
US2497887A (en) * 1943-06-30 1950-02-21 Hilpert Meler George Paneled building construction
US2504232A (en) * 1946-05-18 1950-04-18 Smith Michael Self-loading apparatus for motor trucks
US2574473A (en) * 1948-10-11 1951-11-13 Alfred J Getz Traveling shop hoist
US2593022A (en) * 1948-11-15 1952-04-15 Richmond Screw Anchor Co Inc Concrete reinforcement anchorage
US2589954A (en) * 1949-10-15 1952-03-18 William P Neil Lifting apparatus
DE897530C (en) * 1951-02-15 1953-11-23 Ludwig Dipl-Ing Boelkow Conveyor system, especially for buildings
FR1097591A (en) * 1954-04-06 1955-07-07 Equipment for the construction, flat, of walls and partitions

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386595A (en) * 1966-01-03 1968-06-04 Richier Sa Lifting apparatus
US3600870A (en) * 1970-05-06 1971-08-24 William Greenhalgh Building erection method
US3712482A (en) * 1970-11-24 1973-01-23 F Bondowski Storm sash handler
US3895721A (en) * 1970-12-01 1975-07-22 Aquarius Inc Indexing panel installer
US3926318A (en) * 1974-04-22 1975-12-16 Ronald R Kister Panel handling device and method
US3997959A (en) * 1975-05-19 1976-12-21 Case James E Apparatus for releasing tilt-up panel hoisting
US4056912A (en) * 1975-05-19 1977-11-08 The Dayton Sure-Grip & Shore Company Method for releasing tilt-up panel hoisting member
US5489032A (en) * 1993-10-06 1996-02-06 International Masonry Institute Manipulator for masonry wall construction and the like
US5630696A (en) * 1996-02-26 1997-05-20 Tampa Hall Limited Apparatus for positioning an object
US6089809A (en) * 1999-06-18 2000-07-18 Dellinger; John W. Apparatus for lifting walls to a vertical position
EP2402113A1 (en) * 2009-02-27 2012-01-04 Mitsubishi Heavy Industries, Ltd. Turnover apparatus
EP2402113A4 (en) * 2009-02-27 2014-04-23 Mitsubishi Heavy Ind Ltd Turnover apparatus
US9975272B1 (en) * 2009-04-28 2018-05-22 Natural Stone Wall Solutions Stone wall construction method
US20180346293A1 (en) * 2015-12-03 2018-12-06 Sky-Line Cranes & Technologies Ltd. Balanced Cantilevered Feeding Apparatus
US10676329B2 (en) * 2015-12-03 2020-06-09 Sky-Line Cranes & Technologies Ltd. Balanced cantilevered feeding apparatus
US11299377B2 (en) 2015-12-03 2022-04-12 Sky-Line Cranes & Technologies Ltd. Balanced cantilevered feeding apparatus
US20200102762A1 (en) * 2018-09-27 2020-04-02 Terex South Dakota, Inc. Positioner for mobile work platforms
US10738491B2 (en) * 2018-09-27 2020-08-11 Terex South Dakota, Inc. Positioner for mobile work platforms

Similar Documents

Publication Publication Date Title
US2859884A (en) Method and means for the erection of tip up walls
US5255489A (en) Construction apparatus for buildings and constructing method therewith
US4040774A (en) Apparatus for constructing concrete walls
US3777900A (en) Building crane
US20030170109A1 (en) Transportation and installation assist device for at least one pre-cast concrete tilt panel
US4955457A (en) Arrangement for the demolition of smokestacks
WO2023216978A1 (en) Multi-tower linkage type aerial hoisting platform
CN110685433A (en) Chimney construction device and construction method applying hydraulic lifting and rollover technology
US3153486A (en) Tower crane
CN211286601U (en) Chimney construction device applying hydraulic lifting and rollover technology
US4462951A (en) Method and apparatus for constructing multi-storied concrete buildings
CN108396749B (en) Installation system and installation method of steel support in foundation pit
CN114835016A (en) Lifting equipment for transferring large-scale equipment in basement and mounting construction method thereof
JP4962252B2 (en) Bridge erection method and erection device
WO2024087901A1 (en) Cantilever casting and locomotion all-in-one machine
EP0392310B1 (en) A machine for pile-driving, a method for transport and erection of a machine for piledriving, and a method for establishement of foundations beside rails
CN218893051U (en) Step stone traction track device
CN110846955A (en) Tunnel track laying machine and hydraulic cylinder support arm for track laying machine
CN216303122U (en) Hoist device for construction
US1658042A (en) Portable elevator
US2284360A (en) Extendible builder's tower
JPH11147690A (en) Low head space reinforcing bar building-in device
CN211446416U (en) Tunnel track laying machine and hydraulic cylinder support arm for track laying machine
CN113175201A (en) A operation platform that rises that slides for elevartor shaft construction
US3374909A (en) Coacting boom structure