US2855351A - Process for electrolytically producing oxide coating on aluminum and aluminum alloys - Google Patents

Process for electrolytically producing oxide coating on aluminum and aluminum alloys Download PDF

Info

Publication number
US2855351A
US2855351A US457315A US45731554A US2855351A US 2855351 A US2855351 A US 2855351A US 457315 A US457315 A US 457315A US 45731554 A US45731554 A US 45731554A US 2855351 A US2855351 A US 2855351A
Authority
US
United States
Prior art keywords
voltage
aluminum
coating
electrolyte
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US457315A
Inventor
Ernst Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanford Process Co Inc
Original Assignee
Sanford Process Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanford Process Co Inc filed Critical Sanford Process Co Inc
Priority to US457315A priority Critical patent/US2855351A/en
Application granted granted Critical
Publication of US2855351A publication Critical patent/US2855351A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used

Definitions

  • the processof my invention is capable of-making thicker, denser and harder *oxide 'coatings'on aluminum and aluminum-alloys than prior art processes-known'to me,-and alsoproduces thick, dense, hard oxide coatings-on aluminum" alloys which prior artprocesses arein'capable of coating and is substantially insensitive to the presence of copper and iron ions in the bath.
  • ampholytic -substances that is, substances having a positive and negative charge in the same molecule
  • ampholytic substances foundsuitable according to the invention are'compounds which derive their positive charge from an amino or-substituted amino group, and their negative charge from -the'SO 0H group.
  • effectivesubstances of the aboveclass are, for example, taurines (Z-aminoethane sulfonic acid compounds) of the general formula N-onr-cursolorr where R and R each represent hydrogen, or an alkyl or cycloalkyl group having less than 8 carbon atoms.
  • R andR may both be hydrogen or both may be alkyl or both cycloalkyl, or R can be hydrogen and R alkyl or cycloalkyl, or R can be alkyl and. R cycloalkyl.
  • R and R includes the alkyl or cycloalkyl group which is further substituted,.for example,.,.by an aromatic radical.
  • Illustrative examples .ofcompounds which may be used are N-rnethyl, N-ethyl, N,Nadiifiethyl; and N,N-diethyl taurine; N-isobutyl, N-isoamyll, N-benzyl; N Cyclohexyl, N,N,- diisoamyl and N,N dicyclohexyl, taurine.
  • the preferred compound is N'-me.thy1.taurine.
  • I can use compounds wherein thenegatively. charged group of. ion -SO2OH .canbe attached, to va propyl group instead of to the ethyl group noted in (the; general. formula. above, these compounds being substantial equivalents for .my purpose. a
  • My compounds may be employed either as the free s'ulfonic acid compound or in the form of 'a, salt of the acid which issoluble in the electrolyte, such as the sodium or potassium salt;
  • I can usefleither I have found -'that-' by employing-my additive in the electrolyte bathI can operate at higher'voltagesthan is used by the prior art-and consequently I may increase. the thickness of the oxide'coat and increasethe ratofgrowth of the'coating.
  • dilute H 50 in an amount corresponding to a range of from about 1 part to 20 parts by volume of concentrated 100% sulphuric acid dissolved in 100 parts by volumeof waterw
  • I may employ an amountl'of H 50 in the electrolyte corresponding to fromaboutfj to 7% by volume of 66 Baum sulphuric acid per -lip arts by volume .of water.
  • this 'aqueous'electrolyte I may, but not necessarily, add an acid resistant wetting agent,tusually in an amount of from 0.02% and higher,e. g. up to j1% or more, by weightof' the aqueouselectrolytic solution.
  • the upper limit'of the wetting agent is determined, as a practical matter, by the formation of a high froth or'suds which is preferably avoided.
  • ethers produced by reaction of ethylene oxide on alkyl, phenols or alcohols.
  • These ethers should contain a sufiiciently long chain of ethylene glycol units to render the ethers soluble in acid solution.
  • the above type wetting agents are preferred since they are resistant to hydrolysis in acid solution.
  • a preferred wettingagent is the ether of nonyl phenol and polyethylene glycol.
  • the part 'to'be coated is connected to the anode of an electrolytic cell by a wire and immersed in the electrolyte bath.
  • direct.current is then applied until the desired thickness of coating is reached.
  • an alternating current component may be added to the direct current.
  • Example l A tough hard coating of oxide of aluminum having a thickness in excess of .001 inch can be produced on the high copper alloy of aluminum designated 24S and containing about 4.5% copper by applying a 44 to 48 ampere per square foot current density to a part formed from such alloy and submerged as the anode in an electrolyte composed of 12% by volume of 100% sulphuric acid in'water solution to which is added about 0.02 to 0.05 mol/liter of N-methyl taurine, the temperature of the electrolyte being maintained between about 40 F. and about 50 F.
  • Example 2 The results of Example "1 may be substantially obtained by replacing the N-methyl taurine with taurine.
  • the current is preferablyaoplied to the electrolytic cell first at low voltage and then at rapidly increasing voltage until the desired thickness of coating is reached.
  • Coating thickness is dependent on time and voltage. As the coatingbecomes thicker, its electrical resistance requires highervoltages for penetration. The higher voltages cause local heating and the heated aqueous acid, e,;g. ..,;H SO solution has greater dissolving power.
  • incorporating my additive in the electrolyte I can use a substantially lower concentration of H 50 than is employed in the prior art.
  • the rapid increase of voltage at the end of the coating period produces the proper thickness quickly with little softening or solution of the aluminum oxide coating; hence harder and thicker coatings are obtained by my process than is obtainable by the prior art.
  • the voltage is gradually increased from a start ing voltage determined by the resistance ofthe electrical circuit, to the starting voltage of the process which is in the range of from about 1 volt below the critical voltage to that determined by the resistance of the cell which may be at or below 40% of the critical voltage at which the coating starts to form.
  • the initial or starting voltage depends on the nature of the aluminum surface or of thealloy when alloys are processed.
  • the voltage is gradually increased, keeping the temperature low as stated above. A voltage is reached where anodic oxidation becomes observable in an amount to give a coating which is measurable by a micrometer, i. e., at least 0.0001 thick (the critical voltage). I note the current value when this occurs.
  • the current rises as the voltage is increased.
  • the voltage remains substantially constant for a period at each voltage step. During such period the current is at first constant for a period and then drops. This is believed caused by the growth of the oxide coating which increases the electrode resistance.
  • I raise the voltage and therefore the current value, adjusting the voltage at each step to obtain approximation of the current value attained when preceptible measurable oxide coating first started to form.
  • the voltage may be increased to give a higher current value provided care is taken to avoid a current so high as to cause a conversion, known in this art as burning of the part.
  • Such a burning occurs usually in localized portions of the anode and unless voltage is adjusted to drop the currentvalue disintegration of the aluminum anode may occur.
  • the voltage is increased in steps adjusting the voltage increment each time to approximate the above noted current value, using the same precautions, and the current variation described above is repeated at each of these higher increments of voltage.
  • the oxide coating increases in thickness until a point is reached where further increase in voltage acts to decrease the thickness of the coating.
  • the operation'canbe also initiated at about the critical voltage of the part to be coated by using an anode connecting wire which is not attacked by the electrolyte, for'example, a wire such as titanium Wire or noble metal wire, or aluminum wire or other metal which 'isattacked by the electrolyte, plated with a noble metal such as silver or anyother material to protect it against the electrolyte.
  • an anode connecting wire which is not attacked by the electrolyte
  • a wire such as titanium Wire or noble metal wire, or aluminum wire or other metal which 'isattacked by the electrolyte, plated with a noble metal such as silver or anyother material to protect it against the electrolyte.
  • increments of voltage may be, when close to'the critical voltage, about 1 to 3 volts, but such increments may be of greater value as the oxide formation grows.
  • the voltage increment may be limited so as to establish a current value not more than"about to 175% of the amperage obtained when the previous voltage increment was applied, or not greater than 125-175 of the. maximum amperage obtained at the critical voltage. Preferahiy, the voltage increment should be less than that which gives an amperage producing the burning phenomenon previously described.
  • the magnitude of the voltage increments are not critical, nor is the amperage control critical as afiecting the part to be coated with the oxide.
  • the voltage should be changed about one or two volts at atime.
  • the oxide coating is initiated at, forexample, the critical voltage and the current value isobserved during the initiation of oxide formation at such critical voltage.
  • oxide formation As oxide formation-occurs the current drops.
  • the voltage is increased to reestablish approximately the value of the current observed at the initiation of oxide formation.
  • the voltage may be increased according to the inven tion to and above 100 volts,- and as high as about '130 volts, to wit, to the voltage at which the coating no longer increases thickness.
  • current density is generally maintained 'at less than 20 amps/sq. ft., generally.droppingfbelow l0 amps/sq. ft., and thus avoiding burning of the part being coated.
  • up to about 100 volts the growth ofoxideon a particular aluminum alloy is uniform and reproducible. Above 100 volts '1 have found that the condition of the alloy, i.
  • Example 3 A 4" x 4" x /1" thick test panel of 248T aluminum alloy containing 4.5% copper was cleaned, and was then connected by means of a 350 aluminum wire /8". in diameter to the anode of an electrolyte bath contained in a stainless steel tank which formed the cathode.
  • the electrolyte was prepared by adding about 6 gallons of 66 Baum H 50 to 60 gallons of water. To this solution was added about 4100 grams of a 50% solution of the sodium salt of N-methyl taurine corresponding to about .05 mol of this compound per liter of solution. Temperature of the solution during the electrolytic oxidation process was maintained at about 34 F.
  • Example 4 The procedure of Example 3 was duplicated except that temperature was made to vary between 34 F. and 55 F. Results similar to those of Example 3 were obtained.
  • oxide coatings are formed according to the invention, but at a much slower rate than at the temperatures noted above.
  • Example 5 The following test shows the results obtained in conventional electrolytes not containing the additive of the invention.
  • the aluminum alloy coated was 248T having 4.5% copper.
  • the test pieces were 6" long, 4" wide, and .081 thick.
  • Aluminum Wire was wrapped around the center of each panel and used as the anode current carrier from the copper bus bar to the panel immersed in the electrolyte.
  • the tank carrying the electrolyte was made of stainless steel and served as the cathode.
  • the electrolyte was composed of 93% water by volume and 7% by volume of 66 Baum water white H
  • the table below gives approximate values of the time during which each applied voltage was maintained constant, the voltage to which the bath was raised in steps, and the amperage during each voltage step.
  • the hardened oxide coating of the invention penetrates the parent metal and also builds up on the metal. Hence, bonding of the oxide to the parent metal is obtained by my process, and coatings with uniformly good bonding at all thicknesses including maximum can be produced.
  • a process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and a minor amount of a compound of the group consisting of those of the general formula N-CHgCHgSOzOH R2 and the soluble 'salts thereof, where R and R are each members of the group consisting of hydrogen, alkyl and cycloalkyl, R and R each having less than 8 carbon atoms.
  • a process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell with said article formingthe anode, said cell containing an electrolyte comprising an aqueous solution of sulfuric acid asthe major acid component and a minor amount of a compound of the group consisting of those of thegeneral formula ngmn cngcmso on and the soluble salts thereof, where R is an alkyl group having less' than 8 carbon atoms.
  • a process for coating aluminum and aluminum alloy articles with a hard and toughcoating of oxide of aluminurn which comprises passing an electric current through'an' electrolytic cellcontaining an electrolyte with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the majoracidcomponen't and a minor amount of a compound ofthe'group consisting.
  • a process for coating aluminum and aluminum alloy'articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a'temperature not lessthan about 34 F. with said aiticle-fonning the anode, said electrolyte comprising a water solution of sulfuric acid as the major acid-component and a min-or amount of a compound of the" group consisting of those of the general formula age of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the
  • a process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and N-methyl taurine.
  • a process of coating aluminum and aluminum alloy articles with a c-catingof oxide of aluminum which comprises passing an electric current through an'electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of sulfuric acid as the major acid component 'and'a' minor amount of N-methyl taurine.
  • a process of coating aluminum and aluminum alloy articles with a hard tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell with said article forming the anode, the voltage of said current being above the voltage at which measurable oxide coating commences to form on said article, said cell containing an electrolyte at temperature not less than about 34 F. comprising an aqueous solution of sulfuric acid as the major acid component and a minor amount of the compound N-methyl taurine,
  • a process for coating aluminum and aluminum alloy articles with aharcland tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte with said article forming the anode, said electrolyte comprising a-water solution of an electro anodizing acid as the major acid component and a minor amount of N-methyl taurine, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant.
  • a process for coating aluminum and aluminum alloyarticles with a hard'and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a-temperature not less than about 34 F. with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amount of N- methyl taurine, and increasing the voltage of said current by. a plurality of voltage steps in a voltage range above the voltage atwhich measurable oxide coating commences to form on said article, the voltage at each such step beingmaintained substantially constant and the voltage at one step beingincreased to the next step when the current at said one step decreases.
  • a process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 55 F. with said article forming the anode, said electrolyte comprising a. water solution of an electro anodizing acid as the major acid component, a small amount of an acid resistant wetting agent, and a minor amount of N-methyl taurine, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant, and the voltage at one step being increased to the next step when the current at said one step decreases substantially.
  • a process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and a minor amount ofiN-methyl taurine, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable coating commences to form on said article, the voltage at each such step being maintained substantially constant for a period, and the voltage at one step being increased to the next step when the' current at said one step decreases.
  • a process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature of about 34 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and at least .02 mol per liter of solution of N-methyl taurine, and a small amount of an acid resistant wetting agent, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant for a period, and the voltage at one step being increased to the next step when the current at said one step decreases substantially.
  • a process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature less than about 55 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major ,acid component and a minor about of N-methyl taurine,
  • a process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component, a minor amount of N-methyl taurine and a small amount of an acid re- 'sistant wetting agent, increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant, and depositing a portion of oxide coating on said anode during each such step, the voltage at one step being increased to the next step when the current at said one step decreases substantially.
  • a process for. coating aluminum and aluminum alloy articles with a hard, dense, and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component, a small amount of an acid resistant wetting agent, and a minor amount of N-methyl taurine, and increasing the voltage of said current from a voltage below the voltage at which measurable oxide coating commences to form on said article to an upper voltage above the last mentioned voltage by a plurality of voltage steps, said upper voltage being at least 60 volts, the voltage at each such step above the voltage at w' 'ch measurable oxide coating commences to form being maintained substantially constant and the voltage at one such step being increased to the next step when the current at said one step decreases.
  • a process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature not less than about 34 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and a minor amout of N-methyl taurine, and periodically increasing the voltage of said current by a plurality of increments in a voltage range below the voltage at which measurable oxide coating commences to form on said article up to said last mentioned voltage, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above said voltage at which measurable oxide coating commences to form, the voltage at each such step above the last mentioned voltage being maintained constant for a period, and the voltage at one such step being increased to the next step when the current at said one step decreases substantially.
  • a process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and N-methyl taurine, maintaining the voltage of said current at the voltage at which measurable oxide coating commences to form on said article, decreasing the current at said last named voltage, and raising the voltage to a value above the said last mentioned voltage to approximately reestablish the current value obtained when said voltage at which measurable oxide coating commences to form was initially applied and before the current at said voltage decreased.
  • a process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amout of N- methyl taurine, initiating current flow at at least the voltage at which measurable oxide coating commences to form on said article, maintaing the voltage at said last mentioned voltage to produce an oxide coating on said anode, decreasing the current at said last named voltage, and raising the voltage to a value above the said voltage at which measurable oxide coating commences to form but insuificient to produce a current value of a magnitude to cause burning of said article.
  • a process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature not less than about 34 F. with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amount of N-methyl taurine, initiating current fiow below the voltage at which measurable oxide coating commences to form on such article, raising the voltage to the last mentioned voltage, maintaining the voltage substantially constant at said voltage at which measurable oxide coating commences to form to produce an oxide coating on said anode, decreasing the current at said last named voltage, and raising the voltage to a value above the said voltage at which measurable oxide coating commences to form but insufiicient to produce a current value of a magnitude causing burning of said article.
  • a process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum which comprises passing an electric current through an electrolyte cell containing an electrolyte maintained at a temperature between about 34 F. and about 55 F. with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amount of N- methyl taurine, initiating current flow at at least the voltage at which measurable oxide coating commences to form on said article, maintaining the voltage of said current at said last mentioned voltage to produce a measurable oxide coating on said anode, decreasing the current at said last named voltage, raising the voltage by a plurality of voltage increments to values above said voltage at which measurable oxide coating commences to form to approximately reestablish at each said increment the current value attained when said last mentioned voltage was initially applied and before the current at such voltage decreased, and maintaining the higher voltage after the addition of each increment of voltage and oxidizing said metal article at a decreasing current value while maintaining said higher voltage after each
  • a process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 55 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and a minor amount of N-methyl taurine, initiating current flow at a voltage below the voltage at which measurable oxide coating commences to form on said article, raising the voltage to said last mentioned voltage, maintaining the voltage substantially constant at said last mentioned voltage until the current decreases, to produce an oxide coating on said anode, raising the voltage by a plurality of voltage steps to approximately reestablish at each said step the current value obtained when said voltage at which measurable oxide coating commences to form was initially applied and before the current at such voltage decreased, each of said voltage steps varying by a few volts from the voltage at the adjacent steps, and maintaining the higher voltage after the addition of each increment of voltage and oxidizing
  • a process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component, a small amount of an acid resistant wetting agent, and from about .02 to .10 mol per liter of said solution of N-methyl taurine, initiating current flow at a voltage below the voltage at which measurable oxide coating commences to form on said article, raising the voltage by a plurality of increments to said last mentioned voltage, maintaining the voltage substantially constant at said last mentioned voltage until the current decreases, forming a measurable oxide coating on said anode, raising the voltage by a plurality of voltage steps each of which is insufficient to produce a current value of a magnitude causing burning of said article, each of said voltage steps varying by a few volts from the voltage at the adjacent steps
  • An electrolyte for the anodic oxidation of aluminum and its alloys which comprises an aqueous solution of an electro anodizing acid as the major acid component and from about .02 to about .10 mol per liter of said solution, of a compound of the group consisting of those of the general formula N-CH CHgSOgOH R2 and the soluble salts thereof, where R and R are each members of the group consisting of hydrogen, alkyl and cycloalkyl, each of R and R having less than 8 carbon atoms.
  • An electrolyte for the anodic oxidation of aluminum and its alloys which comprises an aqueous solution of sulfuric acid as the major acid component and from about .02 to about .10 mol of N-methyl taurine per liter of said solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

United States Patent OXIDE COATING 0N ALUMlNUM AND-ALUMI- 3 NUM=ALLOYS Robert Ernst 1LosAngeles, Calili,v assignor to Sanford.
Process"Co.,-Inc., Los Ang'lesfCalifi, a corporation of California No Drawings Application September 20,1954
- Serial No. 457,315
"Q Claims. (Cl; 204-58) 1 This invention relatesv to the production: of hard, "wear and corrosion resistant aluminum oxide filmson aluminum and aluminumalloys by electrolytic oxidation ofthe aluminum and; the aluminum alloys. I
As is well kriowninthis art the anodic oxidation of aluminum to create oxide films in acid electrolytes; such as chromic acid, sulphuric acid, or oxalic'acid, now gen-,
erally employed, is limited to the production of thin films of oxide. Such-films maynot practicably be in excess of about .001 in thickness. The denseness of these--films .is also of moderate nature, being porous,
especially when approaching in thickness. the dimension of --.001". An additionallimitation lies: in- 'thesfa'ctthat the processes oi thewpriorart are limited to' certain only oi -the aluminum alloys. Thus it hasbeen reported that alloys containing high percentages of copperand/or sili-- con-will not produce-dense-coatings of uniform thickness.
by such prior-art processesz". Further, in such prior art process; contamination of the bath by .copper and iron ions materially'atfects the :utility of the bath, and when such" ions-appear the-current density. mustbe substantially increased and soon-reachesan impracticable value such as to result in corrosion, it exburning of the part being oxidized, -:and the-bathmust bediscarded.
The processof :my invention is capable of-making thicker, denser and harder *oxide 'coatings'on aluminum and aluminum-alloys than prior art processes-known'to me,-and alsoproduces thick, dense, hard oxide coatings-on aluminum" alloys which prior artprocesses arein'capable of coating and is substantially insensitive to the presence of copper and iron ions in the bath. The currentldensity: at comparable voltage is not affected in-the" process of this invention by the presence of copper 'or iron ions in the electrolyte bath. Iinprovedbonding of: the oxide coating to the-metal is also' obtained, and the-coating is deposited more rapidlythan heretoforein prior art processes.
I have discovered that by employing as an additive to the electrolyte bath certain ampholytic -substances,-that is, substances having a positive and negative charge in the same molecule, I can produce theunique results of my invention. The ampholytic substances foundsuitable according to the invention are'compounds which derive their positive charge from an amino or-substituted amino group, and their negative charge from -the'SO 0H group. I have found that effectivesubstances of the aboveclass are, for example, taurines (Z-aminoethane sulfonic acid compounds) of the general formula N-onr-cursolorr where R and R each represent hydrogen, or an alkyl or cycloalkyl group having less than 8 carbon atoms. Thus, for example, R andR may both be hydrogen or both may be alkyl or both cycloalkyl, or R can be hydrogen and R alkyl or cycloalkyl, or R can be alkyl and. R cycloalkyl. Also, R and R includes the alkyl or cycloalkyl group which is further substituted,.for example,.,.by an aromatic radical. Illustrative examples .ofcompounds which may be used are N-rnethyl, N-ethyl, N,Nadiifiethyl; and N,N-diethyl taurine; N-isobutyl, N-isoamyll, N-benzyl; N Cyclohexyl, N,N,- diisoamyl and N,N dicyclohexyl, taurine. The preferred compound is N'-me.thy1.taurine.
I prefer toemplo'y those. compounds within"the.;general.. formula which are derived from. amineshavingan ioniza; tion constant greater than. 10-1 for ,my purposesliaEx g amples of such amines .and theirionization constants are noted below:
Further, I can use compounds wherein thenegatively. charged group of. ion -SO2OH .canbe attached, to va propyl group instead of to the ethyl group noted in (the; general. formula. above, these compounds being substantial equivalents for .my purpose. a
Generally, a minor amount. .of \these compounds, "either alone or in combination, is: utilized: Thus,..concentra-. tions of thesaid additives of as little as; .02.mol per liter. of electrolyte solution can be used in. m y. process,. .the amount. preferably. employedlbeing in. the; approximate range of .02 to .10 mol per liter or electrolyte solution. Larger amounts can be .used, i,desired, but without any marked advantage. Thecompounds employed according to the inventionare solublein-theelectrolytic solution within the above range of concentration. 'Theamount of my additive employed in a particular case depends, for example, on the type and amount of alloy-"being oxidized, its surface area, the thickness of 'oxide coating desired, etc.
My compounds may be employed either as the free s'ulfonic acid compound or in the form of 'a, salt of the acid which issoluble in the electrolyte, such as the sodium or potassium salt; Thus, for example, I can usefleither I have found -'that-' by employing-my additive in the electrolyte bathI can operate at higher'voltagesthan is used by the prior art-and consequently I may increase. the thickness of the oxide'coat and increasethe ratofgrowth of the'coating.
I have also found that by reducing the temperature" of Cyclohexyl amine 3 the electrolyte'solu'tion containing my additiveQIobtain better results than by operating with "such solution at normal temperature. Hence,- I prefer to carry outpractice' of my invention at reduce'd temperature although it is to be understood that such reduced temperature operation is not essential to my invention. Further, I have discovered that my results iarepalso facilitated by using ;a surface, active compound in the electrolyte bath which is active in acid solutions,'although the'useof such a compound is likewise not essential, Inpreparirig the electrolyte I mayemployany of'the acidsusually employed in making ,up .the'electrolytegfor electrolytic oxidation of aluminum such as sulphuric acid, chromic acid,.or oxalicacidpr mixtures'thereof; The latter acids are considered. equivalents 1 for the. anodic oxidation .of aluminum and its alloys, and .are' termed electro anodizing acids. Other acids in addition tolsul phuric, oxalicand chromic acids. have been'jsuggested by the prior art for the anodic oxidationof aluminum;. and those skilled in" the .art will understand the nature and type of such acids contemplated herein. Thus I may-use up to say about %'H SO in'the Patented Oct.. 7, .1958.
electrolyte, but I prefer to use dilute H 50 in an amount corresponding to a range of from about 1 part to 20 parts by volume of concentrated 100% sulphuric acid dissolved in 100 parts by volumeof waterw For example, I may employ an amountl'of H 50 in the electrolyte corresponding to fromaboutfj to 7% by volume of 66 Baum sulphuric acid per -lip arts by volume .of water. I then add to the bath my Z-aminoethane sulfonicacid additive in a proportion specified above.
Tg this 'aqueous'electrolyte I may, but not necessarily, add an acid resistant wetting agent,tusually in an amount of from 0.02% and higher,e. g. up to j1% or more, by weightof' the aqueouselectrolytic solution. The upper limit'of the wetting agent is determined, as a practical matter, by the formation of a high froth or'suds which is preferably avoided.
'"Imay use various types of acid resistant wetting agents, especially" in the form of ethers produced by reaction of ethylene oxide on alkyl, phenols or alcohols. These ethers should contain a sufiiciently long chain of ethylene glycol units to render the ethers soluble in acid solution. The above type wetting agents are preferred since they are resistant to hydrolysis in acid solution. A preferred wettingagent is the ether of nonyl phenol and polyethylene glycol.
' The part 'to'be coated is connected to the anode of an electrolytic cell by a wire and immersed in the electrolyte bath. Preferably, direct.current is then applied until the desired thickness of coating is reached. If desired, however, an alternating current component may be added to the direct current.
The following are examples of operation according to the invention:
7 Example l A tough hard coating of oxide of aluminum having a thickness in excess of .001 inch can be produced on the high copper alloy of aluminum designated 24S and containing about 4.5% copper by applying a 44 to 48 ampere per square foot current density to a part formed from such alloy and submerged as the anode in an electrolyte composed of 12% by volume of 100% sulphuric acid in'water solution to which is added about 0.02 to 0.05 mol/liter of N-methyl taurine, the temperature of the electrolyte being maintained between about 40 F. and about 50 F.
Example 2 The results of Example "1 may be substantially obtained by replacing the N-methyl taurine with taurine.
'While the foregoing procedure produces satisfactory resultsaccording to the invention when employing my additive in an electrolyte maintained at a temperature as high as about 70 F., improved results are obtained by operating at lowtemperature less than about 55 F. The unique results of my process are improved as the temperature is lowered. I have used successfully temperatures ranging from about 34 F. to 55 F., but the preferred temperature is in the range of 34 F. to 40 F.,for example, 34 F. to 36 F. Various procedures may be employed in carrying out the electrolytic oxidation process employing my additive inthe electrolyte. Thus, for example, I may carry out thev process at a substantially constant current density, or I may operate at substantially constant or varying voltages. v I have found that best results are realized by operating inaccordance with the technique disclosed and claimed in. U. S. application, Serial No; 438,349, filed June 21, 1954,.by John B. Franklin.
, The current is preferablyaoplied to the electrolytic cell first at low voltage and then at rapidly increasing voltage until the desired thickness of coating is reached. Coating thickness is dependent on time and voltage. As the coatingbecomes thicker, its electrical resistance requires highervoltages for penetration. The higher voltages cause local heating and the heated aqueous acid, e,;g. ..,;H SO solution has greater dissolving power. By
incorporating my additive in the electrolyte I can use a substantially lower concentration of H 50 than is employed in the prior art. The rapid increase of voltage at the end of the coating period produces the proper thickness quickly with little softening or solution of the aluminum oxide coating; hence harder and thicker coatings are obtained by my process than is obtainable by the prior art.
In preferred operation of my process in accordance with the technique of the above mentioned Franklin application, the voltage is gradually increased from a start ing voltage determined by the resistance ofthe electrical circuit, to the starting voltage of the process which is in the range of from about 1 volt below the critical voltage to that determined by the resistance of the cell which may be at or below 40% of the critical voltage at which the coating starts to form. The initial or starting voltage depends on the nature of the aluminum surface or of thealloy when alloys are processed. The voltage is gradually increased, keeping the temperature low as stated above. A voltage is reached where anodic oxidation becomes observable in an amount to give a coating which is measurable by a micrometer, i. e., at least 0.0001 thick (the critical voltage). I note the current value when this occurs. At each increment of voltage 'or voltage step above the critical voltage the current rises as the voltage is increased. The voltage remains substantially constant for a period at each voltage step. During such period the current is at first constant for a period and then drops. This is believed caused by the growth of the oxide coating which increases the electrode resistance. When the current starts to de-' crease, I raise the voltage and therefore the current value, adjusting the voltage at each step to obtain approximation of the current value attained when preceptible measurable oxide coating first started to form. The voltage may be increased to give a higher current value provided care is taken to avoid a current so high as to cause a conversion, known in this art as burning of the part. Such a burning occurs usually in localized portions of the anode and unless voltage is adjusted to drop the currentvalue disintegration of the aluminum anode may occur. The voltage is increased in steps adjusting the voltage increment each time to approximate the above noted current value, using the same precautions, and the current variation described above is repeated at each of these higher increments of voltage. The oxide coating increases in thickness until a point is reached where further increase in voltage acts to decrease the thickness of the coating. I
If at any voltage level the amperage obtained is such as to produce burning, this burning can not be'prevented by a mere reduction in voltage to a lower current'value previously found safe and effective, since subsequent incremental voltage increases will not result in such safe current values but will again produce burning. In such a situation I have found that if I reduce the voltage to that at which the safe current value is obtained and add additional of my additive, I may then by incremental voltage increase attain the voltage at which burning previouslyoccurred but now obtain a safe current value at which oxide is formed and grows. I have observed that parts previously burned as described above are recoated with a good oxide coating.
I have observed that if a light oxide coat is desired, it can be obtained about as easily while maintaining the electrolyte at 4050 F. as at 34 F. However, if :1 heavy oxide coating, for example, say of .004" thickness, is desired, I prefer to maintain the temperature below about 40 F., for example at about 34 F. If the parts to be coated have restricted areas where good circulation is not obtained, it is generally preferred to operate close to about 34 F. even Where a light oxide coating is sought. v
In my process I have found that aluminum and each of its alloyshas a critical voltage at which oxide deposition occures in measurable thickness. The magnitude of this critical voltage is dependent not only on 'the nature of the metal used, that is, aluminum or its alloys, buton'the electrolyte and other factors influencing the internal and external resistance of the cell. Below this critical voltage measurable growth, that is, as available by' micro'rneter measurement, is not observed. For each cell 'and'each anode there is a critical voltage at which the "deposit is made. Thiscritical voltage is readily observable by visualinsp'ection 'of 'tlieanode to determine the voltage at which deposit starts to form as described herein.
I have found that 'it is desirable to start the coating formation by adjusting the voltages from below the critical voltage up tocritical voltage where coating formation is initiated. I have found that the coating will form at a lower voltage, that is, about 5 to 10% below the critical, but that in such case the time for forming the measurable coat is greatly prolonged, for example, up to l to 2 hours. Hence, I prefer to start my operation by producing the initial cost, that is, the first measurable coat, at a voltage value substantially equal to the critical value and not less than about 90% of the critical value. 7 In practical operation if the process is not initiated at the critical voltagewithinth'e limits described but at a higher -voltage,-for example, above 5l-0% of the critical voltage, burning of the aluminum or aluminum alloy part results; that is, an actual destruction (pitting and dissolution) of the part being "coated results which, if contin'uedfcould cause'the part to substantially dissolve. Consequently, the practical voltage for initiation of oxide coat formationpreferably'should not be more than or less thanabout l% of the critical-voltage. I prefer to initiate the operation at atleast one volt below the critical voltage of the aluminum and its alloys. Butfor some objects, particularly of small cross sectional area such as thin aluminum wire or thin'aluminum sheets, I desire toinitiate the process at at least about to volts below the critical voltage for aluminum.
It is'noted that when a pure aluminum wire or an alloy wire of aluminum is used to connect the part to be coated with the cell bus bars," and'thewire has a critical voltage less than that of the part to be coated, it is necessary to initiate theproces's at the critical voltage of the wire; in "otherwcrds, the wire must'first be anodized. if a connector wire is'used which is of the same composition as the part to be anodized, or of any other composition having the same'ora higher critical voltage than said part, operationscan" commence at a voltage closely appreaching or at the critical voltage of the part to be oxidized. The operation'canbe also initiated at about the critical voltage of the part to be coated by using an anode connecting wire which is not attacked by the electrolyte, for'example, a wire such as titanium Wire or noble metal wire, or aluminum wire or other metal which 'isattacked by the electrolyte, plated with a noble metal such as silver or anyother material to protect it against the electrolyte. I
After initiating the oxidation below the critical'voltage, operation is continued at any given voltage at each successive voltage step or increment of voltage above the critical for say2eor 3 minute intervals. After each time interval the voltage is'increased by an addition of an increment of voltage. Such increments of voltage may be, when close to'the critical voltage, about 1 to 3 volts, but such increments may be of greater value as the oxide formation grows.
As a -good operating'techniquethe amperage during each voltage step should be permitted to drop materially,
whilemaintaining the voltage substantially constant, to, for example, about 30% to "50% of the current value initially attained at each such voltage step after the in- 'creiiiental increase in voltage.
" At each voltage'increnient afteroxide formation has started the amperage should riseandstart tofall after-but a small interval of time within about the first 30 seconds after the voltage increment has been applied. If this phenomenon does not occur, the usual consequence is that the amperage will steadily increase, usually rapidly,
and burning results. This is indicativethat the voltage increment was too great, unless some mechanical or elec-" trical' failure is the cause ofthis rise. Thus, the voltage increment should in each case be less than that which permits such excessive current flow. 'For example,'the
increment may be limited so as to establish a current value not more than"about to 175% of the amperage obtained when the previous voltage increment was applied, or not greater than 125-175 of the. maximum amperage obtained at the critical voltage. Preferahiy, the voltage increment should be less than that which gives an amperage producing the burning phenomenon previously described.
Up to the critical voltage the magnitude of the voltage increments are not critical, nor is the amperage control critical as afiecting the part to be coated with the oxide. As the critical voltage is approached the voltage should be changed about one or two volts at atime. Thus, the oxide coating is initiated at, forexample, the critical voltage and the current value isobserved during the initiation of oxide formation at such critical voltage. As oxide formation-occurs the current drops. When it has dropped the degree specified above, the voltage is increased to reestablish approximately the value of the current observed at the initiation of oxide formation. I have observed as practical guide that if the current value is dropped to approximately 30% to 50% of the initial value, that a voltage increment of about 1 or 2 volts is sufiicient during the early-stages of oxide formation to reestablish approximately the aforementioned current value which will. give good oxide coating without burning. Subsequent voltage changes are adjusted to reestablish at the initiation of each voltage step increase the amperage found safe, i. e.,- in order to obtain deposition without destruction of the oxide coat. The latter amperage corresponds approximately to the amperage at the critical voltage. During the latterstages of oxide formation, voltageincrements of say 3 to'5 volts are usually required to approximately reestablish suchcurrent value. p
The voltage may be increased according to the inven tion to and above 100 volts,- and as high as about '130 volts, to wit, to the voltage at which the coating no longer increases thickness. During the operation, current density is generally maintained 'at less than 20 amps/sq. ft., generally.droppingfbelow l0 amps/sq. ft., and thus avoiding burning of the part being coated. Up to about 100 volts the growth ofoxideon a particular aluminum alloy is uniform and reproducible. Above 100 volts '1 have found that the condition of the alloy, i. e., its porosity, grain size and density, affect the growth materially so that in many cases, similar alloys will react non-uniformly at these high voltages. Thus, while most aluminum alloys will produce a coating'say of .006" thickness at 100 volts in my process, the coatings of some will increase to .010" at volts, while other exactly similar'alloys differentlytreated orhandled differently in fabrication will not so improve in growth by an increase in voltage from lOOto 130 volts.
I have found that while Icanproduce'an aluminum oxide coating up to .010 inch thickness by operating up to voltages between 100 and 130 according to my invention, coatings of a thickness greater than about .004 inch are not as dense and hard as the coatings-obtained employing the invention principles and having-athickness of about .004 or less. Generally,'operation at a voltage in excess of about 60 volts is required to obtain a coating of about .004" in thickness. These coatings are as uniform and as dense as a .001' coating of the same alloy produced by stopping the process at such point.
In contrast to this, alloys containing more than about 3% copper could not be coated even with a light oxide Example 3 A 4" x 4" x /1" thick test panel of 248T aluminum alloy containing 4.5% copper was cleaned, and was then connected by means of a 350 aluminum wire /8". in diameter to the anode of an electrolyte bath contained in a stainless steel tank which formed the cathode. The electrolyte was prepared by adding about 6 gallons of 66 Baum H 50 to 60 gallons of water. To this solution was added about 4100 grams of a 50% solution of the sodium salt of N-methyl taurine corresponding to about .05 mol of this compound per liter of solution. Temperature of the solution during the electrolytic oxidation process was maintained at about 34 F.
In the table below is given approximate values of the time during which each applied voltage was maintained constant, the voltage to which the bath was raised in steps, the amperage during each voltage step, and the coat thickness obtained at each step:
Coating Time (Minutes) Volts Amps Thickness (Inches) O Start After 01 increase to. 2
After 03 increase to. 26 3 After 05 increase to. 27 2 After 07 increase to. 28 3 After 09 increase to 29 5-3 After 11 increase to 5-4 After 13 increase to 31 6-3 After 16 increase to 32 6-4 After 19 increase to 33 6-4 After 22 increase to- 34 7-4 After 25 increase to. 7-!
After 28 increase to. 37 8-5 After 31 increase to 39 8-4 After 34 increase to, 42 7-4 After 37 increase to. 45 7-4 0015 After 40 increase to 48 7-5 s t After 42 increase to A 52 6-4 .002 After 46 increase to. 56 6-4 After 49 in crease t0 60 6-4 003 After 52 increase to. 64 7-4 After 55 increase to. 68 7-1 0036 Example 4 The procedure of Example 3 was duplicated except that temperature was made to vary between 34 F. and 55 F. Results similar to those of Example 3 were obtained.
Experience has shown that at electrolyte temperatures below about 34 F. oxide coatings are formed according to the invention, but at a much slower rate than at the temperatures noted above. An increase in the amount of additive used appears to increase to some degree the rate of oxide coat formation at these lower temperatures.
Example 5 The following test shows the results obtained in conventional electrolytes not containing the additive of the invention.
The aluminum alloy coated was 248T having 4.5% copper. The test pieces were 6" long, 4" wide, and .081 thick.
Aluminum Wire was wrapped around the center of each panel and used as the anode current carrier from the copper bus bar to the panel immersed in the electrolyte.
Temperature of the electrolyte was about 34 F.
Agitation was obtained by air under pressure bubbling through the electrolyte. p
Current was supplied by a D. C. motor generator set.
The tank carrying the electrolyte was made of stainless steel and served as the cathode. The electrolyte was composed of 93% water by volume and 7% by volume of 66 Baum water white H The table below gives approximate values of the time during which each applied voltage was maintained constant, the voltage to which the bath was raised in steps, and the amperage during each voltage step.
Time (Minutes) Volts Amps 00 Start tcr 03 25 15 After 06 r 27 16-10 After 09 raise to. 29 17-12 Aiter12 raise to 30 16-16 (Panel had glazed appearance) After 15 raise to 31 20-20 After 18 raise to 32 23 (Panel removed because amperage increased too rapidly. Panel burned in one corner. Balance of panel had clear glazed appearance. Measured physical oxidc growth of .0001.)
A comparison of Examples 3 and 5 clearly shows the advantages of the use of my additive in the electrolytic bath when used in my process. It is seen that when my additive is not incorporated in the aqueous sulfuric acid solution, the amperage increases so rapidly even at low voltages of 32 volts that the panels burn, whereas in Example 3, involving the use of my additive in the sulfuric acid solution according to the invention, amperage remains relatively low even up to 68 volts, at which voltage a thick oxide coating of .0036 is obtained.
Surfaces processed by my method on threads, splines, or irregularities are uniform in thickness on crests and valleys, and the parts will coat uniformly regardless of their position in the tank.
The hardened oxide coating of the invention penetrates the parent metal and also builds up on the metal. Hence, bonding of the oxide to the parent metal is obtained by my process, and coatings with uniformly good bonding at all thicknesses including maximum can be produced.
According to my process as described above, employing my additive, thicker oxide coatings on aluminum and its alloys are obtained and I am able to apply any desired coating thickness more quickly. This is advantageous, as the coating of aluminum oxide grows on and penetrates into the surface. I thus obtain over double the coating thickness of the prior art because of several factors: First, I am able to use high voltages according to preferred procedure without burning out spots of aluminum oxide. A given thickness of coating is obtained more quickly and preferably at lower temperatures and with a lower concentration of H 50 All of these three factors decrease the attack on the aluminum oxide coating. The improvements obtained by the use of higher voltage, lower temperature and lower H 50 concentration in turn are made possible by using the additive in the electrolyte according to the invention.
By using the relatively pure sulfonic acid compounds noted above as additive the chemical technique is simplified and the electrolyte bath containing such additive can be reproduced at any time, and the improved results obtained therewith according to the invention are also reproducible.
While I have described a particular embodiment of my invention for the purpose of illustration, it should be understood that various modifications and adaptations thereof may be made within the spirit of the invention as set forth in the appended claims.
I claim:
1. A process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum,
which comprises passing an electric current through an electrolytic cell with saidarticle forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and a compound of the group consisting of those of the general formula- N-CHiCHgSOgOH and the soluble salts thereof, where Ri and R are each members of the group Consisting of hydrogen, alkyl and cycloalkyl, each of R and R having less than 8 carbon atoms.
2. A process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and a minor amount of a compound of the group consisting of those of the general formula N-CHgCHgSOzOH R2 and the soluble 'salts thereof, where R and R are each members of the group consisting of hydrogen, alkyl and cycloalkyl, R and R each having less than 8 carbon atoms.
3. A process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell with said article formingthe anode, said cell containing an electrolyte comprising an aqueous solution of sulfuric acid asthe major acid component and a minor amount of a compound of the group consisting of those of thegeneral formula ngmn cngcmso on and the soluble salts thereof, where R is an alkyl group having less' than 8 carbon atoms.
4. A process for coating aluminum and aluminum alloy articles with a hard and toughcoating of oxide of aluminurn, which comprises passing an electric current through'an' electrolytic cellcontaining an electrolyte with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the majoracidcomponen't and a minor amount of a compound ofthe'group consisting. of those ofthe general formula and the soluble salts thereof, where R and R iareeach members of the group consisting of hydrogen, alkyl and cycloalkyl, Ry andR each having less than 8 carbon atoms, and increasing the voltage of said current by a plurality of voltage steps in a voltage range abovethe voltage at which measurable oxide coating commences to form on said'article, the voltage at each such step being maintained substantiallyiconstant.
5. A process for coating aluminum and aluminum alloy'articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a'temperature not lessthan about 34 F. with said aiticle-fonning the anode, said electrolyte comprising a water solution of sulfuric acid as the major acid-component and a min-or amount of a compound of the" group consisting of those of the general formula age of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the
voltage at each such step being maintained substantiallyconstant and the voltage at one step being increased to the next step when the current at said one step decreases.-
6. A process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and N-methyl taurine.
A process of coating aluminum and aluminum alloy articles with a c-catingof oxide of aluminum, which comprises passing an electric current through an'electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of sulfuric acid as the major acid component 'and'a' minor amount of N-methyl taurine.
8. A process of coating aluminum and aluminum alloy articles with a hard tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell with said article forming the anode, the voltage of said current being above the voltage at which measurable oxide coating commences to form on said article, said cell containing an electrolyte at temperature not less than about 34 F. comprising an aqueous solution of sulfuric acid as the major acid component and a minor amount of the compound N-methyl taurine,
9. A process for coating aluminum and aluminum alloy articles with aharcland tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte with said article forming the anode, said electrolyte comprising a-water solution of an electro anodizing acid as the major acid component and a minor amount of N-methyl taurine, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant.
10. A process for coating aluminum and aluminum alloyarticles with a hard'and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a-temperature not less than about 34 F. with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amount of N- methyl taurine, and increasing the voltage of said current by. a plurality of voltage steps in a voltage range above the voltage atwhich measurable oxide coating commences to form on said article, the voltage at each such step beingmaintained substantially constant and the voltage at one step beingincreased to the next step when the current at said one step decreases.
11.- A process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 55 F. with said article forming the anode, said electrolyte comprising a. water solution of an electro anodizing acid as the major acid component, a small amount of an acid resistant wetting agent, and a minor amount of N-methyl taurine, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant, and the voltage at one step being increased to the next step when the current at said one step decreases substantially.
12. A process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and a minor amount ofiN-methyl taurine, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable coating commences to form on said article, the voltage at each such step being maintained substantially constant for a period, and the voltage at one step being increased to the next step when the' current at said one step decreases.
13. A process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature of about 34 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and at least .02 mol per liter of solution of N-methyl taurine, and a small amount of an acid resistant wetting agent, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant for a period, and the voltage at one step being increased to the next step when the current at said one step decreases substantially.
14. A process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature less than about 55 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major ,acid component and a minor about of N-methyl taurine,
and periodically increasing the voltageof said current from a voltage below the voltage at which measurable oxide coating commences to form on said article to an upper voltage above the last mentioned voltage by a plurality of voltage steps, said upper voltage being at least 60 volts, the voltage at each such step above the voltage at which measurable oxide coating commences to form being maintained substantially constant, and the voltage at one such step being increased to the next step when the current at the former step decreases, whereby incremental increases in coating thickness are obtained.
15. A process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component, a minor amount of N-methyl taurine and a small amount of an acid re- 'sistant wetting agent, increasing the voltage of said current by a plurality of voltage steps in a voltage range above the voltage at which measurable oxide coating commences to form on said article, the voltage at each such step being maintained substantially constant, and depositing a portion of oxide coating on said anode during each such step, the voltage at one step being increased to the next step when the current at said one step decreases substantially.
16. A process for. coating aluminum and aluminum alloy articles with a hard, dense, and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component, a small amount of an acid resistant wetting agent, and a minor amount of N-methyl taurine, and increasing the voltage of said current from a voltage below the voltage at which measurable oxide coating commences to form on said article to an upper voltage above the last mentioned voltage by a plurality of voltage steps, said upper voltage being at least 60 volts, the voltage at each such step above the voltage at w' 'ch measurable oxide coating commences to form being maintained substantially constant and the voltage at one such step being increased to the next step when the current at said one step decreases.
17. A process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature not less than about 34 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and a minor amout of N-methyl taurine, and periodically increasing the voltage of said current by a plurality of increments in a voltage range below the voltage at which measurable oxide coating commences to form on said article up to said last mentioned voltage, and increasing the voltage of said current by a plurality of voltage steps in a voltage range above said voltage at which measurable oxide coating commences to form, the voltage at each such step above the last mentioned voltage being maintained constant for a period, and the voltage at one such step being increased to the next step when the current at said one step decreases substantially.
18. A process of coating aluminum and aluminum alloy articles with a coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell with said article forming the anode, said cell containing an electrolyte comprising an aqueous solution of an electro anodizing acid as the major acid component and N-methyl taurine, maintaining the voltage of said current at the voltage at which measurable oxide coating commences to form on said article, decreasing the current at said last named voltage, and raising the voltage to a value above the said last mentioned voltage to approximately reestablish the current value obtained when said voltage at which measurable oxide coating commences to form was initially applied and before the current at said voltage decreased.
19. A process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amout of N- methyl taurine, initiating current flow at at least the voltage at which measurable oxide coating commences to form on said article, maintaing the voltage at said last mentioned voltage to produce an oxide coating on said anode, decreasing the current at said last named voltage, and raising the voltage to a value above the said voltage at which measurable oxide coating commences to form but insuificient to produce a current value of a magnitude to cause burning of said article.
20. A process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature not less than about 34 F. with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amount of N-methyl taurine, initiating current fiow below the voltage at which measurable oxide coating commences to form on such article, raising the voltage to the last mentioned voltage, maintaining the voltage substantially constant at said voltage at which measurable oxide coating commences to form to produce an oxide coating on said anode, decreasing the current at said last named voltage, and raising the voltage to a value above the said voltage at which measurable oxide coating commences to form but insufiicient to produce a current value of a magnitude causing burning of said article.
21. A process for coating aluminum and aluminum alloy articles with a hard and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolyte cell containing an electrolyte maintained at a temperature between about 34 F. and about 55 F. with said article forming the anode, said electrolyte comprising a water solution of an electro anodizing acid as the major acid component and a minor amount of N- methyl taurine, initiating current flow at at least the voltage at which measurable oxide coating commences to form on said article, maintaining the voltage of said current at said last mentioned voltage to produce a measurable oxide coating on said anode, decreasing the current at said last named voltage, raising the voltage by a plurality of voltage increments to values above said voltage at which measurable oxide coating commences to form to approximately reestablish at each said increment the current value attained when said last mentioned voltage was initially applied and before the current at such voltage decreased, and maintaining the higher voltage after the addition of each increment of voltage and oxidizing said metal article at a decreasing current value while maintaining said higher voltage after each increment of voltage has been applied.
22. A process ,for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 55 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component and a minor amount of N-methyl taurine, initiating current flow at a voltage below the voltage at which measurable oxide coating commences to form on said article, raising the voltage to said last mentioned voltage, maintaining the voltage substantially constant at said last mentioned voltage until the current decreases, to produce an oxide coating on said anode, raising the voltage by a plurality of voltage steps to approximately reestablish at each said step the current value obtained when said voltage at which measurable oxide coating commences to form was initially applied and before the current at such voltage decreased, each of said voltage steps varying by a few volts from the voltage at the adjacent steps, and maintaining the higher voltage after the addition of each increment of voltage and oxidizing said metal article at a decreasing current value while maintaining said higher voltage after each increment of voltage has been applied.
23. A process for coating aluminum and aluminum alloy articles with a hard, dense and tough coating of oxide of aluminum, which comprises passing an electric current through an electrolytic cell containing an electrolyte maintained at a temperature between about 34 F. and about 40 F. with said article forming the anode, said electrolyte comprising an aqueous solution of sulfuric acid as the major acid component, a small amount of an acid resistant wetting agent, and from about .02 to .10 mol per liter of said solution of N-methyl taurine, initiating current flow at a voltage below the voltage at which measurable oxide coating commences to form on said article, raising the voltage by a plurality of increments to said last mentioned voltage, maintaining the voltage substantially constant at said last mentioned voltage until the current decreases, forming a measurable oxide coating on said anode, raising the voltage by a plurality of voltage steps each of which is insufficient to produce a current value of a magnitude causing burning of said article, each of said voltage steps varying by a few volts from the voltage at the adjacent steps, maintaining the voltage at each such step substantially constant until the current decreases, and forming additional oxide coating during each such voltage step.
24. An electrolyte for the anodic oxidation of aluminum and its alloys, which comprises an aqueous solution of an electro anodizing acid as the major acid component and from about .02 to about .10 mol per liter of said solution, of a compound of the group consisting of those of the general formula N-CH CHgSOgOH R2 and the soluble salts thereof, where R and R are each members of the group consisting of hydrogen, alkyl and cycloalkyl, each of R and R having less than 8 carbon atoms.
25. An electrolyte for the anodic oxidation of aluminum and its alloys, which comprises an aqueous solution of sulfuric acid as the major acid component and from about .02 to about .10 mol of N-methyl taurine per liter of said solution.
References Cited in the file of this patent UNITED STATES PATENTS 672,913 Pollak Apr. 30, 1901 2,019,994 Rhodes Nov. 5, 1935 2,233,785 Korpiun Mar. 4, 1941 2,550,388 Simon et al. Apr. 24, 1951 2,692,851 Burrows Oct. 26, 1954 2,692,852 Burrows Oct. 26, 1954 OTHER REFERENCES Edwards et al.: Transactions of the Electrochemical Society, 1941, vol. 79, pp. -142.
Lilienfeld et al.: Transactions of the Electrochemical Society, 1935, vol. 68, pp. 533-547.

Claims (1)

1. A PROCESS OF COATING ALUMUNUM AND ALUMINUM ALLOY ARTICLES WITH A COATING OF OXIDE OF ALUMINUM,, WHICH COMPRISES PASSING AN ELECTRIC CURRENT THROUGH AN ELECTROLYTIC CELL WITH SAID ARTICLE FORMING THE ANODE, SAID CELL CONTAINING AN ELECTROLYTE COMPRISING AN AQUEOUS SOLUTION OF AN ELECTRO ANODIZING ACID AS THE MAJOR ACID COMPONENT AND A COMPOUND OF THE GROUP CONSISTING OF THOSE OF THE GENERAL FORMULA
US457315A 1954-09-20 1954-09-20 Process for electrolytically producing oxide coating on aluminum and aluminum alloys Expired - Lifetime US2855351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US457315A US2855351A (en) 1954-09-20 1954-09-20 Process for electrolytically producing oxide coating on aluminum and aluminum alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US457315A US2855351A (en) 1954-09-20 1954-09-20 Process for electrolytically producing oxide coating on aluminum and aluminum alloys

Publications (1)

Publication Number Publication Date
US2855351A true US2855351A (en) 1958-10-07

Family

ID=23816248

Family Applications (1)

Application Number Title Priority Date Filing Date
US457315A Expired - Lifetime US2855351A (en) 1954-09-20 1954-09-20 Process for electrolytically producing oxide coating on aluminum and aluminum alloys

Country Status (1)

Country Link
US (1) US2855351A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423298A (en) * 1966-07-05 1969-01-21 Olin Mathieson Process for coloring aluminum
US3909371A (en) * 1971-10-22 1975-09-30 Riken Light Metal Ind Co Process for producing a protective film on an aluminum surface
US3996115A (en) * 1975-08-25 1976-12-07 Joseph W. Aidlin Process for forming an anodic oxide coating on metals
US4031027A (en) * 1975-08-25 1977-06-21 Joseph W. Aidlin Chemical surface coating bath
US11760720B2 (en) 2020-02-28 2023-09-19 Sixring Inc. Modified sulfuric acid and uses thereof
US11846067B2 (en) 2020-02-28 2023-12-19 Sixring Inc. Modified sulfuric acid and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US672913A (en) * 1899-03-07 1901-04-30 Charles Pollak Electrolytic current rectifier and condenser.
US2019994A (en) * 1932-10-26 1935-11-05 Aerovox Corp Art of producing electrolytic cells
US2233785A (en) * 1935-12-11 1941-03-04 Sherka Chemical Co Inc Process for the manufacture of oxide layers on aluminum and aluminum alloys and to electrolytes therefor
US2550388A (en) * 1945-05-12 1951-04-24 Lockheed Aircraft Corp Surface treatment of aluminum and aluminum alloys
US2692851A (en) * 1950-04-22 1954-10-26 Aluminum Co Of America Method of forming hard, abrasionresistant coatings on aluminum and aluminum alloys
US2692852A (en) * 1952-02-09 1954-10-26 Aluminum Co Of America Method of producing hard, abrasionresistant coatings on aluminum and aluminum alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US672913A (en) * 1899-03-07 1901-04-30 Charles Pollak Electrolytic current rectifier and condenser.
US2019994A (en) * 1932-10-26 1935-11-05 Aerovox Corp Art of producing electrolytic cells
US2233785A (en) * 1935-12-11 1941-03-04 Sherka Chemical Co Inc Process for the manufacture of oxide layers on aluminum and aluminum alloys and to electrolytes therefor
US2550388A (en) * 1945-05-12 1951-04-24 Lockheed Aircraft Corp Surface treatment of aluminum and aluminum alloys
US2692851A (en) * 1950-04-22 1954-10-26 Aluminum Co Of America Method of forming hard, abrasionresistant coatings on aluminum and aluminum alloys
US2692852A (en) * 1952-02-09 1954-10-26 Aluminum Co Of America Method of producing hard, abrasionresistant coatings on aluminum and aluminum alloys

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423298A (en) * 1966-07-05 1969-01-21 Olin Mathieson Process for coloring aluminum
US3909371A (en) * 1971-10-22 1975-09-30 Riken Light Metal Ind Co Process for producing a protective film on an aluminum surface
US3996115A (en) * 1975-08-25 1976-12-07 Joseph W. Aidlin Process for forming an anodic oxide coating on metals
US4031027A (en) * 1975-08-25 1977-06-21 Joseph W. Aidlin Chemical surface coating bath
USRE29739E (en) * 1975-08-25 1978-08-22 Joseph W. Aidlin Process for forming an anodic oxide coating on metals
US11760720B2 (en) 2020-02-28 2023-09-19 Sixring Inc. Modified sulfuric acid and uses thereof
US11846067B2 (en) 2020-02-28 2023-12-19 Sixring Inc. Modified sulfuric acid and uses thereof

Similar Documents

Publication Publication Date Title
US4082626A (en) Process for forming a silicate coating on metal
US3645862A (en) Method of making an electrode
US2231373A (en) Coating of articles of aluminum or aluminum alloys
US3654099A (en) Cathodic activation of stainless steel
US2606866A (en) Method of treating tin plate
US4128463A (en) Method for stripping tungsten carbide from titanium or titanium alloy substrates
US1971761A (en) Protection of metals
US2855351A (en) Process for electrolytically producing oxide coating on aluminum and aluminum alloys
US3988216A (en) Method of producing metal strip having a galvanized coating on one side while preventing the formation of a zinc deposit on cathode means
US2897125A (en) Electrolytic process for producing oxide coatings on aluminum and aluminum alloys
US2905600A (en) Process for producing oxide coatings on aluminum and aluminum alloys
US3203879A (en) Method for preparing positive electrodes
US2821505A (en) Process of coating metals with bismuth or bismuth-base alloys
US4014756A (en) Process for making metal powders
US3616309A (en) Method of producing colored coatings on aluminum
US2649409A (en) Electrodeposition of selenium
US2855350A (en) Process for electrolytically producing oxide coating on aluminum and aluminum alloys
US2855352A (en) Process for producing oxide coating on aluminum and aluminum alloys
US2578898A (en) Electrolytic removal of metallic coatings from various base metals
US1965683A (en) Coating aluminum
US3335074A (en) Anodic treatment of zinc and zinc-base alloys
US2095519A (en) Method for producing galvanic coatings on aluminum or aluminum alloys
US3400058A (en) Electrochemical process for andic coating of metal surfaces
USRE31743E (en) AC Etching of aluminum capacitor foil
US3330744A (en) Anodic treatment of zinc and zinc-base alloys and product thereof