US2847354A - Hydrantoin solvents for removal of metal constituents from gas oils - Google Patents

Hydrantoin solvents for removal of metal constituents from gas oils Download PDF

Info

Publication number
US2847354A
US2847354A US544125A US54412555A US2847354A US 2847354 A US2847354 A US 2847354A US 544125 A US544125 A US 544125A US 54412555 A US54412555 A US 54412555A US 2847354 A US2847354 A US 2847354A
Authority
US
United States
Prior art keywords
oil
solvent
boiling
hydantoin
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US544125A
Inventor
Mattox William Judson
Jr Charles Newton Kimberlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US544125A priority Critical patent/US2847354A/en
Application granted granted Critical
Publication of US2847354A publication Critical patent/US2847354A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds

Definitions

  • This invention concerns a novel solvent extraction process employing hydantoins as solvent for the upgrading of petroleum fractions.
  • the invention is of particular application to the treatment of gas oil fractions derived from a crude petroleum oil so as to substantially improve the characteristics of the gas oil for processing by catalytic cracking.
  • the extraction process of this invention is notable in providing a technique for the selective extraction of metal contaminants, condensed ring aromatic components, and nitrogen compounds normally present in high boiling petroleum oil fractions.
  • the feed stock to a catalytic cracking operation constitutes a so-called gas oil fraction of crude oil which boils in the range of about 400 to 800 F. or somewhat higher.
  • Portions of the petroleum crude oil boiling above the gas oil boiling range may be considered residual petroleum fractions.
  • Such residual fractions may be used as sources of asphalt, fuel, and other products which are of relatively low economic value. It, therefore, becomes attractive to develop means for successfully utilizing portions of the residual fractions of crude oil as catalytic cracking feed stock.
  • the gas oil distillate referred to would have a boiling range of about 800 to 1l00 F, or higher.
  • metal contaminant carry over in the segregation of heavy distillate fractions is apparently due to two phenomena. First of all, it appears that the metal contaminants occur or are converted during distillation of the form of metal complexes. These complexes may generally be identified as large condensed ring constituents. Some of these metal complexes and particularly nickel and vanadium porphyrins are sufficiently volatile so as to be carried overhead at a temperature of about 1050 F. Consequently, when attempting to segregate high boiling gas oil fractions including components boiling above about 900 F., volatile metal contaminants are unavoidably obtained in the distillate product. It
  • one technique for preventing the problem of catalyst contamination could conceivrably be a selective solvent treatment for the catalytic cracking feed stock in order to remove metal contaminants which are normally present.
  • l-leretofore difliculties have been encountered in finding a solvent capable of selectively removing met-a1 contaminants.
  • a solvent such as phenol or furfural which exerts a strong solvent action for high molecular weight aromatic compounds will also remove metal contaminants to some extent.
  • the problem with such solvents is that they exhibit poor selectivity, resulting in substantial removal of hydrocarbon constituents as well as metal contaminants. As a result use of such solvents has heretofore been economically prohibitive due to the loss in catalytic cracking feed stock.
  • the present invention is based on the discovery that hydantoinsand' substituted hydantoins are uniquely effective in selectively: removing metal contaminants from heavy petroleum feed stocks.
  • use of these compounds makespossible a selective removal of metal contaminants permitting substantial elimination of such contaminants from catalytic cracking feed stocks with Above and beyond these considerations, it has been found that the hydantoins also exert 'a desirable selective solvent action toward other undesirable constituents normally present in the cracking feed stock.
  • dimethyl hydantoin exerts solvent powers in the practice of this invention completely distinct from those of other solvents which have been used, such as phenol.
  • solvent modifiers with hydantoins for particular applica-v tions.
  • solvent modifiers are chosen so as not to substantially alfect the selective solvent action of the hydantoin while changing somewhat its oil solubility char acteristics.
  • Solvent modifiers are particularly useful for permitting extraction with the selective solvent at higher temperatures than normally attractive. Include among solvent modifiers which may be employed are Water, water-soluble aliphatic alcohols, acetic acid, and ethylene glycol.
  • solvent modifiers which may be employed are Water, water-soluble aliphatic alcohols, acetic acid, and ethylene glycol.
  • Such compounds can be employed by combination with hydantoin, methyl hydantoin, or dimethyl hydantoin in minor amounts providing a solvent composition in which the solvent modifiers are present in amounts less than about one third of the total solvent composition.
  • Solvent extractions employing hydantoins in accordance with this invention may be conducted at temperatures in the broad range of about 80 to 600 F.
  • the selectivity properties of the hydantoins are not critically effected by temperature so that it is generally preferred to operate at moderate temperatures selected to maintain the feed stock at a suitable viscosity for treatment.
  • a temperature of about 200 to 400 F. is particularly attractive.
  • the extraction can be conducted at any pressure selected from the broad range of about to 500 p. s. i. Again, however, pressure is not particularly critical in the conduct of this invention, making it possible to conduct the process at atmospheric pressure as is normally preferred.
  • the amount of solvent composition employed in the practice of this invention varies somewhat in accordance with the feed stock to be treated and the degree of change required in the properties of the feed stock. In general, however, the amount of solvent to be employed will be selected from the range of 0.5 to 4 volumes of solvent per volume of oil, i. e., 50 to 400 volumes percent, to be treated. For most applications it is particularly preferred to use about 1 volume of solvent per volume of oil to be treated.
  • the solvent treating process may be carried out by conventional solvent extraction techniques.
  • batch mixing and settling may be employed or continuous and countercurrent treating operations may be employed.
  • it is particularly preferred to carry out the process by introducing the hydantoin at an upper portion of a treating tower to fiow downwardly countercurrent to the oil to be treated which is introduced near the bottom of the treating tower.
  • Packing elements, perforated plates, or other contacting aids can be employed in such a system.
  • a raffinate phase constituting the treated oil and minor portions of the hydantoin may be removed overhead from such a tower.
  • An extract phase principally constituting hydantoin together with minor amounts of constituents removed from the treated oil, can be removed from the bottom of the treating tower.
  • Solvent may be recovered from the raflinate and extract phases by conventional techniques. Thus, a simple distillation procedure permits removal of hydautoins for recycle to the solvent treating system. Alternatively and as a particular feature of this invention, solvent may be recovered by cooling the extract and rafiinate phases substantially below the extraction temperature. Cooling in this manner results in a change in solvent properties suflicient to liberate hydantoin for recycle to the extraction system.
  • solvent may be recovered by adding water to the extract and raffinate phases.
  • the addition of water causes the separation of an upper oil layer and a lower layer comprising an aqueous solution of the solvent.
  • the lower, aqueous solvent layer is withdrawn 4 and may be dehydated by distillation or other means for recycling to the extraction zone.
  • solvent extraction employing hydantoins is particularly attractive for the upgrading of catalytic cracking feed stocks.
  • feed stocks may be defined as the gas oil fraction of a petroleum crude oil boiling above the gasoline boiling range or boiling above about 450 F.
  • the end point of such a gas oil fraction can be as high as desired, ranging upwardly to about 1050 to 1300 F. (equivalent atmospheric boiling point).
  • solvent extraction of a lubricating oil distillate boiling within the gas oil boiling range as defined is also particularly attractive.
  • such a solvent extraction serves to remove undesired aromatic compounds from a lubricating oil so as to provide high yields of high quality lubricating oil.
  • the invention is broadly applicable to extraction of gas oil and catalytic cycle oil boiling in the range of about 450 to- 1300 F.
  • the invention is of particular application to the portion of such fractions boiling above about 900 to 950 F.
  • Such high boiling gas oil fractions are those in which metal contaminants are particularly concentrated. For this reason, in preparing catalytic cracking feed stock it is particularly preferred to segregate the portion of the feed stock boiling above about 950 F. and then to subject this specific fraction to the process of this invention.
  • Fractionation system 1 is used to designate a fractionation system of the type conventionally used in segregating crude oil into fractions of different boiling range.
  • Fractionation system 1 may constitute a combination of an atmospheric distillation unit and a vacuum distillation unit or may comprise other types of distillation equipment adapted to provide the separate fractions to be identified.
  • the fractionation system is of the character permitting segregation of a crude oil introduced through line 2 into the products identified on the drawing. 0., and lighter gases may be removed overhead through line 3 and a naphtha fraction may be removed as a side stream product through line 4.
  • Preferably a light gas oil stream boiling in the range of about 450 to 950 F. is removed as a higher boiling side stream product through line 5.
  • the highest boiling side stream product, removed through line 6, is a heavy gas oil boiling in the range of about 950 to 1300 F. Heavy residual oil constituents are withdrawn from the fractionation system through bottom withdrawal line 7.
  • the heavy gas oil fraction of line 6 containing substantial portions of metal contaminants is subjected to solvent extraction in tower 8.
  • a hydantoin such as dimethyl hydantoin, is introduced to extraction system 8 through line 9 for countercurrent contact with the heavy gas oil in the tower. Extraction can be conducted for example at a temperature of about 350 F., at atmospheric pressure and using about 1 volume of solvent per volume of heavy gas oil.
  • the raifinate phase constituting treated oil together with small amounts of hydantoin is removed overhead from extraction system 8 through line 10. Residual solvent can be removed overhead from the treated oil in separation zone 11, permitting removal of segregated hydantoin through line 12 for recycle to line 9. A treated oil freed of residual solvent is then passed through line 13 to the catalytic cracking system 14.
  • the extract phase removed from the solvent extraction system 8 through line 15 may similarly be passed to a solvent separator 16 permitting removal of the hydantoin through overhead line 17.
  • An extract oil Will be withdrawn from the bottom of stripper 16 through line 18.
  • This extract oil may be blended with fuel oil or can be employed as a source of chemicals or the like.
  • the treated oil of line 13 which is subjected to catalytic cracking is of improved cracking characteristics by virtue of the substantial elimination of metal contaminants.
  • this oil is of better cracking characteristics because of the elimination of high molecular weight condensed ring aromatic compounds and nitrogen compounds.
  • This treated oil can be subjected to conventional catalytic cracking in zone 14.
  • the cracking may be of the fixed-bed, suspensoid, moving bed or fluidized solids type. it is preferred, however, to employ a fluidized solids cracking process.
  • the fluidized solids technique for cracking hydrocarbons comprises a reaction zone and a regeneration zone
  • reactor and the catalyst regenerator are or may be arranged at approximately an even level.
  • the operation of the reaction zone and the regeneration zone is preferably as follows:
  • An overflow is provided in the regeneration zone at the desired catalyst level.
  • the catalyst overflows into a withdrawal line which preferably has the form of a U- shaped seal leg connecting the regeneration zone with the reaction zone.
  • the feed stream introduced is usually preheated to a temperature in the range from about 500 to 650 F., by heat exchange with regenerator flue gases which are removed overhead from the regeneration zone, or with cracked products.
  • the heated feed stream is then introduced into the reactor.
  • the seal leg is usually sufficiently below the point of feed oil injection to prevent oil vapors from backing into the regenerator in case of normal surges. Since there is no restriction in the overflow line from the regenerator, satisfactory catalyst flow will occur as long as the catalyst level in the reactor is slightly below the catalyst level in the regenerator when the vessels are maintained at about the same pressure.
  • Spent catalyst from the reactor flows through a second U-shaped seal leg from the bottom of the reactor into the bottom of the regenerator. The rate of catalyst flow is controlled by injecting some of the air into the catalyst transfer line to the regenerator.
  • the pressure in the regenerator may be controlled at the desired level by a throttle valve in the overhead line from the regenerator.
  • the pressure in the regenerator may be controlled at any desired level by a throttle valve which may be operated, if desired, by a differential pressure controller. If the pressure differential between the two vessels is maintained at a minimum, the seal legs will prevent gases from passing from one vessel into the other in the event that the catalyst flow in the legs should cease.
  • the reactor and the regenerator may be designed for high velocity operation involving linear superficial gas velocities of from about 2.5 to 4 feet per second. However, the superficial velocity of the upflowing gases may vary from about 1 to 5 feet per second and higher. Catalyst losses are minimized and substantially prevented in the reactor by the use of multiple stages of cyclone separators.
  • the regeneration zone is also provided with cyclone separators. These cyclone separators usually include 2 to 3 or more stages.
  • Operating temperatures and pressures may vary appreciably depending upon the feed stocks being processed and upon the products desired. Operating temperatures are, for example, in the range from about 800 to 1000 R, preferably about 850 to 950 F. in the reaction zone. Elevated pressures may be employed, but in general, pressures below 100 pounds per square inch gauge are utilized. Pressures generally in the range from 1 to 30 pounds per square inch gauge are preferred. Catalyst to oil ratios of about 3 to 10, preferably about 6 to S by weight, are used.
  • cracking operation are conventional cracking catalysts. These catalysts are oxides of metals of groups II, III, IV.
  • a preferred catalyst comprises silica-alumina wherein the weight per cent of the alumina is in the range from about 5 to 20%.
  • Another preferred catalyst comprises silica-magnesia where the weight per cent of the magnesia is about 20 to 35%.
  • the size of the catalyst particles is usually below about 200 microns. Usually at least 50% of the catalyst has a micron size in the range from about 20 to 80. Under these conditions with the superficial velocities as given, a fluidized bed is maintained where, in the lower section of the reactor, a dense catalyst phase exists while in the upper area of the reactor a disperse phase exists.
  • a product fractionator adapted to segregate gasoline and heavier boiling fractions of the cracked product.
  • the heavy gas oil fraction is subjected by itself to extraction with dimethyl hydantoin so as to improve the cracking characteristics of the heavy gas oil.
  • the light gas oil, withdrawn from fractionation system 1 through line 5, can be passed directly to catalytic cracking system 14. Alternatively, however, a part or all of this light gas oil can be extracted with the heavy gas oil in extraction zone 8. It is particularly preferred to employ a minor portion of light gas oil in admixture with heavy gas oil so as to reduce the viscosity of the gas oil to the extent desired.
  • This type of solvent is applicable to various other extraction processes such as (l) lube oil refining to produce an oil of improved viscosity index, (2) aromatics concentration and/ or separation, and (3) the refining of gasoline, kerosene, and other petroleum fractions.
  • a process for upgrading a hydrocarbon oil boiling within the range of about 450 to 1300 F. and including constituents boiling above about 950 F., and which contain metal-comprising contaminants which comprises contacting said oil with about 50 to 400 volume percent of a compound selected from the class of hydantoin and alkyl substituted hydantoin at a temperature in the range of about to 500 F., and segregating a treated oil.
  • a process for providing a high-boiling, high-quality catalytic cracking feed stock comprising the steps of fractionating a petroleum crude oil to segregate a metal contaminated fraction boiling within the range of about 450 to 1300 F., and including constituents boiling above 950 F., thereafter contacting said metal contaminated fraction with about 100 to 400 volume percent of a hydantoin and segregating a treated oil product of improved cracking characteristics.
  • a combination process comprising the steps of fractionating a petroleum crude oil to obtain metal con- 8 taminated high boiling gas oil constituents including those within the range of about 950 to 1300" F., treating said high boiling metal contaminated fraction with dimethyl hydantoin and segregating a treated oil product, and thereafter catalytically cracking said treated oil product.
  • a process for producing high quality lubricating oil from a metal contaminated gas oil boiling within the range of about 700 to 1100 E which comprises contacting said gas oil with about 100 to 300 volumes percent of a hydantoin, and segregating a rafiinate oil product of improved viscosity index.

Description

2, 1958 J. MATTOX ETAL 2,847,354
W. HYDANTOIN SOLVENTS FOR REMOVAL OF METAL CONSTITUENTS FROM GAS OILS Filed Nov. 1, 1955 2 Sheets-Sheet 1 ,soLvEIvT a I SEPARATOR T CATALYTIC I 4 /CRACKING 3 LIGHT GASES SYSTEM FRACTIONATION SYSTEM 4 I HYDANTOIN 4- NAPHTHA 5 CRUDE 1 i 8 ,SOLVENT EXTRACTION 2 LIGHT GAS on. SYSTEM [HEAVY GAS OIL 7 RESIDUAL GAS on. I5 I? SOLVENT I6 SEPARATOR EXTRACT OIL FIGURE I William J. Mafiox Charles N. Kimberlin, Jr lnvenfors 7 WWW Attorney Aug. 12, 1958 w. J. MATTOX ET AL 2,847,354
HYDANTOIN SOLVENTS FOR REMOVAL OF METAL CONSTITUENTS FROM GAS OILS Filed NOV. 1, 1955 2 Sheets-Sheet 2 FIGURE -2 W BY SOLVENT EXTRACTION LE BA C E RACTI E m PLENOL EXTRACTION 0 a I.O. a E
l4. 0 '5 E o 0.5 4 m DIM so PYRIDINE 5 E HYDANTOIN EXTEACTION E EXTRACTION o 1 l r 1 4 I00 95 90 as so 75 70 RAFFINATE YIELD, WT.
William J. Maffox Charles N. Kimberlin, Jr.
Inventors HYDANTOIN SOLVENTS FUR REMOVAL OF IVIETAL CONSTITUENTS FROM GAS OILS William Judson Mattox and Charles Newton Kimberlin, Jr., Baton Rouge, La., assignors to Esso Research and Engineering Company, a corporation of Delaware Application November 1, 1955, Serial No. 544,125
8 Claims. (Cl. 196-1427) This invention concerns a novel solvent extraction process employing hydantoins as solvent for the upgrading of petroleum fractions. The invention is of particular application to the treatment of gas oil fractions derived from a crude petroleum oil so as to substantially improve the characteristics of the gas oil for processing by catalytic cracking. The extraction process of this invention is notable in providing a technique for the selective extraction of metal contaminants, condensed ring aromatic components, and nitrogen compounds normally present in high boiling petroleum oil fractions.
In recent times, a great deal of effort has been applied in the petroleum refining field to increase the recovery of catalytic cracking feed stock from residual fractions of petroleum oil. Conventionally, the feed stock to a catalytic cracking operation constitutes a so-called gas oil fraction of crude oil which boils in the range of about 400 to 800 F. or somewhat higher. Portions of the petroleum crude oil boiling above the gas oil boiling range may be considered residual petroleum fractions. Such residual fractions may be used as sources of asphalt, fuel, and other products which are of relatively low economic value. It, therefore, becomes attractive to develop means for successfully utilizing portions of the residual fractions of crude oil as catalytic cracking feed stock.
Attempts to employ heavier fractions of crude oil for catalytic cracking have been limited heretofore due to the presence of certain metal contaminants in such heavy fractions. Thus the highest boiling fractions of a crude oil contain substantial portions of metal contaminants, particularly including nickel, vanadium and iron'compounds. The residual fractions of typical crude oils generally contain these metal contaminants in quantities of about 10 to 50 pounds per 1000 barrels of metal contaminants. When an attempt is made to segregate higher boiling distillate fractions of a crude oil, some portion of these metal contaminants are inherently and unavoidably carried over into the distillate products. For example, in a vacuum distillation operation where a heavy boiling gas oil fraction is segregated from a crude oil, about 0.5 to 10 pounds per 1000 barrels of metal contaminants will be obtained in the gas oil distillate in a typical situation. In this example, the gas oil distillate referred to would have a boiling range of about 800 to 1l00 F, or higher.
The problem of metal contaminant carry over in the segregation of heavy distillate fractions is apparently due to two phenomena. First of all, it appears that the metal contaminants occur or are converted during distillation of the form of metal complexes. These complexes may generally be identified as large condensed ring constituents. Some of these metal complexes and particularly nickel and vanadium porphyrins are sufficiently volatile so as to be carried overhead at a temperature of about 1050 F. Consequently, when attempting to segregate high boiling gas oil fractions including components boiling above about 900 F., volatile metal contaminants are unavoidably obtained in the distillate product. It
little loss in feed stock yields.
2,847,354 Patented Aug. 12, 1958 "ice appears that a second phenomenon is also involved which may be referred to as mechanical entrainment. To generally indicate the mechanism of this effect, it can be considered that a small portion of high boiling liquid hydrocarbons from the residual fraction are normally entrained overhead in a distillation operation. Since such liquid hydrocarbons contain concentrated amounts of metal contaminants, such entrainment in distillate products accounts for a portion of the metal contamination of such distillates.
By virtue of the fact that catalytic cracking operations are adversely afiiected by the presence of such metal contaminants, it is apparent that the need exists for some means to recover high boiling fractions of a crude oil while eliminating contamination in the manner described. The presence of metal contaminants and particularly nickel and/or vanadium in a catalytic cracking operation results in direct contamination of the catalyst by the metal compound. Metal continues to accumulate on the catalyst during the life of the catalyst having the result of seriously altering the catalytic properties of the catalyst.
One of the effects of such catalyst poisoning is to cause excessive hydrogen to be produced during catalytic cracking as the result of the change in the cracking characteristics of the catalyst. In actual commercial operations hydrogen production has become so severe, due to catalyst poisoning, as to cause failure of gas compressors due to the change in the density of the gases, resulting in flooding of light end fractionation equipment and the like. It is to be understood, therefore, that the problem of catalyst contamination is a pressing problem at the present time.
It has been appreciated that one technique for preventing the problem of catalyst contamination could conceivrably be a selective solvent treatment for the catalytic cracking feed stock in order to remove metal contaminants which are normally present. l-leretofore, however, difliculties have been encountered in finding a solvent capable of selectively removing met-a1 contaminants. A solvent such as phenol or furfural which exerts a strong solvent action for high molecular weight aromatic compounds will also remove metal contaminants to some extent. However, the problem with such solvents is that they exhibit poor selectivity, resulting in substantial removal of hydrocarbon constituents as well as metal contaminants. As a result use of such solvents has heretofore been economically prohibitive due to the loss in catalytic cracking feed stock.
The present invention is based on the discovery that hydantoinsand' substituted hydantoins are uniquely effective in selectively: removing metal contaminants from heavy petroleum feed stocks. As a result, use of these compounds makespossible a selective removal of metal contaminants permitting substantial elimination of such contaminants from catalytic cracking feed stocks with Above and beyond these considerations, it has been found that the hydantoins also exert 'a desirable selective solvent action toward other undesirable constituents normally present in the cracking feed stock. In particular they serve to remove condensed ring aromatic compounds and nitrogen compounds concomitant with removal of metal contaminants so as to substantially improve the cracking characteristics of a feed stock- 1 The precise'meclianism by which the hydantoins exhibit these specific and unusual solvent properties is not known at the present time. It seems probable, however, that the particular molecular configuration of these compounds combine a critical balance between hydrocarbon solubility and solvent power for the compounds enumeratedwhich is particularly adapted for the purposes of this invention. It has been established, for example,
that dimethyl hydantoin exerts solvent powers in the practice of this invention completely distinct from those of other solvents which have been used, such as phenol.
At the same time, however, it is possible to employ solvent modifiers with hydantoins for particular applica-v tions. Such solvent modifiers are chosen so as not to substantially alfect the selective solvent action of the hydantoin while changing somewhat its oil solubility char acteristics. Solvent modifiers are particularly useful for permitting extraction with the selective solvent at higher temperatures than normally attractive. included among solvent modifiers which may be employed are Water, water-soluble aliphatic alcohols, acetic acid, and ethylene glycol. Such compounds can be employed by combination with hydantoin, methyl hydantoin, or dimethyl hydantoin in minor amounts providing a solvent composition in which the solvent modifiers are present in amounts less than about one third of the total solvent composition.
Solvent extractions employing hydantoins in accordance with this invention may be conducted at temperatures in the broad range of about 80 to 600 F. However, the selectivity properties of the hydantoins are not critically effected by temperature so that it is generally preferred to operate at moderate temperatures selected to maintain the feed stock at a suitable viscosity for treatment. Thus, in general, a temperature of about 200 to 400 F. is particularly attractive. The extraction can be conducted at any pressure selected from the broad range of about to 500 p. s. i. Again, however, pressure is not particularly critical in the conduct of this invention, making it possible to conduct the process at atmospheric pressure as is normally preferred.
The amount of solvent composition employed in the practice of this invention varies somewhat in accordance with the feed stock to be treated and the degree of change required in the properties of the feed stock. In general, however, the amount of solvent to be employed will be selected from the range of 0.5 to 4 volumes of solvent per volume of oil, i. e., 50 to 400 volumes percent, to be treated. For most applications it is particularly preferred to use about 1 volume of solvent per volume of oil to be treated.
The solvent treating process may be carried out by conventional solvent extraction techniques. Thus, if desired, batch mixing and settling may be employed or continuous and countercurrent treating operations may be employed. In this connection, for example, it is particularly preferred to carry out the process by introducing the hydantoin at an upper portion of a treating tower to fiow downwardly countercurrent to the oil to be treated which is introduced near the bottom of the treating tower. Packing elements, perforated plates, or other contacting aids can be employed in such a system. A raffinate phase constituting the treated oil and minor portions of the hydantoin may be removed overhead from such a tower. An extract phase, principally constituting hydantoin together with minor amounts of constituents removed from the treated oil, can be removed from the bottom of the treating tower.
Solvent may be recovered from the raflinate and extract phases by conventional techniques. Thus, a simple distillation procedure permits removal of hydautoins for recycle to the solvent treating system. Alternatively and as a particular feature of this invention, solvent may be recovered by cooling the extract and rafiinate phases substantially below the extraction temperature. Cooling in this manner results in a change in solvent properties suflicient to liberate hydantoin for recycle to the extraction system.
Alternatively, solvent may be recovered by adding water to the extract and raffinate phases. The addition of water causes the separation of an upper oil layer and a lower layer comprising an aqueous solution of the solvent. The lower, aqueous solvent layer is withdrawn 4 and may be dehydated by distillation or other means for recycling to the extraction zone.
As indicated, solvent extraction employing hydantoins is particularly attractive for the upgrading of catalytic cracking feed stocks. Such feed stocks may be defined as the gas oil fraction of a petroleum crude oil boiling above the gasoline boiling range or boiling above about 450 F. The end point of such a gas oil fraction can be as high as desired, ranging upwardly to about 1050 to 1300 F. (equivalent atmospheric boiling point). It may be observed that solvent extraction of a lubricating oil distillate boiling within the gas oil boiling range as defined is also particularly attractive. Employing the process of this invention, such a solvent extraction serves to remove undesired aromatic compounds from a lubricating oil so as to provide high yields of high quality lubricating oil.
While, as indicated, the invention is broadly applicable to extraction of gas oil and catalytic cycle oil boiling in the range of about 450 to- 1300 F., the invention is of particular application to the portion of such fractions boiling above about 900 to 950 F. Such high boiling gas oil fractions are those in which metal contaminants are particularly concentrated. For this reason, in preparing catalytic cracking feed stock it is particularly preferred to segregate the portion of the feed stock boiling above about 950 F. and then to subject this specific fraction to the process of this invention.
The accompanying drawing illustrates a specific and preferred embodiment of the present invention showing its application to the preparation of catalytic cracking feed stock.
Referring to the drawing, the number 1 is used to designate a fractionation system of the type conventionally used in segregating crude oil into fractions of different boiling range. Fractionation system 1 may constitute a combination of an atmospheric distillation unit and a vacuum distillation unit or may comprise other types of distillation equipment adapted to provide the separate fractions to be identified. The fractionation system is of the character permitting segregation of a crude oil introduced through line 2 into the products identified on the drawing. 0., and lighter gases may be removed overhead through line 3 and a naphtha fraction may be removed as a side stream product through line 4. Preferably a light gas oil stream boiling in the range of about 450 to 950 F. is removed as a higher boiling side stream product through line 5. Finally, the highest boiling side stream product, removed through line 6, is a heavy gas oil boiling in the range of about 950 to 1300 F. Heavy residual oil constituents are withdrawn from the fractionation system through bottom withdrawal line 7.
In accordance With this invention, the heavy gas oil fraction of line 6 containing substantial portions of metal contaminants is subjected to solvent extraction in tower 8. A hydantoin, such as dimethyl hydantoin, is introduced to extraction system 8 through line 9 for countercurrent contact with the heavy gas oil in the tower. Extraction can be conducted for example at a temperature of about 350 F., at atmospheric pressure and using about 1 volume of solvent per volume of heavy gas oil.
The raifinate phase constituting treated oil together with small amounts of hydantoin, is removed overhead from extraction system 8 through line 10. Residual solvent can be removed overhead from the treated oil in separation zone 11, permitting removal of segregated hydantoin through line 12 for recycle to line 9. A treated oil freed of residual solvent is then passed through line 13 to the catalytic cracking system 14.
The extract phase removed from the solvent extraction system 8 through line 15 may similarly be passed to a solvent separator 16 permitting removal of the hydantoin through overhead line 17. An extract oil Will be withdrawn from the bottom of stripper 16 through line 18.
This extract oil may be blended with fuel oil or can be employed as a source of chemicals or the like.
The treated oil of line 13 which is subjected to catalytic cracking is of improved cracking characteristics by virtue of the substantial elimination of metal contaminants. In addition, this oil is of better cracking characteristics because of the elimination of high molecular weight condensed ring aromatic compounds and nitrogen compounds. This treated oil can be subjected to conventional catalytic cracking in zone 14. Thus, the cracking may be of the fixed-bed, suspensoid, moving bed or fluidized solids type. it is preferred, however, to employ a fluidized solids cracking process.
The fluidized solids technique for cracking hydrocarbons comprises a reaction zone and a regeneration zone,
employed in conjunction with a fractionation zone. The
reactor and the catalyst regenerator are or may be arranged at approximately an even level. The operation of the reaction zone and the regeneration zone is preferably as follows:
An overflow is provided in the regeneration zone at the desired catalyst level. The catalyst overflows into a withdrawal line which preferably has the form of a U- shaped seal leg connecting the regeneration zone with the reaction zone. The feed stream introduced is usually preheated to a temperature in the range from about 500 to 650 F., by heat exchange with regenerator flue gases which are removed overhead from the regeneration zone, or with cracked products. The heated feed stream is then introduced into the reactor. The seal leg is usually sufficiently below the point of feed oil injection to prevent oil vapors from backing into the regenerator in case of normal surges. Since there is no restriction in the overflow line from the regenerator, satisfactory catalyst flow will occur as long as the catalyst level in the reactor is slightly below the catalyst level in the regenerator when the vessels are maintained at about the same pressure. Spent catalyst from the reactor flows through a second U-shaped seal leg from the bottom of the reactor into the bottom of the regenerator. The rate of catalyst flow is controlled by injecting some of the air into the catalyst transfer line to the regenerator.
The pressure in the regenerator may be controlled at the desired level by a throttle valve in the overhead line from the regenerator. Thus, the pressure in the regenerator may be controlled at any desired level by a throttle valve which may be operated, if desired, by a differential pressure controller. If the pressure differential between the two vessels is maintained at a minimum, the seal legs will prevent gases from passing from one vessel into the other in the event that the catalyst flow in the legs should cease.
The reactor and the regenerator may be designed for high velocity operation involving linear superficial gas velocities of from about 2.5 to 4 feet per second. However, the superficial velocity of the upflowing gases may vary from about 1 to 5 feet per second and higher. Catalyst losses are minimized and substantially prevented in the reactor by the use of multiple stages of cyclone separators. The regeneration zone is also provided with cyclone separators. These cyclone separators usually include 2 to 3 or more stages.
Distributing grids may be employed in the reaction and regeneration zones. Operating temperatures and pressures may vary appreciably depending upon the feed stocks being processed and upon the products desired. Operating temperatures are, for example, in the range from about 800 to 1000 R, preferably about 850 to 950 F. in the reaction zone. Elevated pressures may be employed, but in general, pressures below 100 pounds per square inch gauge are utilized. Pressures generally in the range from 1 to 30 pounds per square inch gauge are preferred. Catalyst to oil ratios of about 3 to 10, preferably about 6 to S by weight, are used.
The catalytic materials used in the fluidized catalyst and V of the periodic table.
cracking operation are conventional cracking catalysts. These catalysts are oxides of metals of groups II, III, IV
A preferred catalyst comprises silica-alumina wherein the weight per cent of the alumina is in the range from about 5 to 20%. Another preferred catalyst comprises silica-magnesia where the weight per cent of the magnesia is about 20 to 35%.
The size of the catalyst particles is usually below about 200 microns. Usually at least 50% of the catalyst has a micron size in the range from about 20 to 80. Under these conditions with the superficial velocities as given, a fluidized bed is maintained where, in the lower section of the reactor, a dense catalyst phase exists while in the upper area of the reactor a disperse phase exists.
Included in the catalytic cracking system is a product fractionator adapted to segregate gasoline and heavier boiling fractions of the cracked product.
In the particular embodiment of the invention illustrated in the drawing, the heavy gas oil fraction is subjected by itself to extraction with dimethyl hydantoin so as to improve the cracking characteristics of the heavy gas oil. The light gas oil, withdrawn from fractionation system 1 through line 5, can be passed directly to catalytic cracking system 14. Alternatively, however, a part or all of this light gas oil can be extracted with the heavy gas oil in extraction zone 8. It is particularly preferred to employ a minor portion of light gas oil in admixture with heavy gas oil so as to reduce the viscosity of the gas oil to the extent desired.
The following example illustrates the nature and utility of this invention:
A heavy, South Louisiana gas oil containing 2.3 p. p m. of nickel and 0.2 p. p. m. of vanadium was contacted with three batches of dimethyl hydantoin in 1/1 volume ratio with the oil at a temperature of 360 F. and at atmospheric pressure. The solvent-free raflinate was obtained in 92% yield and contained 0.55 p. p. m. of nickel. These data are shown in the following tabulation and in Figure 2 in comparison with similar extractions made with pyridine and phenol solvents.
Metal removal from heavy gas oil by solvent extraction with 3 batches of solvent in 1/] vol. ratio with oil The dimethyl hydantoin solvent not only gave a higher nickel removal of 5 to 10% under comparable treating conditions but the oil yields at a given nickel content were significantly improved. When treating to a nickel content of 0.5 p. p. m., the dimethyl hydantoin raflinate yield was 10.5 vol. percent better than resulted from phenol-water extraction or 2.5% better than from the use of pyridine-water.
This type of solvent is applicable to various other extraction processes such as (l) lube oil refining to produce an oil of improved viscosity index, (2) aromatics concentration and/ or separation, and (3) the refining of gasoline, kerosene, and other petroleum fractions.
What is claimed is:
1. A process for upgrading a hydrocarbon oil boiling within the range of about 450 to 1300 F. and including constituents boiling above about 950 F., and which contain metal-comprising contaminants, which comprises contacting said oil with about 50 to 400 volume percent of a compound selected from the class of hydantoin and alkyl substituted hydantoin at a temperature in the range of about to 500 F., and segregating a treated oil. i
2. The process defined by claim 1 in which the said oil to be treated constitutes the gas oil fraction of a crude oil including constituents boiling above about 950 F.
3. The process defined by claim 1 in which the said oil to be treated constitutes catalytic cycle oil.
4. The process defined by claim 1 in which the said solvent includes solvent modifiers selected from the group consisting of water soluble aliphatic alcohols, acetic acid, and ethylene glycol.
5. A process for providing a high-boiling, high-quality catalytic cracking feed stock comprising the steps of fractionating a petroleum crude oil to segregate a metal contaminated fraction boiling within the range of about 450 to 1300 F., and including constituents boiling above 950 F., thereafter contacting said metal contaminated fraction with about 100 to 400 volume percent of a hydantoin and segregating a treated oil product of improved cracking characteristics.
6. A combination process comprising the steps of fractionating a petroleum crude oil to obtain metal con- 8 taminated high boiling gas oil constituents including those within the range of about 950 to 1300" F., treating said high boiling metal contaminated fraction with dimethyl hydantoin and segregating a treated oil product, and thereafter catalytically cracking said treated oil product.
7. The process defined by claim 6 in which the said high boiling gas oil is diluted with a minor portion of a lower boiling gas oil.
8. A process for producing high quality lubricating oil from a metal contaminated gas oil boiling within the range of about 700 to 1100 E, which comprises contacting said gas oil with about 100 to 300 volumes percent of a hydantoin, and segregating a rafiinate oil product of improved viscosity index.
References Cited in the file of this patent UNITED STATES PATENTS 2,092,739 Van Dijck Sept. 7, 1937 2,616,836 Schmidt et a1. Nov. 4, 1952 2,693,441 Helmers Nov. 2, 1954

Claims (1)

1. A PROCESS FOR UPGRADING A HYDROCABOB OIL BOILING WITHIN THE RANGE OF ABOUT 450* TO 1300*F. AND INCLUDING CONSTITUENTS BOILING ABOVE ABOUT 950*F., AND WHICH CONTAIN METAL-COMPRISING CONTAMINANTS, WHICH COMPRISES CONTACTING SAID OIL WITH ABOUT 50 TO 400 VOLUME PERCENT OF A COMPOUND SELECTED FROM THE CLASS OF HYDANTION AND ALKYL SUBSTITUTED HYDANTOIN AT A TEMPERATURE IN THE
US544125A 1955-11-01 1955-11-01 Hydrantoin solvents for removal of metal constituents from gas oils Expired - Lifetime US2847354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US544125A US2847354A (en) 1955-11-01 1955-11-01 Hydrantoin solvents for removal of metal constituents from gas oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US544125A US2847354A (en) 1955-11-01 1955-11-01 Hydrantoin solvents for removal of metal constituents from gas oils

Publications (1)

Publication Number Publication Date
US2847354A true US2847354A (en) 1958-08-12

Family

ID=24170848

Family Applications (1)

Application Number Title Priority Date Filing Date
US544125A Expired - Lifetime US2847354A (en) 1955-11-01 1955-11-01 Hydrantoin solvents for removal of metal constituents from gas oils

Country Status (1)

Country Link
US (1) US2847354A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2092739A (en) * 1935-01-09 1937-09-07 Shell Dev Extraction process
US2616836A (en) * 1949-12-29 1952-11-04 Standard Oil Dev Co Products from catalytic cracking
US2693441A (en) * 1951-01-02 1954-11-02 Phillips Petroleum Co Feed preparation for furnace black production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2092739A (en) * 1935-01-09 1937-09-07 Shell Dev Extraction process
US2616836A (en) * 1949-12-29 1952-11-04 Standard Oil Dev Co Products from catalytic cracking
US2693441A (en) * 1951-01-02 1954-11-02 Phillips Petroleum Co Feed preparation for furnace black production

Similar Documents

Publication Publication Date Title
RU2733847C2 (en) Integrated method for increasing production of olefins by reprocessing and treatment of a heavy residue of cracking
US3676519A (en) Quench process
US2727848A (en) Solvent recovery in solvent extraction
JPS6158110B2 (en)
US2902428A (en) Extraction of feedstock with polyethylene glycol solvent
US2777802A (en) Extractive distillation operation for preparation of catalytic cracking feed stocks
US3658695A (en) Production of low-metal content gas oil from topped crude oil
US2304289A (en) Conversion of hydrocarbon oils
JPH03172388A (en) Extraction of solvent for lubricant
JPH03181594A (en) Extraction of solvent from lubricating oil
US2374102A (en) Conversion of hydrocarbons
US3065165A (en) Thermal cracking of hydrocarbons
US4256567A (en) Treatment of petroleum stocks containing metals
US3207692A (en) Process for separation of a solvent by distillation
US3306849A (en) Hydrocarbon solvent refining process
US4673485A (en) Process for increasing deasphalted oil production from upgraded residua
US2913394A (en) Butyrolactone solvent extraction process for removal of metal contaminants
US2834715A (en) Preparation of catalytic cracking feed
US2756186A (en) Method for thermal recycle cracking
US3985644A (en) Use of water/methanol mixtures as solvents for aromatics extraction
US2901413A (en) Combination deasphalting, coking, and catalytic cracking process
US3997428A (en) Vaporization of oil feed by addition of regenerated catalyst
US2902430A (en) Removal of metal contaminants from catalytic cracking feed stocks with sulfuric acid
US2847362A (en) Two-stage treating process
US5000838A (en) Low efficiency deasphalting and catalytic cracking