US2815344A - Polythionate compound substantially insoluble in water - Google Patents

Polythionate compound substantially insoluble in water Download PDF

Info

Publication number
US2815344A
US2815344A US509695A US50969555A US2815344A US 2815344 A US2815344 A US 2815344A US 509695 A US509695 A US 509695A US 50969555 A US50969555 A US 50969555A US 2815344 A US2815344 A US 2815344A
Authority
US
United States
Prior art keywords
bis
ammonium chloride
lauryl
trimethyl ammonium
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US509695A
Inventor
Neesby Torben Emil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carroll Dunham Smith Pharmacal Co
Original Assignee
Carroll Dunham Smith Pharmacal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carroll Dunham Smith Pharmacal Co filed Critical Carroll Dunham Smith Pharmacal Co
Priority to US509695A priority Critical patent/US2815344A/en
Application granted granted Critical
Publication of US2815344A publication Critical patent/US2815344A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/10Quaternary compounds

Definitions

  • Inorganic salts of polythionates have found application in the cosmetic and other fields as adjuvants for different products, such as hair tonics, etc. Where, however, it is desired to apply such polythionates to cosmetics containing alcohol or consisting chiefly of fatty or waxy materials, diflicultieshave been encountered because of their poor solubility in such media.
  • Another objection to alkali metal polythionates heretofore use-d is that in order to maintain them stabilizedit is generally necessary to maintain them at a low pH, e. g., 3 or less. This seriously interferes with their use in many fields in which neutral or slightly acid conditions are desired.
  • Another object is to provide a polythionate composition which in addition to the therapeutic properties attributable to the presence of the polythionate radical, has desirable germicidal properties.
  • Still another object of the invention is to provide a method of producing such polythionate compositions.
  • novel polythionate compounds are of the general structural formula:
  • a quaternary ammonium radical having four alkyl groups, R R R and R of which R preferably contains from 8 to 20 carbon atoms, and each of. th others contains from, 1 to 3 carbon atoms; or
  • Dialkyl morpholinium or dialkyl piperidinium wherein one of the alkyl groups contains from-8 to 20 carbon atoms and the other from 1 to 3 carbon. atoms; or
  • Tri-alkyl phenyl alkyl in which the; phenyl alkyl group contains from 7 to- 15 carbon atoms, one; of; the other alkyl groups containing 8 .to 20 carbon atoms and the other 1 to 3 carbon atoms; or
  • x has a value of from 3 to 10, inclusive, preferably 3 tov 6, inclusive; and the cation, such as the quarternary ammonium base portion of the compound has a molecular weight of from 190 to. 470 and the polythionate anion has a molecular weight of from 192 to 288 or higher up to about 416.
  • R4 2 in which R is an alkyl group containing from 8 to carbon atoms and each of R R and R is an alkyl group containing from 1 to 3 carbon atoms.
  • the .formula for the, pyridinium compound is as follows;
  • n 8 to 16 and x has a value of from 3 to 10; when n is 10 the compound is bis-(N-(lauroyl colamino formyl-methyl) pyridinium) polythionate.
  • Bis-(N-fatty radical (from soya oil containing 33 or 35 hydrogen atoms)-N-ethyl morpholinium) polythionate bis-(N-fatty radical (from soya oil containing 33 or 35 hydrogen atoms)-N-ethyl morpholinium) polythionate.
  • the novel crude quaternary ammonium polythionates are wax-like compounds. Upon purification, for example, by filtration with activated carbon and crystalliza tion from solution, they are semi-crystalline or crystalline in character. Compounds of penta, hexa and higher polythionates are substantially insoluble in water provided that the cation (quaternary ammonium base) has a molecular weight of 232 or more. Tetrathionate compounds having a molecular weight below 232 are somewhat soluble in water. These compounds generally forni viscous aqueous solutions.
  • the stability of the compounds of this invention is also unexpected, because the inorganic polythionates, including the alkali metal salts thereof, are unstable and tend to deposit sulfur in neutral or slightly acid media and at times even in strongly acid media.
  • aqueous solutions of potassium pentathionate and potassium hexathionate show signs of precipitation of sulfur after a few minutes at temperatures of 25 C. This precipitation of sulfur takes place simultaneously with the formation of lower polythionic acids.
  • the compounds of this invention on the other hand, in the absence of water, remain stable indefinitely.
  • aqueous suspension of the compounds of this invention at a pH of 1 remain stable for long periods of time, and this is particularly true of the quaternary ammonium trithionate, tetrathionate, pentathionate, and hexathionate.
  • Their stability has been found suflicient, without the addition of any stabilizers, to allow the production of alcoholic solutions or aqueous suspensions for technical, cosmetic and therapeutic uses.
  • the quaternary ammonium cation has a stabilizing effect on the polythionate molecule.
  • the polythionates of this invention are unstable in the presence of alkali. When treated with alkaline solutions they rapidly decompose to form the corresponding thiosulfates.
  • the polythionates of this invention are soluble in alco-- hols, e. g., ethyl alcohol, isopropyl alcohol, etc., and in many organic solvents, particularly the chlorinated hydrocarbons, such as dichloroethylene.
  • alco-- hols e. g., ethyl alcohol, isopropyl alcohol, etc.
  • organic solvents particularly the chlorinated hydrocarbons, such as dichloroethylene.
  • the properties of the compounds of this invention vary with the size of the polythionate molecule and with the molecular weight of the cation.
  • the bis-(dodecylacetamido dimethyl benzyl) polythionate is soluble in waxes, such as those used for lipstick manufacture, and hence can be efiiciently introduced into lipsticks.
  • Most of the quaternary ammonium polythionates are substantially insoluble in hydrocarbons. They have a high phenol co-efiicient, i. e., germicidal efficiency.
  • the larger the sulfur containing anion in general the smaller the phenol co-efiicient.
  • the compounds of this invention are prepared by reacting an alkali metal polythionate, preferably the potassium polythionate in aqueous solution, with an aqueous solution of the quaternary ammonium base.
  • the reaction readily takes place as long as at least /2 mol of polythionate is present per mol of quaternary ammonium base, and the medium in which the reaction occurs has a low concentration or contains no chlorine (C1) or sulfate (S0 ions.
  • the reaction may be carried out at any temperature below the decomposition temperature of the reactants or of the reaction product. It proceeds readily at room temperatures (2025 C.), and, hence, it is preferable to operate at room temperatures. Desirably, the reaction is carried out in the presence of a solvent for the quaternary ammonium polythionate product.
  • a preferred solvent is dichloroethylene.
  • Example 2 This example differs from Example 1 in the substitution of potassium trithionate and octadecyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(octadecyl trimethyl ammonium) trithionate results. This product is a semi-crystalline solid.
  • Example 3 In this example, octadecyl trimethyl ammonium chloride is substituted for the lauryl trimethyl ammonium sulfate is removed from this solution.
  • Example 4 1,000 grams of crystalline sodium thiosulfate are dissolved in 10,000 cc. of water, the resultant solution filtered and 4 kg. of crushed ice are added. 200 'cc. of S Cl are dissolved in 400 'cc. of ethyl ether. This solution along with 250 cc. of concentrated sulfuric acid are poured into the thiosulfate solution while stirring vigorously. The solution is then agitated by blowing-air therethrough for 3 days; The sedimented sulfur is filtered off. Blowing of air through the solution is continued for 14 days, and then 20 cc. of a saturated solution of cupric acetate are added. The resultant solution is concentrated by evaporation at temperatures not over 30 C.
  • a new compound By the addition of another 10 'cc. of 50% lauryl trimethyl ammonium chloride and 25 cc.- of dichloroethylene to the reaction product, a new compound may be obtained having a lower average sulfur content, but containing more than 6 sulfur atoms per molecule.
  • the new product contains about 7 to 8 sulfur atoms 'per molecule.
  • Example 6 This example diifers from Example 1 in the substitution 'of potassium pentathionate and octadecyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1.
  • Bis-(octadecyl trimethyl ammonium) pentathionate is obtained as a wax-like solid.
  • Example 7 This example differs from Example 1 in the substitu' tion of potassium trithionate and hexadecyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example l. Bis-(hexadecyl trimethyl ammonium) trithionate is obtained.
  • Example 9 This example difiers from Example 1 in the substitution of hexadecyl trimethyl ammonium chloride for of monium chloride for the Ilauryl'trimethyl ammonium chloride,-respectively, of Example 51.
  • methyl ammonium) trithionate is for the lauryl lauryl trimethyl ammonium chloride of Example Bishexadecyl -trimthyl ammonium) tetrathionate is obtained.
  • Example 11 This example differs from Example 5 in the substitution of cetyl-trimethyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • a bis-(cetyl trimethyl ammonium) polythionate is obtained containing an average of from 8 to 10 sulfur atoms per molecule of compound.
  • Example 13 This example differs from the preceding exampleinthe of octadecyl trimethyl ammonium chloride 12.
  • Bis-(octadecyl trimethyl ammonium) polythionate having an average of from 8 to 12 sulfur atoms per molemile of compound is thus obtained.
  • Example 1 4 This examplediffers from Example 1 in the substitution of potassium trithionate and para-alkyl tolyl methyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respec-
  • the alkyl group of the para-alkyl ammonium chloride contains from Bis-(para-alkyl tolyl methyl triobtained.
  • Example 15 This example dilfers from Example 1 in the substitution of para-alkyl tolyl methyl trimethyl ammonium chloride trimethyl ammonium chloride of Example 1.
  • the alkyl group contains from 9 to 15 carbon atoms.
  • Bis-(para-alkyl tolyl methyl trimethyl ammonium) tetrathionate is obtained.
  • Example 16 This example differs from Example 1 in the substitution of potassium hexathionate and para-alkyl tolyl methyl trimethyl ammonium chloride for the nate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(para-alkyl tolyl methyl trimethyl ammonium) hexathionate is obtained.
  • Example 17 This example differs from Example 5 in the substitution of para-alkyl tolyl methyl trimethyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • the alkyl group contains from 9 to 15 carbon atoms.
  • Bis-(para-alkyl tolyl methyl trimethyl ammonium) polythionate is obtained having an average of from 810 10 sulfur atoms per molecule of compound,
  • Example 18 This example differs from Example 1 in the substitution of potassium trithionate and lauryl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1.
  • Bis-(lauryl dimethyl benzyl ammonium) trithionate is obtained as soft crystals.
  • Example 19 This example differs from Example 1 in the substitution of lauryl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis- (lauryl dimethyl benzyl ammonium) tetrathionate is obtained.
  • Example 20 This example differs from Example 1 in the substitution of potassium pentathionate and aluryl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(lauryl dimethyl benzyl ammonium) pentathionate is obtained.
  • Example 21 This example differs from Example 1 in the substitution of potassium hexathionate and lauryl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(lauryl dimethyl benzyl ammonium) hexathionate is obtained.
  • Example 22 This example differs from Example 1 in the substitution of potassium trithionate and cetyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(cetyl dimethyl benzyl ammonium) trithionate is obtained.
  • Example 23 This example differs from Example 1 in the substitution 1 of cetyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis- (cetyl dimethyl benzyl ammonium) tetrathionate is obtained.
  • Example 24 This example differs from Example 1 in the substitution of potassium pentathionate and cetyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Ex- 7 ample 1. Bis-(cetyl dimethyl benzyl ammonium) pentathionate is obtained.
  • Example 25 This example differs from Example 1 in the substitution of potassium hexathionate and cetyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example l. Bis-(cetyl dimethyl benzyl ammonium) hex thionate is obtained.
  • Example 26 chloride is available commercially under the trade name Rhodalon. A 50% solution of Rhodalon is used in this example. Bis-(alkyl dimethyl benzyl ammonium) trithionate is obtained.
  • Example 27 This example differs from Example 1 in the substitution of a solution of Rhodalon for the lauryl trimethyl ammonium chloride of Example 1. Bis-(alkyl dimethyl benzyl ammonium) tetrathionate is obtained.
  • Example 28 This example differs from Example 1 in the substitution of potassium pentathionate and a 50% solution of Rhodalon for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of' Example 1.
  • Bis-(alkyl dimethyl benzyl ammonium) pentathionate is obtained.
  • Example 29 This example differs from Example 1 in the substitution of potassium trithionate and an alkyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1.
  • the alkyl dimethyl benzyl ammonium chloride used in this example is the product sold commercially under the trade name Roccal or BTC 50%, in which products the alkyl substituent is a mixture of alkyls having from 8 to 18 carbon atoms.
  • Bis-(alkyl dimethyl benzyl ammonium) trithionate is obtained in which the alkyl substituent is a mixture of alkyl radicals having from 8 to 18 carbon atoms.
  • Example 31 This example differs from Example 1 in the substitution of Roccal for the lauryl trimethyl ammonium chloride of Example 1. Bis-(alkyl dimethyl benzyl ammonium) tetrathionate is obtained.
  • Example 32 This example differs from Example 1 in the substitution of potassium hexathionate and Roccal for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(alkyl dimethyl benzyl ammonium) hexathionate is obtained.
  • Example 34 This example differs from Example 5 in the substitution of lauryl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Example 35 This example differs from Example 5 in the substitution of cetyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis- (cetyl dimethyl benzyl ammonium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
  • Example 36 This example differs from Example in the substitu- Example 37 This example difife'rs from Example l in the substitution of lauryl dimethyl ('y phenyl) propyl ammonium chloride-.for-the-lauryl trimethyl ammonium chloride of Example '1. Bis-(lauryl dimethyl ('y phenyl) propyl ammonium) tetrathionate results.
  • Example 38 This example diifersfromExa'mple l in the substitution of c etyl dimethyl 9 phenyl) ethylammonium chloride forthe lauryl trimethyl ammonium chloride of Exam- .ple 1. Bis-(cetyl dimethyl (,8 phenyl) ethyl ammonium) tetrathionate results.
  • Example 39 This exampledilfers from Example 1 in the substitution of potassium trithionate and para-diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the -potajssium tetrathi'onate and lauryl trimethyl ammonium fhloricle, respectively, of Example 1. Bis-(para-diisobutylph'enoxy thoxy ethyl; dimethyl benzyl ammonium) trithionate' is obtained.
  • Example 40 I This-example-differs-from Example 1 in'the-substitu- :tion-of.para diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride f or the-lauryl trimethyl am monium chloride of Example 1. Bis-(para-diisobutyl phenoxy ethoxy ethyl diinethylbenzyl ammonium) tetrathionateis obtained.
  • Example 41 This example differs from Example 1 in the substitu- "t'ionofpotas's'ium pentathionate and para-diisobutyl phenoxy'ethoxy ethyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1.
  • Example 42 This"example'diifers from Examplel in the substitufion ofipotassitim hexathionate and para-diisobutyl phe- "noxy ethoxy ethyl dimethyl benzyl ammonium chloride for the potassium"tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1.
  • Bis-(paradiisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium) r hexathionate is'- obtained.
  • Example 43 This example differs from Example 1 in the substitu- 'tionof'para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium) tetrathionate is obtained.
  • Example 45 This example differs from Example 1 in the substitution of potassium pentathionate and para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the potassium tetrathionate an-dlauryl trimethyl ammonium chloride, respectively, of Example 1.
  • Bis- (para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium) pentathionate is obtained.
  • Example 46 This exampledilfers from Example 1 in the substitution of potassium hexathionate and para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride for theapotassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(paradiisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium) hexathionate is obtained.
  • Example 47 p This example diflers from Example 5 in the substitution -of para-diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis-(para-diisobutyl phenoxy ethoxy dimethyl benzyl ammonium) polythionate'containing an average of from 8 to 10 sulfuratoms permolecule 1 of compound is obtained.
  • Example 48 This-example difiers from Example 5 in the substitution of para-diisobutyltoloxy ethoxy ethyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Example 50 This example dilfersfrom Example '1 in the substitution of dodecyl acetamido dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of "Example'l. Bis-(dodecylacetamido dimethyl benzyl-ammonium) tet'rathionate is obtained.
  • Example 51 spectively, of Example 1. Bis-(do'decyl acetamido dimethyl benzyl ammonium)'pentathionate is obtained.
  • Example'52 spectively, of Example 1.
  • Bis-(dodecyl acetamido 'dimethyl benzyl ammonium)'hexathionate is obtained,
  • Example '53 i This example differs from Example 5 inthe substitution of dodecyl acetamido dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis-(dodecyl acetamido dimethyl benzyl ammonium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
  • Example 54 This example differs from Example 1 in the substitution of potassium trithionate and N-lauryl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1.
  • Bis-(N-lauryl pyridinium) trithionate is obtained as a crystalline compound.
  • Example 55 This example diifers from Example 1 in the substitution of N-lauryl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(N-lauryl pyridinium) tetrathionate is obtained.
  • Example 56 This example differs from Example 1 in the substitution of potassium pentathionate and N-lauryl pyridinium chloride for the potassium tetrathionate and lauyrl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl pyridinium) pentathionate is obtained.
  • Example 57 This example differs from Example 1 in the substitution of potassium hexathionate and N-lauryl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl pyridinium) hexathionate is obtained.
  • Example 58 This example differs from Example 1 in the substitution of potassium trithionate and N-cetyl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl pyridinium) trithionate is obtained.
  • Example 59 This example differs from Example 1 in the substitution of N-cetyl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(N-cetyl pyridinium) tetrathionate is obtained.
  • Example 60 This example differs from Example 1 in the substitution of potassium pentathionate and N-cetyl pyridinium chloride for the potassium tetrathionate and lauryl dimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl pyridinium) pentathionate is obtained.
  • Example 61 This example diflfers from Example 1 in the substitution of potassium hexathionate and N-cetyl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl pyridinium) hexathionate is obtained.
  • Example 62 This example differs from Example 5 in the substitution of lauryl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis-(lauryl pridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
  • Example 63 This example differs from Example 5 in the substitution of cetyl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis-(cetyl pyridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
  • Example 64 This example differs from Example 5 in the substitution of octadecyl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis-(octadecyl pyridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
  • Example 65 This example differs from Example 1 in the substitution of potassium trithionate and N-(lauroyl colamino formyl methyl) pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-(lauroyl colamino formyl methyl) pyridinium) trithionate is obtained.
  • Example 66 This example differs from Example 5 in the substitution of N-(lauroyl colamino formyl methyl) pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Example 67 This example differs from Example 1 in the substitution of potassium trithionate and N-lauryl N-methyl morpholinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl N-methyl morpholinium) trithionate is obtained.
  • Example 68 This example difiers from Example 1 in the substitution of N-lauryl N-methyl morpholinium chloride for the lauryl trimethyl ammonium chloride of Example 1. His- (N-lauryl N-methyl morpholinium) tetrathionate is obtained. By the substitution of the pentathionate and hexathionate, respectively, for the tetrathionate, bis-(N-lauryl N-methyl morpholinium) penta and hexathionates are produced.
  • Example 69 This example diflers from Example 1 in the substitution of potassium trithionate and N-alkyl N-ethyl morpho- Example '71 This example differs from in the substitution of N-lauryl N-methyl morpholinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Example 72 This example differs from Example l in the substitution of potassium trithionate and N-lauryl N-methyl piperidinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively,'of Example 1. Bis-(N-lauryl N-methyl piperidinium) trithionate is obtained.
  • Example 73 This example difiers from Example 1 in the substitution of potassium trithionate and N-cetyl N-methyl piperidinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl N-methyl piperidinium) trithionate is obtained.
  • potassium tetrathionate, pentathionate and hexathionate, respectively, for the potassium trithionate of this example corresponding tetrathionates, pentathionates and hexathionates result.
  • Example 74 This example differs from Example in the substitution of N-lauryl N-rnethyl piperidinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
  • Bis-(N- lauryl N-methyl piperidinium) polythionate containing an average of from 8 to sulfur atoms per molecule of compound is obtained.
  • Example 75 This example differs from Example 1 in the substitution of lauryl quinolinium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(lauryl quinolinium) tetrathionate is obtained.
  • Example 76 This example ditfers from Example 5 in the substitution of cetyl quinolinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(cetyl quinolinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
  • the new compounds of this invention possess the therapeutic properties of the polythionates and the germicidal, bacteriacidal and fungicidal properties of the quaternary ammonium compounds forming the cation of the compound. Hence, they can be used in the manufacture of cosmetics, such as hair tonics, lipsticks, face creams, etc., and also for medicinal uses, as an adjuvant in preparations and many apparently'widely difie'rent embodiments of this invention can be *made 'without departing from the scope of the claims, -it is intended 'that all matter c'ontaine'd in th'e abovedescription shall be interpreted "as illustrative and'notina li'miting s'ense.
  • 'A polythionatecompound substantially insoluble in water, soluble in "alcohoLand'stablein acid and neutral media, and being of the general formula ⁇ in which' Qisseleict'ed from th e 'group consisting of (1) -qi'1'aternaryammoniiim havingfour alkyl groups, one of which contains from 8 to 20 carbon atoms and each of the other three of which contains from 1 to 3 carbon atoms; (2) dialkyl morpholinium and dialkyl piperidinium, wherein one of the alkyl groups contains from 8 to 20 carbon atoms and the other from 1 to 3 carbon atoms; (3) alkyl pyridinium and alkyl iso-quinolinium, wherein the alkyl contains from 8 to 20 carbon atoms; (4) trialkyl phenyl alkyl in which the phenyl alkyl group contains from 7 to 15 carbon atoms, one of the other alkyl groups containing from 8 to 20 carbon atoms
  • a quaternary ammonium polythionate having the formula R1 ⁇ /CHzC2 /N ⁇ /O]S Oa R2 CHrC 2 z in which R is an alkyl group containing from 8 to 20 carbon atoms, R is an alkyl group containing from 1 to 3 carbon atoms, and x has a value of from 3 to 10 inclusive.
  • a process of producing a polythionate compound substantially insoluble in water, soluble in alcohol and stable in acid and neutral media which comprises reacting an alkali metal polythionate containing from 3 to 10 atoms of sulfur with a quaternary ammonium compound having a molecular weight of from 190 to 470, and having a formula QZSIOB in which Q is selected from the group consisting of (1) quaternary ammonium having four alkyl groups, one of which contains from 8 to 20 carbon atoms and each of the other three of which contains from 1 to 3 carbon atoms; (2) dialkyl morpholinium and dialkyl piperidinium, wherein one of the alkyl groups contains from 8 to 20 carbon atoms and the other from 1 to 3 carbon atoms;
  • alkyl pyridinium and alkyl iso-quinolinium wherein the alkyl contains from 8 to 20 carbon atoms; (4) trialkyl phenyl alkyl in which the phenyl alkyl group contains from 7 to 15 carbon atoms, one of the other alkyl groups containing from 8 to 20 carbon atoms, and the other from 1 to 3 carbon atoms; (5) alkyl phenyl alkyl morpholinium and piperidinium in which the alkyl group contains from 8 to 20 carbon atoms and the phenyl alkyl group from 7 to 15 carbon atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

POLYTHIONATE COMPOUND SUBSTANT-IALLY INSOLUBLE [N WATER Torben Ernil.Neesby,,New Brunswick, N. 1., assignor to Carroll Duuham Smith Pharmacal Co., a corporation of New Jersey N Drawing. ApplicationMay 19, 1955, Serial No. 509,695
9 Claims. (Cl. 260-2471) This invention relates to novel polythionates and to their preparation.
This application is a continuation-impart of my copending application Serial No. 315,827 filed October. 20, 1952, and now abandoned.
Inorganic salts of polythionates, including stabilized aqueous solutions thereof, have found application in the cosmetic and other fields as adjuvants for different products, such as hair tonics, etc. Where, however, it is desired to apply such polythionates to cosmetics containing alcohol or consisting chiefly of fatty or waxy materials, diflicultieshave been encountered because of their poor solubility in such media. Another objection to alkali metal polythionates heretofore use-d is that in order to maintain them stabilizedit is generally necessary to maintain them at a low pH, e. g., 3 or less. This seriously interferes with their use in many fields in which neutral or slightly acid conditions are desired.
It is among the objects of this invention to provide a stable polythionate composition which is soluble in alcohol and remains stable in acid or neutral media.
Another object is to provide a polythionate composition which in addition to the therapeutic properties attributable to the presence of the polythionate radical, has desirable germicidal properties.
Still another object of the invention is to provide a method of producing such polythionate compositions.
Other objects and advantages of this invention will be apparent from the following detailed description thereof.
The novel polythionate compounds are of the general structural formula:
in which Qis:
(1) A quaternary ammonium radical, having four alkyl groups, R R R and R of which R preferably contains from 8 to 20 carbon atoms, and each of. th others contains from, 1 to 3 carbon atoms; or
(2) Dialkyl morpholinium or dialkyl piperidinium, wherein one of the alkyl groups contains from-8 to 20 carbon atoms and the other from 1 to 3 carbon. atoms; or
(3) Alkylpyridinium or alkyl iso-quinolinium, wherein the alkyl group contains from: 8. to.20 carbon-atoms; or
(4) Tri-alkyl phenyl alkyl in which the; phenyl alkyl group contains from 7 to- 15 carbon atoms, one; of; the other alkyl groups containing 8 .to 20 carbon atoms and the other 1 to 3 carbon atoms; or
Alkyl phenyl alkyl morpholinium or piperidinium in which the. alkyl group contains 8: to 20 carbon atoms and the. phenylalkyl group 7 to 15 carbon atoms;
x has a value of from 3 to 10, inclusive, preferably 3 tov 6, inclusive; and the cation, such as the quarternary ammonium base portion of the compound has a molecular weight of from 190 to. 470 and the polythionate anion has a molecular weight of from 192 to 288 or higher up to about 416.
tent O 2,815,344 Patented Dec. 3, 1957 The formula for the quaternary ammonium polythionate is as follows:
Rr-N-Ra 3:011
R4 2 in which R is an alkyl group containing from 8 to carbon atoms and each of R R and R is an alkyl group containing from 1 to 3 carbon atoms.
in which R R and x havethe values above noted.
The formula for the piperidinium compound of this invention is as follows:
in which R and R and x have the values above noted.
The .formula for the, pyridinium compound is as follows;
CH OH [RI-N onl lszm CH=C z in which R and x have the values above noted.
The formula for the iso-quinolinium compound is as follows:
Caz
in whichv R and x have the values above noted.
Examples of such compounds are:
1) Bis-(lauryl trimethyl ammonium) trithionate, tetrathionate, pentathionate, hexathionate, and other higher polythionates.
(2) Bis-(lauryl dimethyl benzyl ammonium) trithioa nate, tetrathionate, pentathionate, hexathionate, and higher polythionates.
(3) Bis-(octa decyl trimethyl ammonium) trithionate, tetrathionate, pentathionate, hexathionate, and higher polythionates.
(4) Bis-(N-l'auryl pyridin-ium) trithionate, tetrathionate, pentathionate, hexathionate, and higher polythionates.
(5) Bis-(cetyl dimethyl benzyl ammonium) trithionate, tetrathionate, pentathionate, hexathionate, and higher polythionates.
(6) Bis-(octadecyl trimethyl ammonium) trithionate,v tetrathionate, pentathionate, hexathionate, and higher polythionates.
(7) Bis-(hexadecyl trimethyl ammonium) trithionate, tetrathionate, pentathionate, hexathionate, and higher polythionates.
(8) Bis-('dodecyl acetamido dimethyl benzyl ammo. nium) trithionate, tetrathionate, pentathionate, hexathiomate, and higher polythionates.
(9) Bis-(para-alkyl tolyl methyl trimethyl ammonium) trithionate, tetrathionate, pentathionate, hexathiomate, and higher polythionates.
(10) Bis-(para-di-isobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium) trithionate, tetrathionate, pentathionate, hexathionate, and higher polythionates.
(11) Bis-(N-lauryl N-methyl morpholinium) trithiopentathionate,
in which n equals 8 to 16 and x has a value of from 3 to 10; when n is 10 the compound is bis-(N-(lauroyl colamino formyl-methyl) pyridinium) polythionate.
Bis-(N-fatty radical (from soya oil containing 33 or 35 hydrogen atoms)-N-ethyl morpholinium) polythionate.
In compound 9 above the alkyl group contains 12 carbon atoms.
The novel crude quaternary ammonium polythionates are wax-like compounds. Upon purification, for example, by filtration with activated carbon and crystalliza tion from solution, they are semi-crystalline or crystalline in character. Compounds of penta, hexa and higher polythionates are substantially insoluble in water provided that the cation (quaternary ammonium base) has a molecular weight of 232 or more. Tetrathionate compounds having a molecular weight below 232 are somewhat soluble in water. These compounds generally forni viscous aqueous solutions.
The substantial insolubility in water of the penta, hexa and higher polythionates is indeed surprising because both the quaternary ammonium base and the polythionates are readily soluble in water, and. the polythionic acids are known to be very strong acids, even stronger than sulfuric acid. Unexpectedly, however, I have found that the reaction of a quaternary ammonium base having a molecular weight in excess of 232 and of the type hereinabove set forth, and a penta or higher polythionate results in quaternary ammonium polythionate compounds which are practically insoluble in Water. They are stable, i. e., do not readily decompose, and this is the case even when the media in which they are incorporated are neutral or slightly acid.
The stability of the compounds of this invention is also unexpected, because the inorganic polythionates, including the alkali metal salts thereof, are unstable and tend to deposit sulfur in neutral or slightly acid media and at times even in strongly acid media. Thus, aqueous solutions of potassium pentathionate and potassium hexathionate, even in a half normal hydrochloric acid solution, show signs of precipitation of sulfur after a few minutes at temperatures of 25 C. This precipitation of sulfur takes place simultaneously with the formation of lower polythionic acids. The compounds of this invention, on the other hand, in the absence of water, remain stable indefinitely. An aqueous suspension of the compounds of this invention at a pH of 1 remain stable for long periods of time, and this is particularly true of the quaternary ammonium trithionate, tetrathionate, pentathionate, and hexathionate. Their stability has been found suflicient, without the addition of any stabilizers, to allow the production of alcoholic solutions or aqueous suspensions for technical, cosmetic and therapeutic uses. Evidently, the quaternary ammonium cation has a stabilizing effect on the polythionate molecule.
I The polythionates of this invention are unstable in the presence of alkali. When treated with alkaline solutions they rapidly decompose to form the corresponding thiosulfates.
The polythionates of this invention are soluble in alco-- hols, e. g., ethyl alcohol, isopropyl alcohol, etc., and in many organic solvents, particularly the chlorinated hydrocarbons, such as dichloroethylene.
The properties of the compounds of this invention vary with the size of the polythionate molecule and with the molecular weight of the cation. Thus, the bis-(dodecylacetamido dimethyl benzyl) polythionate is soluble in waxes, such as those used for lipstick manufacture, and hence can be efiiciently introduced into lipsticks. Most of the quaternary ammonium polythionates, however, are substantially insoluble in hydrocarbons. They have a high phenol co-efiicient, i. e., germicidal efficiency. However, the larger the sulfur containing anion in general, the smaller the phenol co-efiicient.
The compounds of this invention are prepared by reacting an alkali metal polythionate, preferably the potassium polythionate in aqueous solution, with an aqueous solution of the quaternary ammonium base. The reaction readily takes place as long as at least /2 mol of polythionate is present per mol of quaternary ammonium base, and the medium in which the reaction occurs has a low concentration or contains no chlorine (C1) or sulfate (S0 ions.
The reaction may be carried out at any temperature below the decomposition temperature of the reactants or of the reaction product. It proceeds readily at room temperatures (2025 C.), and, hence, it is preferable to operate at room temperatures. Desirably, the reaction is carried out in the presence of a solvent for the quaternary ammonium polythionate product. A preferred solvent is dichloroethylene.
The following examples are given for purposes of illustrating the invention. It will be understood that the invention is not limited to these examples.
GROUP IEXAMPLES IN WHICH R AND R; OF THE FORMULA l ABOVE ARE A HYDROCAR BON AND AN ALKYL GROUP, RESPECTIVELY Example 1 A solution of 50 grams of potassium tetrathionate in 1,000 cc. of water is acidified to a pH of 1 with hydrochloric acid. To this solution is added 100 cc. of a 50% solution of lauryl trimethyl ammonium chloride in isopropyl alcohol and 100 cc. of dichloroethylene while stirring. When the reaction is complete, e. g., after about 10 minutes, the dichloroethylene layer is separated from the aqueous phase and washed with water. Thereafter, the dichloroethylene solvent is evaporated by blowing air over-the surface of the solution. The residual waxy solid is dried by exposure to the atmosphere at room temperature.
Upon analysis of this waxy solid by titration (after decomposition with potassium cyanide and sulfite) it shows a content of bis-(lauryl trimethyl ammonium) tetrathionate; the remaining 10% is water. If dried out further the product becomes crystalline.
By the substitution of potassium pentathionate and hexathionate, respectively, for the potassium tetrathionate of this example bis-(lauryl trimethyl ammonium) pentathionate and hexathionate result.
Example 2 'This example differs from Example 1 in the substitution of potassium trithionate and octadecyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(octadecyl trimethyl ammonium) trithionate results. This product is a semi-crystalline solid.
Example 3 In this example, octadecyl trimethyl ammonium chloride is substituted for the lauryl trimethyl ammonium sulfate is removed from this solution.
chloride of Example 1. Otherwise, the .procedure .is the same. Bis-(octadecyl trimethyl ammonium) tetrathionate results. This compound is a semi-crystalline solid.
Example 4 Example 5 1,000 grams of crystalline sodium thiosulfate are dissolved in 10,000 cc. of water, the resultant solution filtered and 4 kg. of crushed ice are added. 200 'cc. of S Cl are dissolved in 400 'cc. of ethyl ether. This solution along with 250 cc. of concentrated sulfuric acid are poured into the thiosulfate solution while stirring vigorously. The solution is then agitated by blowing-air therethrough for 3 days; The sedimented sulfur is filtered off. Blowing of air through the solution is continued for 14 days, and then 20 cc. of a saturated solution of cupric acetate are added. The resultant solution is concentrated by evaporation at temperatures not over 30 C. to form a viscous solution, and the precipitated sodium The solution is then diluted With water to a volume of 1,000 cc., and cc. of 50% lauryl trimethyl ammonium chloride are then added together with 25 cc. of dichloroethylene. The dichl-oroethylene solution is then separated from the aqueous phase, and the solvent removed by evaporation. A somewhat oily and sticky product results; this product is bis-(lauryl trimethyl ammonium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound. This compound is soluble in alcohol and chlorinated solvents. It is readily decomposed by alkali.
By the addition of another 10 'cc. of 50% lauryl trimethyl ammonium chloride and 25 cc.- of dichloroethylene to the reaction product, a new compound may be obtained having a lower average sulfur content, but containing more than 6 sulfur atoms per molecule. The new product contains about 7 to 8 sulfur atoms 'per molecule.
Example 6 This example diifers from Example 1 in the substitution 'of potassium pentathionate and octadecyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(octadecyl trimethyl ammonium) pentathionate is obtained as a wax-like solid.
Example 7 This example differs from Example 1 in the substitu' tion of potassium trithionate and hexadecyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example l. Bis-(hexadecyl trimethyl ammonium) trithionate is obtained.
Example 9 This example difiers from Example 1 in the substitution of hexadecyl trimethyl ammonium chloride for of monium chloride for the Ilauryl'trimethyl ammonium chloride,-respectively, of Example 51.
substitution 'for the cetyl trimethyl ammonium chloride of Example 'tively, of Example 1.
9 to 15 *carbon atoms. methyl ammonium) trithionate is for the lauryl lauryl trimethyl ammonium chloride of Example Bishexadecyl -trimthyl ammonium) tetrathionate is obtained.
Example 10 This example differs from Example 1 in the substitution potassium pentathionateand hexadecyl trimethyl 'ampotassium tetrathionate =and fBis-(hexadecyl trimethyl ammonium) pentathionate is obtained.
Example 11 This example differs from Example 5 in the substitution of cetyl-trimethyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5. A bis-(cetyl trimethyl ammonium) polythionate is obtained containing an average of from 8 to 10 sulfur atoms per molecule of compound.
Example 13 This example differs from the preceding exampleinthe of octadecyl trimethyl ammonium chloride 12. Bis-(octadecyl trimethyl ammonium) polythionate having an average of from 8 to 12 sulfur atoms per molemile of compound is thus obtained.
GROUP IA-EXAMPLES IN WHICH R AND R OF THE FORMULA 1 ABOVE ARE ARALKYL AND ALKYL, "RESPECTIVELY Example 1 4 This examplediffers from Example 1 in the substitution of potassium trithionate and para-alkyl tolyl methyl trimethyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respec- The alkyl group of the para-alkyl ammonium chloride contains from Bis-(para-alkyl tolyl methyl triobtained.
tolyl methyl trimethyl Example 15 This example dilfers from Example 1 in the substitution of para-alkyl tolyl methyl trimethyl ammonium chloride trimethyl ammonium chloride of Example 1. The alkyl group contains from 9 to 15 carbon atoms. Bis-(para-alkyl tolyl methyl trimethyl ammonium) tetrathionate is obtained.
Example 16 This example differs from Example 1 in the substitution of potassium hexathionate and para-alkyl tolyl methyl trimethyl ammonium chloride for the nate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(para-alkyl tolyl methyl trimethyl ammonium) hexathionate is obtained.
Example 17 This example differs from Example 5 in the substitution of para-alkyl tolyl methyl trimethyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5. The alkyl group contains from 9 to 15 carbon atoms. Bis-(para-alkyl tolyl methyl trimethyl ammonium) polythionate is obtained having an average of from 810 10 sulfur atoms per molecule of compound,
. 7 GROUP II--EXAMPLES IN WHICH R; AND R; OF
THE FORMULA 1 ABOVE ARE A HYDROCAR- BON GROUP AND AN ARALKYL GROUP, RE- SPECTIVELY Example 18 This example differs from Example 1 in the substitution of potassium trithionate and lauryl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(lauryl dimethyl benzyl ammonium) trithionate is obtained as soft crystals.
Example 19 This example differs from Example 1 in the substitution of lauryl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis- (lauryl dimethyl benzyl ammonium) tetrathionate is obtained.
Example 20 This example differs from Example 1 in the substitution of potassium pentathionate and aluryl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(lauryl dimethyl benzyl ammonium) pentathionate is obtained.
Example 21 This example differs from Example 1 in the substitution of potassium hexathionate and lauryl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(lauryl dimethyl benzyl ammonium) hexathionate is obtained.
Example 22 This example differs from Example 1 in the substitution of potassium trithionate and cetyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(cetyl dimethyl benzyl ammonium) trithionate is obtained.
Example 23 This example differs from Example 1 in the substitution 1 of cetyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis- (cetyl dimethyl benzyl ammonium) tetrathionate is obtained.
Example 24 This example differs from Example 1 in the substitution of potassium pentathionate and cetyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Ex- 7 ample 1. Bis-(cetyl dimethyl benzyl ammonium) pentathionate is obtained.
Example 25 This example differs from Example 1 in the substitution of potassium hexathionate and cetyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example l. Bis-(cetyl dimethyl benzyl ammonium) hex thionate is obtained.
Example 26 chloride is available commercially under the trade name Rhodalon. A 50% solution of Rhodalon is used in this example. Bis-(alkyl dimethyl benzyl ammonium) trithionate is obtained.
Example 27 This example differs from Example 1 in the substitution of a solution of Rhodalon for the lauryl trimethyl ammonium chloride of Example 1. Bis-(alkyl dimethyl benzyl ammonium) tetrathionate is obtained.
Example 28 This example differs from Example 1 in the substitution of potassium pentathionate and a 50% solution of Rhodalon for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of' Example 1. Bis-(alkyl dimethyl benzyl ammonium) pentathionate is obtained.
Example 29 Example 30 This example differs from Example 1 in the substitution of potassium trithionate and an alkyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. The alkyl dimethyl benzyl ammonium chloride used in this example is the product sold commercially under the trade name Roccal or BTC 50%, in which products the alkyl substituent is a mixture of alkyls having from 8 to 18 carbon atoms. Bis-(alkyl dimethyl benzyl ammonium) trithionate is obtained in which the alkyl substituent is a mixture of alkyl radicals having from 8 to 18 carbon atoms.
Example 31 This example differs from Example 1 in the substitution of Roccal for the lauryl trimethyl ammonium chloride of Example 1. Bis-(alkyl dimethyl benzyl ammonium) tetrathionate is obtained.
Example 32 Example 33 This example differs from Example 1 in the substitution of potassium hexathionate and Roccal for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(alkyl dimethyl benzyl ammonium) hexathionate is obtained.
Example 34 This example differs from Example 5 in the substitution of lauryl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5.
- Bis-(lauryl dimethyl benzyl ammonium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
Example 35 This example differs from Example 5 in the substitution of cetyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis- (cetyl dimethyl benzyl ammonium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
9 Example 36 This example differs from Example in the substitu- Example 37 This example difife'rs from Example l in the substitution of lauryl dimethyl ('y phenyl) propyl ammonium chloride-.for-the-lauryl trimethyl ammonium chloride of Example '1. Bis-(lauryl dimethyl ('y phenyl) propyl ammonium) tetrathionate results.
Example 38 This example diifersfromExa'mple l in the substitution of c etyl dimethyl 9 phenyl) ethylammonium chloride forthe lauryl trimethyl ammonium chloride of Exam- .ple 1. Bis-(cetyl dimethyl (,8 phenyl) ethyl ammonium) tetrathionate results.
GROUP Ill -EXAMPLES IN WHICH R AND R4 OF ITHEIFORMULA 1 ABOVE ARE AN ETHERAND BAR'ALKYL, "RESPECTIVELY Example 39 This exampledilfers from Example 1 in the substitution of potassium trithionate and para-diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the -potajssium tetrathi'onate and lauryl trimethyl ammonium fhloricle, respectively, of Example 1. Bis-(para-diisobutylph'enoxy thoxy ethyl; dimethyl benzyl ammonium) trithionate' is obtained.
' Example 40 I" This-example-differs-from Example 1 in'the-substitu- :tion-of.para diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride f or the-lauryl trimethyl am monium chloride of Example 1. Bis-(para-diisobutyl phenoxy ethoxy ethyl diinethylbenzyl ammonium) tetrathionateis obtained.
Example 41 This example differs from Example 1 in the substitu- "t'ionofpotas's'ium pentathionate and para-diisobutyl phenoxy'ethoxy ethyl dimethyl benzyl ammonium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis- (para-diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium) .pentathionate is obtained.
' Example 42 This"example'diifers from Examplel in the substitufion ofipotassitim hexathionate and para-diisobutyl phe- "noxy ethoxy ethyl dimethyl benzyl ammonium chloride for the potassium"tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(paradiisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium) r hexathionate is'- obtained.
Example 43 This example differs from Example 1 in the substitu- 'tionof'para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium) tetrathionate is obtained.
Example 45 This example differs from Example 1 in the substitution of potassium pentathionate and para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the potassium tetrathionate an-dlauryl trimethyl ammonium chloride, respectively, of Example 1. Bis- (para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium) pentathionate is obtained.
Example 46 This exampledilfers from Example 1 in the substitution of potassium hexathionate and para-diisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium chloride for theapotassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(paradiisobutyl cresoxy ethoxy ethyl dimethyl benzyl ammonium) hexathionate is obtained.
Example 47 p This example diflers from Example 5 in the substitution -of para-diisobutyl phenoxy ethoxy ethyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(para-diisobutyl phenoxy ethoxy dimethyl benzyl ammonium) polythionate'containing an average of from 8 to 10 sulfuratoms permolecule 1 of compound is obtained.
Example 48 This-example difiers from Example 5 in the substitution of para-diisobutyltoloxy ethoxy ethyl dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(para-diisobutyl toloxy ethoxy dimethyl benzyl ammonium) polythionate containing an average .of from 8 to 10 sulfuratoms per moleculeof compound is obtained.
GROUP IV-"EXAMPILES IN WHICH R AND R OF FORMULA 1 ABOVE ARE AN AMIDE AND AN ARALKYL GROUP, RESPECT IVELY Example 49 I 'Thisexample differs fromExample 1 in the'sub'stitu- "tion of potassium trithionate and dodecyl acetamido dimethyl benzylam'monium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(dodecyl acetamido dimethyl benzyl ammonium) trithionate is obtained.
Example 50 This example dilfersfrom Example '1 in the substitution of dodecyl acetamido dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of "Example'l. Bis-(dodecylacetamido dimethyl benzyl-ammonium) tet'rathionate is obtained.
' Example 51 spectively, of Example 1. Bis-(do'decyl acetamido dimethyl benzyl ammonium)'pentathionate is obtained.
'Example'52 spectively, of Example 1. Bis-(dodecyl acetamido 'dimethyl benzyl ammonium)'hexathionate is obtained,
Example '53 i This example differs from Example 5 inthe substitution of dodecyl acetamido dimethyl benzyl ammonium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(dodecyl acetamido dimethyl benzyl ammonium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
GROUP VEXAMPLES IN WHICH R R AND R; OF THE FORMULA 1 ABOVE ARE COMBINED WITH THE BASIC NITROGEN ATOM TO FORM A PYRIDINIUM COMPOUND Example 54 This example differs from Example 1 in the substitution of potassium trithionate and N-lauryl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl pyridinium) trithionate is obtained as a crystalline compound.
Example 55 This example diifers from Example 1 in the substitution of N-lauryl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(N-lauryl pyridinium) tetrathionate is obtained.
Example 56 This example differs from Example 1 in the substitution of potassium pentathionate and N-lauryl pyridinium chloride for the potassium tetrathionate and lauyrl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl pyridinium) pentathionate is obtained.
Example 57 This example differs from Example 1 in the substitution of potassium hexathionate and N-lauryl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl pyridinium) hexathionate is obtained.
Example 58 This example differs from Example 1 in the substitution of potassium trithionate and N-cetyl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl pyridinium) trithionate is obtained.
Example 59 This example differs from Example 1 in the substitution of N-cetyl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(N-cetyl pyridinium) tetrathionate is obtained.
Example 60 This example differs from Example 1 in the substitution of potassium pentathionate and N-cetyl pyridinium chloride for the potassium tetrathionate and lauryl dimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl pyridinium) pentathionate is obtained.
Example 61 This example diflfers from Example 1 in the substitution of potassium hexathionate and N-cetyl pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl pyridinium) hexathionate is obtained.
Example 62 This example differs from Example 5 in the substitution of lauryl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(lauryl pridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
12 Example 63 This example differs from Example 5 in the substitution of cetyl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(cetyl pyridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
Example 64 This example differs from Example 5 in the substitution of octadecyl pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(octadecyl pyridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
GROUP VIEXAMPLES IN WHICH R OF THE FORMULA 1 ABOVE IS AN ESTER AND R R AND R; OF THIS FORMULA ARE COMBINED TO FORM A PYRIDINIUM COMPOUND Example 65 This example differs from Example 1 in the substitution of potassium trithionate and N-(lauroyl colamino formyl methyl) pyridinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-(lauroyl colamino formyl methyl) pyridinium) trithionate is obtained. Substitution of potassium tetrathionate, pentathionate and hexathionate, respectively, for the potassium trithionate of this example results in corresponding tetrathionates, pentathionates and hexathionates, respectively.
Example 66 This example differs from Example 5 in the substitution of N-(lauroyl colamino formyl methyl) pyridinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(N-(lauroyl colamino formyl methyl) pyridinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound results.
GROUP VIIEXAMPLES IN WHICH R AND R OF THE FORMULA l ABOVE ARE COMBINED TO FORM A MORPHOLINIUM COMPOUND Example 67 This example differs from Example 1 in the substitution of potassium trithionate and N-lauryl N-methyl morpholinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-lauryl N-methyl morpholinium) trithionate is obtained.
Example 68 This example difiers from Example 1 in the substitution of N-lauryl N-methyl morpholinium chloride for the lauryl trimethyl ammonium chloride of Example 1. His- (N-lauryl N-methyl morpholinium) tetrathionate is obtained. By the substitution of the pentathionate and hexathionate, respectively, for the tetrathionate, bis-(N-lauryl N-methyl morpholinium) penta and hexathionates are produced.
Example 69 Example 70 This example diflers from Example 1 in the substitution of potassium trithionate and N-alkyl N-ethyl morpho- Example '71 This example differs from in the substitution of N-lauryl N-methyl morpholinium chloride for the lauryl trimethyl ammonium chloride of Example 5.
Bis-(N-lauryl N-methyl morpholinium) polythionate coni taining an average of from '8 'to 10 sulfur atoms per molecule of compound is obtained.
GROUP VIII-EXAMPLES]N WHICH R AND R OF FORMULA 1 ABOVE ARE COMBINED TO FORM A PIPERIDINIUM COMPOUND Example 72 This example differs from Example l in the substitution of potassium trithionate and N-lauryl N-methyl piperidinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively,'of Example 1. Bis-(N-lauryl N-methyl piperidinium) trithionate is obtained. By the substitution of potassium tetrathionate, pentathionate and hexathionate, respectively, for the potassium trithionate of this example corresponding tetrathionates, pentathionates and hexathionates result.
Example 73 This example difiers from Example 1 in the substitution of potassium trithionate and N-cetyl N-methyl piperidinium chloride for the potassium tetrathionate and lauryl trimethyl ammonium chloride, respectively, of Example 1. Bis-(N-cetyl N-methyl piperidinium) trithionate is obtained. By the substitution of potassium tetrathionate, pentathionate and hexathionate, respectively, for the potassium trithionate of this example corresponding tetrathionates, pentathionates and hexathionates result.
Example 74 This example differs from Example in the substitution of N-lauryl N-rnethyl piperidinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(N- lauryl N-methyl piperidinium) polythionate containing an average of from 8 to sulfur atoms per molecule of compound is obtained.
GROUP IX-EXAMPLES IN WHICH R R AND R; OF FORMULA 1 ABOVE ARE COMBINED TO FORM A QUINOLINIUM COMPOUND Example 75 This example differs from Example 1 in the substitution of lauryl quinolinium chloride for the lauryl trimethyl ammonium chloride of Example 1. Bis-(lauryl quinolinium) tetrathionate is obtained.
Example 76 This example ditfers from Example 5 in the substitution of cetyl quinolinium chloride for the lauryl trimethyl ammonium chloride of Example 5. Bis-(cetyl quinolinium) polythionate containing an average of from 8 to 10 sulfur atoms per molecule of compound is obtained.
The new compounds of this invention possess the therapeutic properties of the polythionates and the germicidal, bacteriacidal and fungicidal properties of the quaternary ammonium compounds forming the cation of the compound. Hence, they can be used in the manufacture of cosmetics, such as hair tonics, lipsticks, face creams, etc., and also for medicinal uses, as an adjuvant in preparations and many apparently'widely difie'rent embodiments of this invention can be *made 'without departing from the scope of the claims, -it is intended 'that all matter c'ontaine'd in th'e abovedescription shall be interpreted "as illustrative and'notina li'miting s'ense.
Having thus described my invention, what I claim as new and desire to secure b'y-Letters Patent of the United States is:
'1. 'A polythionatecompoundsubstantially insoluble in water, soluble in "alcohoLand'stablein acid and neutral media, and being of the general formula {in which' Qisseleict'ed from th e 'group consisting of (1) -qi'1'aternaryammoniiim havingfour alkyl groups, one of which contains from 8 to 20 carbon atoms and each of the other three of which contains from 1 to 3 carbon atoms; (2) dialkyl morpholinium and dialkyl piperidinium, wherein one of the alkyl groups contains from 8 to 20 carbon atoms and the other from 1 to 3 carbon atoms; (3) alkyl pyridinium and alkyl iso-quinolinium, wherein the alkyl contains from 8 to 20 carbon atoms; (4) trialkyl phenyl alkyl in which the phenyl alkyl group contains from 7 to 15 carbon atoms, one of the other alkyl groups containing from 8 to 20 carbon atoms, and the other from 1 to 3 carbon atoms; (5) alkyl phenyl, alkyl morpholinium and piperidinium in which the alkyl group contains from 8 to 20 carbon atoms and the phenyl alkyl group from 7 to 15 carbon atoms, and the cation has a molecular weight of from to 470 and x is selected from the group of 3 to 10 inclusive.
2. Bis-(para-alkyl tolyl methyl trimethyl ammonium) polythionate in which the polythionate anion contains from 3 to 10 sulfur atoms and in which the alkyl group contains from 9 to 15 carbon atoms.
3. A quaternary ammonium polythionate having the formula R1\ /CHzC2 /N\ /O]S=Oa R2 CHrC 2 z in which R is an alkyl group containing from 8 to 20 carbon atoms, R is an alkyl group containing from 1 to 3 carbon atoms, and x has a value of from 3 to 10 inclusive.
4. A quaternary ammonium polythionate having the formula R1 CHz-CHa Rf formula an-cg R1N\ CH szot on=o 1 in which R is an alkyl group containing from 8 to 20 carbon atoms, and x has a value of from 3 to 10 incluq sive.
' '6. A quaternary ammonium polythionate having the formula R as CH Cfi OH H 5100 /CE CH Cfi NA 2 in which R is an alkyl group containing from 8 to 20 carbon atoms, and x has a value of from 3 to 10 inclusive. 7. A process of producing a polythionate compound substantially insoluble in water, soluble in alcohol and stable in acid and neutral media which comprises reacting an alkali metal polythionate containing from 3 to 10 atoms of sulfur with a quaternary ammonium compound having a molecular weight of from 190 to 470, and having a formula QZSIOB in which Q is selected from the group consisting of (1) quaternary ammonium having four alkyl groups, one of which contains from 8 to 20 carbon atoms and each of the other three of which contains from 1 to 3 carbon atoms; (2) dialkyl morpholinium and dialkyl piperidinium, wherein one of the alkyl groups contains from 8 to 20 carbon atoms and the other from 1 to 3 carbon atoms;
(3) alkyl pyridinium and alkyl iso-quinolinium, wherein the alkyl contains from 8 to 20 carbon atoms; (4) trialkyl phenyl alkyl in which the phenyl alkyl group contains from 7 to 15 carbon atoms, one of the other alkyl groups containing from 8 to 20 carbon atoms, and the other from 1 to 3 carbon atoms; (5) alkyl phenyl alkyl morpholinium and piperidinium in which the alkyl group contains from 8 to 20 carbon atoms and the phenyl alkyl group from 7 to 15 carbon atoms.
8. The process of producing a quaternary ammonium polythionate as defined in claim 7, in which the process is carried out in the presence of a solvent for the quaternary ammonium polythionate.
9. The process defined in claim 8, in which the solvent is a chlorinated hydrocarbon.
References Cited in the file of this patent UNITED STATES PATENTS Marasco Apr. 6, 1943 OTHER REFERENCES

Claims (2)

1. A POLYTHIONATE COMPOUND SUBSTANTIALLY INSOLUBLE IN WATER, SOLUTION IN ALCOHOL, AND STABLE IN ACID AND NEUTRAL MEDIA, AND BEING OF THE GENERAL FORMAULA
3. A QUATERNARY AMMONIUM POLYTHIONATE HAVING THE FORMULA.
US509695A 1955-05-19 1955-05-19 Polythionate compound substantially insoluble in water Expired - Lifetime US2815344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US509695A US2815344A (en) 1955-05-19 1955-05-19 Polythionate compound substantially insoluble in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US509695A US2815344A (en) 1955-05-19 1955-05-19 Polythionate compound substantially insoluble in water

Publications (1)

Publication Number Publication Date
US2815344A true US2815344A (en) 1957-12-03

Family

ID=24027723

Family Applications (1)

Application Number Title Priority Date Filing Date
US509695A Expired - Lifetime US2815344A (en) 1955-05-19 1955-05-19 Polythionate compound substantially insoluble in water

Country Status (1)

Country Link
US (1) US2815344A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315534A (en) * 1941-04-29 1943-04-06 Du Pont Preparation of ammonium thiosulphates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315534A (en) * 1941-04-29 1943-04-06 Du Pont Preparation of ammonium thiosulphates

Similar Documents

Publication Publication Date Title
Marvel et al. An improved preparation of dithioesters and some reactions and spectral properties of these compounds
US4304932A (en) Process for producing novel carboalkylated surface active agents and product
DE1493799C3 (en) Process for the production of silicates of organic bases
US2815344A (en) Polythionate compound substantially insoluble in water
US2935522A (en) Organo-metallic titanium compounds
US2139935A (en) Thiocyanic and dithiocarbamic anhydrides and the process of making the same
USRE24763E (en) Ch ch j
ATE47401T1 (en) CHITOSAN-6-SULFATE AND PROCESS OF PRODUCTION.
US2265944A (en) Amidine salts of sulphosuccinic esters
US2842583A (en) Process for preparing 1, 3-bis (dimethylthiocarbamyl-mercaptomethyl)-urea
GB1502232A (en) Substituted 2-phenylimino-1,3-dithiolanes process for their preparation and their use as ectoparasiticidal agents
US3402194A (en) Preparation of thiolesters from aliphatic acid anhydrides and aromatic thiols
US3352898A (en) Process for production of bunte compounds
US1035756A (en) Process of making stable compounds containing hydrogen peroxid.
DD213219A5 (en) PROCESS FOR PREPARING CRYSTALLINE SODIUM CEFOPERAZONE
US1045451A (en) Process of making solid stable compounds containing hydrogen peroxid.
US3198699A (en) Method of combatting nematodes with formaldehyde-n-methyl dithiocarbamic acid salt condensation product
Farrell et al. Reaction with aromatic bases of the intermediate isolated from the NN-dimethylaniline–tetracyanoethylene reaction
GB1170841A (en) Substituted delta<2>-Thiazolines and their preparation
DE1001676B (en) Process for the production of condensation products
US2467602A (en) 2,3-bis-(benzamidomethylthio)-propanol
AT216486B (en) Process for the preparation of new mercaptoacylamides
DE932675C (en) Process for the preparation of esters of penicillin with alcohols containing a secondary amino group and of salts of these esters
KR810000895B1 (en) Process for preparing cephalosporin derivatives
US2344001A (en) Process for the production of alkali metal sulphides