US2810283A - Photoflash lamp - Google Patents

Photoflash lamp Download PDF

Info

Publication number
US2810283A
US2810283A US409338A US40933854A US2810283A US 2810283 A US2810283 A US 2810283A US 409338 A US409338 A US 409338A US 40933854 A US40933854 A US 40933854A US 2810283 A US2810283 A US 2810283A
Authority
US
United States
Prior art keywords
glass
lamp
cap
base
lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US409338A
Inventor
Cohen Arthur
Lutz Henry Joseph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Priority to US409338A priority Critical patent/US2810283A/en
Application granted granted Critical
Publication of US2810283A publication Critical patent/US2810283A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K5/00Light sources using charges of combustible material, e.g. illuminating flash devices
    • F21K5/02Light sources using charges of combustible material, e.g. illuminating flash devices ignited in a non-disrupting container, e.g. photo-flash bulb

Definitions

  • This invention relates to photoflash lamps. More particularly, it relates to a tipless type photoflash lamp and to a method of making the same.
  • the real pat-tern has been in making a good pressure seal in an oxidizing or even neutral atmosphere.
  • the sealing techniques heretofore suggested have not been practicable for this purpose and as a result photoflash lamps which are actually offered for sale have been kept at less than atmospheric pressure.
  • Figure 1 is an enlarged view of a front elevation of a photoflash lamp of this invention.
  • Figure 2 is a front elevation partly in section of a device suitable for use in manufacturing a flash lamp of the type illustrated in Figure l.
  • the flash lamp illustrated in Figure 1 of the drawings has a tubular glass envelope having a reduced and sized diameter, at the end which is sealed into the base portion of the flash lamp as shown in the drawings.
  • This tubular envelope 10 is sealed to a metallic base cap 14 Whose side walls extend upwardly a suflicient distance to embrace the reduced area 12 of the glass envelope 10.
  • the base of the cap is provided with a circularly depressed segment as shown at 16 which provides adequate spacefor the seating of a contact button 18 which is sealed therein in an air impervious and electrically insulated manner.
  • the method illustrated in the drawings is one in which a glass frit has been used to form a glass-to-metal seal between the button 18 and the seat as shown at 16 provided in the base structure 14.
  • the glass forming the seal is shown at 20.
  • the base there shown is provided with a centrally located opening at 22. This opening is sufficiently large to accommodate the passage of a wire lead 24 therethrough and is usually at least four times the diameter of the wire lead.
  • This Wire lead 24 is in good electrical contact with the contact button 18 but is insulated from the base cap 14 by means of a fused glass in much the same manner as is the button 18.
  • a second wire lead 26 is maintained in good electrical contact with the inside of the base 14.
  • These two lead members 24 and 26 are provided near their terminus with a blob of ignition paste as shown at points 28.
  • a thin filament 30 also connects the two lead wires 24 and 26 at these points.
  • the inside of the envelope 10 is further provided with a material such as shredded foil 29 which is capable of serving as a source of actinic light when the lamp is flashed.
  • the envelope 1b is, of course, sealed to the cap 14 by suitable means.
  • the material shown in Figure l is a glass enamel as shown at 31 produced from a glass f-rit.
  • the envelope which is used in the making of the lamps may, of course, be made of any gas impervious material which is sufiiciently transparent to permit the transmission of light which is produced therein. It should, of course, be of such characteristics that will enable it to be used without fear of flying fragments resulting from the burning of the materials within the lamp at the time the light is being produced by such conflagration. For this reason when glass is used as the enclosing envelope it has been found advisable to coat the outside of the glass with a clear lacquer 32 which will at least serve to bind the fragments even though the envelope itself might crack due to the heat and pressure developed during the rapid burning of the materials producing the light.
  • the tubular shape which is made use of in accordance with this invention makes it possible to provide a greater volume of the necessary oxygen within the lamp than would be possible if a lamp having similar outside proportions were used but were further provided with a restrictive area such as is usually customary with the flash lamps of the prior art which are necked down in the socket area. It has been found that lamps which have the design above shown can further be manufactured with the gas pressures within the lamp greater than those normally used in the lamps of the prior art. For the most part the lamps of the prior art usually contain a bit more than of an atmosphere in the form of oxygen. Lamps of the design shown herein can readily be made at pressures ranging up to 2 atmosphere while still maintaining the necessary safety factor.
  • the lamp as shown in Figure 1 is substantially enlarged. A more accurate sized lamp is shown in Figure 2 of the drawings which illustrates the manner of fabricating these lamps.
  • the metal material for the base cap 14 can be chosen from a wide variety of materials. When a direct seal is made between the envelope 10 and the base cap 14 it is, of course, preferable to make use of a material which will lend itself to this purpose such as a recognized glassto-metal sealing alloy. Many materials are known to the prior art.
  • the material can be so chosen as to have a coeflicient of contraction greater than the bulb or in the manufacture of the lamp a differential cooling schedule can be effected so that from a temperature representing the set point of the enamel to the room temperature the material has an efiective higher co-eflicientofcontraction than the bulb. This will result in a radial compressiontype of 3 t seal of cap flange around the bulb. Examples of metals which are suitable for use for this purpose are as follows: Sylvanias #4 alloy and alloys of the general chrome steel seriessuch as 446 and 430. When glass frit is used in making the seal cold roll steel can be used.
  • a preferred method of doing this is to first weld the electrode 26 to the inside of the base cap 14 and then coat the inside area particularly the inside Wall section with a glass frit in those cases in which cold rolled steel is used rather than a glass-to-metal sealing alloy.
  • the depression 16 on the outside of the base should also be so coated whereupon the button 18 to which the wire lead 24 has been centrally attached is placed within the seat and the two members placed Within a furnace atmosphere wherein the temperature can be raised to the fusion point of the glass frit so as to form a glass enameled surface with the base cap (or, if preferred, over the entire surface of the cap) and a glass seal between the button 18 and the bottom of the base cap 14 with a glass seal further present in the tip drawn portion of the cap at the point at which the wire lead 24 passes through the centrally positioned opening.
  • This cap is then ready for the welding of a filament across the leads 24 and 26 and the application of the ignition paste 28 which usually has a zirconium powder base.
  • the cap portion which has been prepared in accordance with the previously described method can be mounted on a metallic rod such as shown at in Figure 2 of the drawings.
  • the envelope containing the shredded foil can then be loosely seated within the annular sidewalls of the base cap 14 whereupon a hood-like member 42 is placed over the glass tubular area.
  • This hood-like member 42 is shown in Figure 2 of the drawings is further provided with a spring 44 extending upwardly from its top surface.
  • This spring is made sufiiciently long to enable it to engage the top of a bell jar-like member which is then placed on top of the spring and pressed downwardly so as to hold the tubular member 10 firmly against the supported cap 14.
  • the bell jar-like member 50 is seated on an "0 ring 52 and is pulled downwardly thereon onto an annular seat 54 by means of a screw threaded member 56 provided with an inwardly projecting flange 58 which engages an outwardly projecting flange 60 of the bell jar.
  • the lamp When the device has been assembled as indicated above the lamp is located in an hermetically sealed chamber whose only opening with the outside is through a series of holes 62 provided in the bottom end of the rod 46, which is tubular at this point and the tubular member 64 which. passes through the member 54 but is hermetically sealed thereto.
  • This tubular member 64 as shown in the drawings leads to a double T-shaped member 70, one leg 72 of which is connected to a vacuum pump and the other 74 to a source of oxygen gas with a third member 76 connected to a gauge and the fourth to the tube 64.
  • valves can be so regulated as to cause all the air to be withdrawn from within the tube after which upon proper manipulation of the valves oxygen gas can be introduced into the chamber to any desired pressure.
  • the pressure which has been found to be particularly suitable to date isone in the neighborhood of 1.6 atmospheres.
  • the radio frequency coil 70 which is shown surrounding the bell jar-like member 50 at a point close to the base cap 40 is activated.
  • the glass enamel within the annular area of the base cap is caused to soften, wetting the bulb, after which the entire device is permitted to cool. If this is done under the proper time temperature conditions a good glass-enamelmetal seal is formed at this point and the flash lamp can be withdrawn from within the bell jar 50 and is now ready for use.
  • the rod 40 as shown in Figure 2 of the drawings has been provided to act as a means for withdrawing heat from the base cap at a sufiiciently rapid rate to prevent the melting of the enamel immediately adjacent the button.
  • a good heat conducting material has been chosen with a sufficiently massive structure to perrnit adequateheat conduction from this critical area.
  • the member 42 besides serving to hold the tube firmly pressed against the cap member also serves as a heat shield. This member is preferably caused to extend downwardly to a point which is slightly below the top level of the base cap. This helps to isolate the direct radio frequency energy which is absorbed by the base cap 14 and hold it in the position where it will do the most good in melting the glass enamel and causing a direct glass-to-metal seal at the desired points. In a way it also serves as a heat shield and instrument for dissipating heat from undesired areas.
  • the projecting edge of the cap 14 not only adds strength to the structure and thereby permits the use of relatively thin metal stock but also serves as a means to help localize the heat during the sealing operation. Since the edge projects a slight distance further out from the center than does any other part of the lamp it is closest to the coil and therefore serves as the locus for the radio frequency energy as it is given ofli.
  • Projection lamps which use a neutral atmosphere can also be made in accordance with the fundamental principles of the method herein described.
  • the characteris tics of such lamps are also improved by such increase in pressure since one thereby aids in dissipating the heat given off during operation and also tends to decrease the vapor pressure of the tungsten filament. Both of these, of course, beneficially affect the life characteristics of the lamp.
  • a photoflash lamp comprising a metal cap-like base member, a glass enamel coating over the inside of said base member, said base member having a centrally-located depression in its outside surface, a coating of glass over the surface of said depression, a fiat contact button seated in said depression, sealed to said coating of glass and insulated thereby from said metal base member, said base member having a hole therethrough in said depression, a lead-in wire electrically connected to said button and extending through said hole but insulated from the metal base member, another lead-inwire electrically attached to said base member, an igniter supported by and electrically connected to said lead-in wires, a tubular light pervious member, closed at one end and carrying a filling of ignition material adapted to be set oif by an electrical impulse, said tubular member having an open end extending inside said cap-like metal base member and close to the side Walls thereof and being sealed to the enamel coating on said base member, the ignitable material being held around the igniter by said bulb.
  • an ignition material adapted to be set oif by an electrical impulse, a tubular light pervious member of reduced diameter at one end, a metal cap-like base member sealed thereto by a glass-to-metal seal to form a gas impervious structure, said base having annular projecting side walls of substantially the same outside diameter as that of the major portion of said light-pervious member and having a Central depression and a flat contact button seated in said depression but insulated therefrom.

Description

Oct. 22, 1957 A. COHEN ETl'AL PHOTOFLASH LAMP Filed Feb. 10, 1954 w n w i. m
M a E M x \awz QY XW a Q a y M h m 4/ V Z NMT M I. U ml. #4 WJ Hm TN f RE AH tates 1 Free PHOTOFLASH LAMP Arthur Cohen, East Meadow, and Henry Joseph Lutz,
Whrtestone, N. Y., assignors to Sylvania Electric Products Inc, a corporation of Massachusetts Application February 10, 1954, Serial No. 409,338
2 Claims. (Cl. 67--31) This invention relates to photoflash lamps. More particularly, it relates to a tipless type photoflash lamp and to a method of making the same.
There has been a great deal of effort expended in recent years to design and develop a photofiash lamp which is considerably smaller in size, more economical to produce and not provided with the normal bayonet or screw type socket of the lamps of the prior art. Although the lamps of the prior art have been greatly reduced in size throughout the years their basic configuration has remained substantially the same, due primarily, to the manufacturing problems which were encountered when trying to change the basic design of the lamp.
While it has been recognized that some of these objectives could be realized by increasing the gas pressure within the lamp the problem of sealing such a lamp has not been solved heretofore.
The real pat-tern has been in making a good pressure seal in an oxidizing or even neutral atmosphere. The sealing techniques heretofore suggested have not been practicable for this purpose and as a result photoflash lamps which are actually offered for sale have been kept at less than atmospheric pressure.
It is an object of this invention to provide a flash lamp having a radically different structural design than the lamps of the prior art but yet amenable to processing techniques which will permit the lamps to be made on a practicable basis.
It is a further object of this invention to redesign the flash lamp structurally in such manner as to permit the obtaining of the maximum efficiency from the component parts of the lamp.
It is a still further object of this invention to provide a method of manufacturing lamps of the improved design in an economical manner.
It has been found that these objects and other advantages incidental thereto can be attained by giving the lamp a shotgun, shell-like structure and by making a direct glass-to-metal or glass-enamel to metal seal.
In the drawings which illustrate an embodiment of features of this invention:
Figure 1 is an enlarged view of a front elevation of a photoflash lamp of this invention.
Figure 2 is a front elevation partly in section of a device suitable for use in manufacturing a flash lamp of the type illustrated in Figure l.
The flash lamp illustrated in Figure 1 of the drawings has a tubular glass envelope having a reduced and sized diameter, at the end which is sealed into the base portion of the flash lamp as shown in the drawings. This tubular envelope 10 is sealed to a metallic base cap 14 Whose side walls extend upwardly a suflicient distance to embrace the reduced area 12 of the glass envelope 10. The base of the cap is provided with a circularly depressed segment as shown at 16 which provides adequate spacefor the seating of a contact button 18 which is sealed therein in an air impervious and electrically insulated manner. The method illustrated in the drawings is one in which a glass frit has been used to form a glass-to-metal seal between the button 18 and the seat as shown at 16 provided in the base structure 14. The glass forming the seal is shown at 20. The base there shown is provided with a centrally located opening at 22. This opening is sufficiently large to accommodate the passage of a wire lead 24 therethrough and is usually at least four times the diameter of the wire lead. This Wire lead 24 is in good electrical contact with the contact button 18 but is insulated from the base cap 14 by means of a fused glass in much the same manner as is the button 18. A second wire lead 26 is maintained in good electrical contact with the inside of the base 14. These two lead members 24 and 26 are provided near their terminus with a blob of ignition paste as shown at points 28. A thin filament 30 also connects the two lead wires 24 and 26 at these points. The inside of the envelope 10 is further provided with a material such as shredded foil 29 which is capable of serving as a source of actinic light when the lamp is flashed. The envelope 1b is, of course, sealed to the cap 14 by suitable means. The material shown in Figure l is a glass enamel as shown at 31 produced from a glass f-rit.
The envelope which is used in the making of the lamps may, of course, be made of any gas impervious material which is sufiiciently transparent to permit the transmission of light which is produced therein. It should, of course, be of such characteristics that will enable it to be used without fear of flying fragments resulting from the burning of the materials within the lamp at the time the light is being produced by such conflagration. For this reason when glass is used as the enclosing envelope it has been found advisable to coat the outside of the glass with a clear lacquer 32 which will at least serve to bind the fragments even though the envelope itself might crack due to the heat and pressure developed during the rapid burning of the materials producing the light. The tubular shape which is made use of in accordance with this invention makes it possible to provide a greater volume of the necessary oxygen within the lamp than would be possible if a lamp having similar outside proportions were used but were further provided with a restrictive area such as is usually customary with the flash lamps of the prior art which are necked down in the socket area. It has been found that lamps which have the design above shown can further be manufactured with the gas pressures within the lamp greater than those normally used in the lamps of the prior art. For the most part the lamps of the prior art usually contain a bit more than of an atmosphere in the form of oxygen. Lamps of the design shown herein can readily be made at pressures ranging up to 2 atmosphere while still maintaining the necessary safety factor. The lamp as shown in Figure 1 is substantially enlarged. A more accurate sized lamp is shown in Figure 2 of the drawings which illustrates the manner of fabricating these lamps.
The metal material for the base cap 14 can be chosen from a wide variety of materials. When a direct seal is made between the envelope 10 and the base cap 14 it is, of course, preferable to make use of a material which will lend itself to this purpose such as a recognized glassto-metal sealing alloy. Many materials are known to the prior art. The material :can be so chosen as to have a coeflicient of contraction greater than the bulb or in the manufacture of the lamp a differential cooling schedule can be effected so that from a temperature representing the set point of the enamel to the room temperature the material has an efiective higher co-eflicientofcontraction than the bulb. This will result in a radial compressiontype of 3 t seal of cap flange around the bulb. Examples of metals which are suitable for use for this purpose are as follows: Sylvanias #4 alloy and alloys of the general chrome steel seriessuch as 446 and 430. When glass frit is used in making the seal cold roll steel can be used.
There are, of course, a number of techniques which may be used to make lamps which structurally resemble the fiashlarnp shown in Figure 1 of the drawings. A preferred method of doing this is to first weld the electrode 26 to the inside of the base cap 14 and then coat the inside area particularly the inside Wall section with a glass frit in those cases in which cold rolled steel is used rather than a glass-to-metal sealing alloy. The depression 16 on the outside of the base should also be so coated whereupon the button 18 to which the wire lead 24 has been centrally attached is placed within the seat and the two members placed Within a furnace atmosphere wherein the temperature can be raised to the fusion point of the glass frit so as to form a glass enameled surface with the base cap (or, if preferred, over the entire surface of the cap) and a glass seal between the button 18 and the bottom of the base cap 14 with a glass seal further present in the tip drawn portion of the cap at the point at which the wire lead 24 passes through the centrally positioned opening. This cap is then ready for the welding of a filament across the leads 24 and 26 and the application of the ignition paste 28 which usually has a zirconium powder base.
After the material which is to provide the source of actinic light such as shredded foil 29 has been filled into the envelope 10 the cap portion which has been prepared in accordance with the previously described method can be mounted on a metallic rod such as shown at in Figure 2 of the drawings. The envelope containing the shredded foil can then be loosely seated within the annular sidewalls of the base cap 14 whereupon a hood-like member 42 is placed over the glass tubular area. This hood-like member 42 is shown in Figure 2 of the drawings is further provided with a spring 44 extending upwardly from its top surface. This spring is made sufiiciently long to enable it to engage the top of a bell jar-like member which is then placed on top of the spring and pressed downwardly so as to hold the tubular member 10 firmly against the supported cap 14. When in this position the bell jar-like member 50 is seated on an "0 ring 52 and is pulled downwardly thereon onto an annular seat 54 by means of a screw threaded member 56 provided with an inwardly projecting flange 58 which engages an outwardly projecting flange 60 of the bell jar. When the device has been assembled as indicated above the lamp is located in an hermetically sealed chamber whose only opening with the outside is through a series of holes 62 provided in the bottom end of the rod 46, which is tubular at this point and the tubular member 64 which. passes through the member 54 but is hermetically sealed thereto. This tubular member 64 as shown in the drawings leads to a double T-shaped member 70, one leg 72 of which is connected to a vacuum pump and the other 74 to a source of oxygen gas with a third member 76 connected to a gauge and the fourth to the tube 64. While the component parts of the tube are within this hermetically sealed chamber the valves can be so regulated as to cause all the air to be withdrawn from within the tube after which upon proper manipulation of the valves oxygen gas can be introduced into the chamber to any desired pressure. The pressure which has been found to be particularly suitable to date isone in the neighborhood of 1.6 atmospheres. When this oxygen pressure has been reached the radio frequency coil 70 which is shown surrounding the bell jar-like member 50 at a point close to the base cap 40 is activated. When this is done the glass enamel within the annular area of the base cap is caused to soften, wetting the bulb, after which the entire device is permitted to cool. If this is done under the proper time temperature conditions a good glass-enamelmetal seal is formed at this point and the flash lamp can be withdrawn from within the bell jar 50 and is now ready for use.
In practicing this sealing technique with the aid of a radio frequency energy applied to the side walls of the base cap it is, however, extremely necessary to provide some means for holding the heat to a desired area of the cap. Otherwise, there would be a tendency for the glass seal which has been formed between the button 18 and the base 14 to crack or at the very least become gas pervious. Furthermore, means must be provided to hold the heat as close to the bottom of the cap as possible and away from the glass tube to which it is being sealed paritcularly above the edge of the base for two purposes, the first being the appearance of the glass tubular member if the heat were to be allowed to cause the envelope to be deformed and secondly shielding means must be provided to keep the heat away from the ignition paste for fear of producing a pre-ignition and therefore a worthless lamp. The rod 40 as shown in Figure 2 of the drawings has been provided to act as a means for withdrawing heat from the base cap at a sufiiciently rapid rate to prevent the melting of the enamel immediately adjacent the button. To accomplish this a good heat conducting material has been chosen with a sufficiently massive structure to perrnit adequateheat conduction from this critical area. The member 42 besides serving to hold the tube firmly pressed against the cap member also serves as a heat shield. This member is preferably caused to extend downwardly to a point which is slightly below the top level of the base cap. This helps to isolate the direct radio frequency energy which is absorbed by the base cap 14 and hold it in the position where it will do the most good in melting the glass enamel and causing a direct glass-to-metal seal at the desired points. In a way it also serves as a heat shield and instrument for dissipating heat from undesired areas.
The projecting edge of the cap 14 not only adds strength to the structure and thereby permits the use of relatively thin metal stock but also serves as a means to help localize the heat during the sealing operation. Since the edge projects a slight distance further out from the center than does any other part of the lamp it is closest to the coil and therefore serves as the locus for the radio frequency energy as it is given ofli.
Projection lamps which use a neutral atmosphere can also be made in accordance with the fundamental principles of the method herein described. The characteris tics of such lamps are also improved by such increase in pressure since one thereby aids in dissipating the heat given off during operation and also tends to decrease the vapor pressure of the tungsten filament. Both of these, of course, beneficially affect the life characteristics of the lamp.
While the above description and drawings submitted herewith disclose a preferred and practical embodiment of the photoflash lamp of this invention it will be understood that the specific details of construction and arrangement of parts as shown and described are by way of illustration and are not to be construed as limiting the scope of the invention.
What is claimed is:
l. A photoflash lamp comprising a metal cap-like base member, a glass enamel coating over the inside of said base member, said base member having a centrally-located depression in its outside surface, a coating of glass over the surface of said depression, a fiat contact button seated in said depression, sealed to said coating of glass and insulated thereby from said metal base member, said base member having a hole therethrough in said depression, a lead-in wire electrically connected to said button and extending through said hole but insulated from the metal base member, another lead-inwire electrically attached to said base member, an igniter supported by and electrically connected to said lead-in wires, a tubular light pervious member, closed at one end and carrying a filling of ignition material adapted to be set oif by an electrical impulse, said tubular member having an open end extending inside said cap-like metal base member and close to the side Walls thereof and being sealed to the enamel coating on said base member, the ignitable material being held around the igniter by said bulb.
2. In a photoflash lamp, an ignition material adapted to be set oif by an electrical impulse, a tubular light pervious member of reduced diameter at one end, a metal cap-like base member sealed thereto by a glass-to-metal seal to form a gas impervious structure, said base having annular projecting side walls of substantially the same outside diameter as that of the major portion of said light-pervious member and having a Central depression and a flat contact button seated in said depression but insulated therefrom.
References Cited in the file of this patent UNITED STATES PATENTS 760,065 Gilmore May 17, 1904 902,032 Whitney Oct. 27, 1908 2,084,192 Cartun June 15, 1937 2,264,043 Ledig Nov. 25, 1941 2,325,667 De Boer Aug. 3, 1943 2,393,711 Schwarze Jan. 29, 1946 2,477,372 Herzog July 26, 1949 2,499,854 Ellefson Mar. 7, 1950
US409338A 1954-02-10 1954-02-10 Photoflash lamp Expired - Lifetime US2810283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US409338A US2810283A (en) 1954-02-10 1954-02-10 Photoflash lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US409338A US2810283A (en) 1954-02-10 1954-02-10 Photoflash lamp

Publications (1)

Publication Number Publication Date
US2810283A true US2810283A (en) 1957-10-22

Family

ID=23620057

Family Applications (1)

Application Number Title Priority Date Filing Date
US409338A Expired - Lifetime US2810283A (en) 1954-02-10 1954-02-10 Photoflash lamp

Country Status (1)

Country Link
US (1) US2810283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978890A (en) * 1958-01-28 1961-04-11 Sylvania Electric Prod Coated photoflash lamp
US3067601A (en) * 1960-09-29 1962-12-11 Sylvania Electric Prod Photoflash lamp
US20080093963A1 (en) * 2004-08-23 2008-04-24 Koninklijke Philips Electronics, N.V. Lamp

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US760065A (en) * 1901-11-22 1904-05-17 Howard Gilmore Base for incandescent lamps.
US902032A (en) * 1904-10-31 1908-10-27 Gen Electric Incandescent electric lamp.
US2084192A (en) * 1933-05-03 1937-06-15 Gen Electric Incandescent lamp and similar device
US2264043A (en) * 1937-05-25 1941-11-25 Gen Electric Electric photoflash lamp
US2325667A (en) * 1941-05-15 1943-08-03 Hartford Nat Bank & Trust Co Flash lamp
US2393711A (en) * 1939-05-06 1946-01-29 Schwarze Paul Photoflash lamp
US2477372A (en) * 1945-01-24 1949-07-26 Herzog Carl Electric gaseous discharge lamp
US2499854A (en) * 1947-09-08 1950-03-07 Sylvania Electric Prod Sealing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US760065A (en) * 1901-11-22 1904-05-17 Howard Gilmore Base for incandescent lamps.
US902032A (en) * 1904-10-31 1908-10-27 Gen Electric Incandescent electric lamp.
US2084192A (en) * 1933-05-03 1937-06-15 Gen Electric Incandescent lamp and similar device
US2264043A (en) * 1937-05-25 1941-11-25 Gen Electric Electric photoflash lamp
US2393711A (en) * 1939-05-06 1946-01-29 Schwarze Paul Photoflash lamp
US2325667A (en) * 1941-05-15 1943-08-03 Hartford Nat Bank & Trust Co Flash lamp
US2477372A (en) * 1945-01-24 1949-07-26 Herzog Carl Electric gaseous discharge lamp
US2499854A (en) * 1947-09-08 1950-03-07 Sylvania Electric Prod Sealing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978890A (en) * 1958-01-28 1961-04-11 Sylvania Electric Prod Coated photoflash lamp
US3067601A (en) * 1960-09-29 1962-12-11 Sylvania Electric Prod Photoflash lamp
US20080093963A1 (en) * 2004-08-23 2008-04-24 Koninklijke Philips Electronics, N.V. Lamp

Similar Documents

Publication Publication Date Title
US2191346A (en) Electric lamp or similar device and method of manufacture
US1461155A (en) Method of and apparatus for manufacturing incandescent lamps
US2380811A (en) Sealed enclosbure and method of sealing same
US2405089A (en) Gaseous discharge device
US2810283A (en) Photoflash lamp
US2918763A (en) Method of making a pressure filled lamp
US2259165A (en) Incandescent lamp and the like and method of making same
US2535773A (en) Terminal and seal construction for electric lamps and similar devices
US2477372A (en) Electric gaseous discharge lamp
US3270237A (en) Electric lamp with single ended pinch seal
US2333725A (en) Photoflash casing
US2497545A (en) Electric lamp or similar device and method of manufacture
US2154550A (en) Electric lamp or similar device
US2188298A (en) Seal for evacuated devices
US2069713A (en) Electric lamp for producing short wave length radiation
US2217205A (en) Photoelectric tube
US3409342A (en) Method of heat sealing flashlamps containing combustible gas mixtures
US2377164A (en) Electrical assembly
US2449676A (en) Method of manufacturing electric incandescent lamps
US1935723A (en) Vacuum tube
US2367583A (en) Photoflash lamp
GB519355A (en) Improvements in and relating to methods of hermetically sealing vitreous or ceramic vessels
US2811846A (en) Photoflash lamp
US2733375A (en) Seal and terminal structure for electric discharge lamp
US2153398A (en) Electric lamp