US2809109A - Treatment of hypereutectoid steel - Google Patents

Treatment of hypereutectoid steel Download PDF

Info

Publication number
US2809109A
US2809109A US487652A US48765255A US2809109A US 2809109 A US2809109 A US 2809109A US 487652 A US487652 A US 487652A US 48765255 A US48765255 A US 48765255A US 2809109 A US2809109 A US 2809109A
Authority
US
United States
Prior art keywords
steel
ingot
tapping
solidification
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US487652A
Inventor
Field Joseph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bethlehem Steel Corp
Original Assignee
Bethlehem Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bethlehem Steel Corp filed Critical Bethlehem Steel Corp
Priority to US487652A priority Critical patent/US2809109A/en
Application granted granted Critical
Publication of US2809109A publication Critical patent/US2809109A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • My invention relates to an improved process for treating hypereutectoid highly alloyed steel, to produce a steel, particularly tool steel, having improved properties and characteristics.
  • highly alloyed steel is meant a steel having a total alloy content of more than 8.00% of carbide forming elements.
  • FIG. 1 is a photolithograph of a thin section of an ingot of high speed steel taken longitudinally through the center of the ingot showing the heavy carbide segregation resulting from the practice of the best of prior art processes;
  • Fig. 2 is a view similar to Fig. 1, showing the improved distribution of carbides resulting from treatment of molten high speed steel in the ladle according to my invention.
  • Fig. 3 is a view similar to Fig. 1, showing the improved distribution of carbides resulting from treatment of molten high speed steel in the ingot mold according to my invention.
  • the invention comprises the steps of establishing a bath of hypereutectoid highly alloyed 2,809,109 Patented Oct. 8, 1957 ice steel, and especially so-called high speed tool steels, for example, steels of the following analyses:
  • a preferred composition within this broad range which has been found particularly efiicacious contains Al. Ti Zr Mn B Si Fe 13.0 20.0 4.0 8.0 .5 5.0 Balance
  • This compound may be added in the form of granules and is added to the steelin the ladle during tapping, or in the ingot mold while pouring. It has been found that from three to ten pounds of the compound per ton of steel, or in percentages .15% to .50%, will impart marked benefits to said steel.
  • the ingots shown in the drawing were treated with 5 lbs. of compound per ton of steel, or .25%.
  • a method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15 to .50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron.
  • a method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel in the ladle after tapping and prior to solidification, from .15 to .50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron.
  • a method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel in the mold and prior to solidification, from .15% to 50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0% to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially 1ron.
  • a method for improving the properties of-hypereutectoid steel having a totalalloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15% to of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron, whereby a uniform distribution of carbides is imparted to said steel upon solidification.
  • a method for improving the properties of hypercutectoid high speed tool steel which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15 to 50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron, whereby a uniform distribution of carbides is imparted to said steel upon solidification.
  • a method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten'bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15% to .'50% of an addition agent containing about 13.0% aluminum, 20.0% titanium, 4.0% zirconium, 8.0% manganese, .5 boron, 5.0% silicon, and the balance essentially iron, whereby a uniform distribution of carbides is imparted to said steel upon solidification.

Description

Oct. 8, 1957 J. FIELD TREATMENT OF HYPEREUTECTOID STEEL Filed Feb. 11, 1955 INVENTOR ATTORNEY United States Patent TREATMENT or HYTEREUTECTOID STEEL Joseph Field, Bethlehem, Pa., assignor to Bethlehem Steel Company, a corporation of Pennsylvania Application February 11, 1955, Serial No. 487,652
6 Claims. (Cl. 75-129) My invention relates to an improved process for treating hypereutectoid highly alloyed steel, to produce a steel, particularly tool steel, having improved properties and characteristics. By highly alloyed steel is meant a steel having a total alloy content of more than 8.00% of carbide forming elements.
It has long been required by users of steel tools, particularly high speed tools having free carbides in their structure, that such tools be relatively free of carbide segregates so that the cutting edge of the tools will be free of brittle carbide groupings often associated with early failure.
The production of steel of this type has in the past been very costly, because in the freezing of ingots the natural solidification process occurs, in which as freezing progresses inwardly from the ingot mold walls the liquid portion becomes increasingly richer in carbon and alloying elements, with the result that the undesirable compleX carbide segregates migrate to the center portion of the ingot. These segregates also tend to be concentrated in the upper portion of the ingot.
The principal factors which have been found in the past, to affect the carbide distribution are (l) casting temperature (the lower the temperature the less segregation), and (2) ingot mold design (the faster the freezing rate the less segregation). However, even though these factors are controlled by practical production methods, only a relatively small portion of the ingot will meet the rigid requirements of many of the high speed steel users.
It is an object of my invention to provide a process for treating hypereutectoid highly alloyed steels, particularly high speed steels, which will impart to such steels a relatively uniform distribution of carbides, thus permitting the utilization of a much greater percentage of the ingot.
Other objects and advantages of the invention will become apparent from the following description taken with the drawings, in which Fig. 1 is a photolithograph of a thin section of an ingot of high speed steel taken longitudinally through the center of the ingot showing the heavy carbide segregation resulting from the practice of the best of prior art processes;
Fig. 2 is a view similar to Fig. 1, showing the improved distribution of carbides resulting from treatment of molten high speed steel in the ladle according to my invention; and
Fig. 3 is a view similar to Fig. 1, showing the improved distribution of carbides resulting from treatment of molten high speed steel in the ingot mold according to my invention.
Generally speaking, the invention comprises the steps of establishing a bath of hypereutectoid highly alloyed 2,809,109 Patented Oct. 8, 1957 ice steel, and especially so-called high speed tool steels, for example, steels of the following analyses:
tapping said molten steel into a ladle, pouring said molten steel into an ingot mold, and adding to said molten steel an addition agent or compound containing Al Ti Zr Mn B Si Fe Percent Percent Percent Percent Percent Percent 10. 0-15. 0 15. 025. 0 3. 0-5. 0 6. 0-10. 0 35-. 65 3. 0-7. 0 Bal.
A preferred composition within this broad range which has been found particularly efiicacious contains Al. Ti Zr Mn B Si Fe 13.0 20.0 4.0 8.0 .5 5.0 Balance This compound may be added in the form of granules and is added to the steelin the ladle during tapping, or in the ingot mold while pouring. It has been found that from three to ten pounds of the compound per ton of steel, or in percentages .15% to .50%, will impart marked benefits to said steel. The ingots shown in the drawing were treated with 5 lbs. of compound per ton of steel, or .25%.
The benefits obtained by my novel treatment are well demonstrated by the drawings. These drawings are photolithographs showing thin sections of ingots which were cast, annealed, and cut longitudinally. These sections were of a thickness of .200" and included the metallurgical center of the ingot. The section was then X-rayed and radiographs were obtained. A positive print was made of the radiograph and a photograph taken of the print. The photolithographs were taken of the photograph. By this technique, the carbides are revealed as dark areas 1, while the porosity or open metal common to ingot structure shows as white areas 2. It can be seen that the untreated ingot representing the best of prior ait practices, Fig. 1, contains heavy carbide segregation which extends from the top of the ingot to approximately one half of the length of the ingot. In this case only the bottom half of the ingot would meet the rigid requirements of tool steel users.
In contradistinction to the standard ingot structure shown in Fig. 1, it is clearly shown in Figs. 2 and 3 how the treatment of the invention results in a structure having very little segregation of carbides. These two latter figures show a uniform high grade structure which makes it possible to use most of the ingot for tools of high quality.
It is believed that the addition of the compound used in the process of the invention prior to the start of solidification of the ingot provides nuclei for crystallization at widely separated points in the ingot so that the carbides are trapped in the solidifying steel, and prevented from migrating and segregating in the central portion of the ingot.
I claim:
1. A method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15 to .50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron.
2. A method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel in the ladle after tapping and prior to solidification, from .15 to .50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron.
3. A method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel in the mold and prior to solidification, from .15% to 50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0% to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially 1ron.
4. A method for improving the properties of-hypereutectoid steel having a totalalloy content of more than 8.00% of carbide forming elements which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15% to of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron, whereby a uniform distribution of carbides is imparted to said steel upon solidification.
5. A method for improving the properties of hypercutectoid high speed tool steel which comprises establishing a molten bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15 to 50% of an addition agent containing about 10.0 to 15.0% aluminum, 15.0 to 25.0% titanium, 3.0 to 5.0% zirconium, 6.0 to 10.0% manganese, .35 to .65% boron, 3.0 to 7.0% silicon and the balance essentially iron, whereby a uniform distribution of carbides is imparted to said steel upon solidification.
6. A method for improving the properties of hypereutectoid steel having a total alloy content of more than 8.00% of carbide forming elements which comprises establishing a molten'bath of said steel, tapping said steel into a ladle, pouring said steel into a mold, and adding to said steel after tapping and prior to solidification, from .15% to .'50% of an addition agent containing about 13.0% aluminum, 20.0% titanium, 4.0% zirconium, 8.0% manganese, .5 boron, 5.0% silicon, and the balance essentially iron, whereby a uniform distribution of carbides is imparted to said steel upon solidification.
References Cited in the file of this patent Tool Steels, Gill et al., published by American Society for Metals, Cleveland, Ohio, pages 23-24, 521-522.
Metals Handbook, 1948 edition, page 340. Published by the American Society for Metals, Cleveland, Ohio.

Claims (1)

  1. 5. A METHOD FOR IMPROVING THE PROPERTIES OF HYPEREUTECTOID HIGH SPEED TOOL STEEL WHICHCOMPRISES ESTABLISHING A MOLTEN BATH OF SAID STEEL, TAPPING SAID STEEL INTO A LADLE, POURING SAID STEEL INTO A MOLD, ANDDADDING TO SAID STEEL AFTER TAPPING AND PRIOR TO SOLIDIFICATION, FROM .15% TO .50% OF AN ADDITION AGENT CONTAINING ABOUT 10.0 TO 15.0% ALUMINUM, 15.0 TO 25.0% TITANIUM, 3.0 TO 5.0% ZIRCONIUM, 6.0 TO 10.0% MANGANESE, .35 TO .65% BORON, 3.0 TO 7.0% SILICON AND THE BALANCE ESSENTIALLY IRON, WHEREBY A UNIFORM DISTRIBUTION OF CARBIDES IS IMPARTED TO SAID STEEL UPON SOLIDIFICATION.
US487652A 1955-02-11 1955-02-11 Treatment of hypereutectoid steel Expired - Lifetime US2809109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US487652A US2809109A (en) 1955-02-11 1955-02-11 Treatment of hypereutectoid steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US487652A US2809109A (en) 1955-02-11 1955-02-11 Treatment of hypereutectoid steel

Publications (1)

Publication Number Publication Date
US2809109A true US2809109A (en) 1957-10-08

Family

ID=23936603

Family Applications (1)

Application Number Title Priority Date Filing Date
US487652A Expired - Lifetime US2809109A (en) 1955-02-11 1955-02-11 Treatment of hypereutectoid steel

Country Status (1)

Country Link
US (1) US2809109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308515A (en) * 1962-10-29 1967-03-14 Gordon K Turnbull Method for cast grain refinement of steel
US5674449A (en) * 1995-05-25 1997-10-07 Winsert, Inc. Iron base alloys for internal combustion engine valve seat inserts, and the like
US6272963B1 (en) * 1999-01-28 2001-08-14 Hitachi Metals, Ltd. Blade material for metallic band saw and metallic band saw made therefrom
US20060283526A1 (en) * 2004-07-08 2006-12-21 Xuecheng Liang Wear resistant alloy for valve seat insert used in internal combustion engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308515A (en) * 1962-10-29 1967-03-14 Gordon K Turnbull Method for cast grain refinement of steel
US5674449A (en) * 1995-05-25 1997-10-07 Winsert, Inc. Iron base alloys for internal combustion engine valve seat inserts, and the like
US6272963B1 (en) * 1999-01-28 2001-08-14 Hitachi Metals, Ltd. Blade material for metallic band saw and metallic band saw made therefrom
US20060283526A1 (en) * 2004-07-08 2006-12-21 Xuecheng Liang Wear resistant alloy for valve seat insert used in internal combustion engines
US7611590B2 (en) 2004-07-08 2009-11-03 Alloy Technology Solutions, Inc. Wear resistant alloy for valve seat insert used in internal combustion engines

Similar Documents

Publication Publication Date Title
KR910001484B1 (en) Gray cast iron inoculant
KR20180132857A (en) Gray cast iron inoculant
US2168561A (en) Treating molten iron and steel with addition agents
US3928028A (en) Grain refinement of copper alloys by phosphide inoculation
US4247326A (en) Free machining steel with bismuth
US2809109A (en) Treatment of hypereutectoid steel
US2643949A (en) Method for the production of iron and steel
US2683661A (en) Fine grain iron and method of production
US585036A (en) Making ingots or castings of iron or steel
CN111518990B (en) Method for controlling alloy elements in free-cutting steel to be uniformly distributed
US4181524A (en) Free machining high sulfur strand cast steel
US4014683A (en) Method of making Drawing Quality steel
US3762915A (en) Method for casting gray cast iron composition
US4162159A (en) Cast iron modifier and method of application thereof
US2850381A (en) Process and alloy for adding rare earth elements and boron to molten metal baths
US3113019A (en) Nodular iron production
US1912382A (en) Method of making and casting aluminum alloys
US2683663A (en) Stainless steel and method of production
US1572744A (en) Nickel alloy and method of making the same
US4238230A (en) Process for producing free-machining steel
US3375104A (en) Method of producing magnesium ferrosilicon
US2280286A (en) Addition agent and its use in the treatment of iron and steel
US3079250A (en) Additives for molten metals
US2293864A (en) Aluminum base alloy
US2265985A (en) Method of manufacturing aluminumcontaining alloys