US2805974A - Method of making radar reflector - Google Patents

Method of making radar reflector Download PDF

Info

Publication number
US2805974A
US2805974A US540796A US54079655A US2805974A US 2805974 A US2805974 A US 2805974A US 540796 A US540796 A US 540796A US 54079655 A US54079655 A US 54079655A US 2805974 A US2805974 A US 2805974A
Authority
US
United States
Prior art keywords
resin
metal
impregnating
cloth
fiberglass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US540796A
Inventor
Brucker Milton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zenith Plastics Co
Original Assignee
Zenith Plastics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US294632A external-priority patent/US2747180A/en
Application filed by Zenith Plastics Co filed Critical Zenith Plastics Co
Priority to US540796A priority Critical patent/US2805974A/en
Application granted granted Critical
Publication of US2805974A publication Critical patent/US2805974A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/088Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • B29D24/005Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface
    • H01Q15/144Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface with a honeycomb, cellular or foamed sandwich structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3456Antennas, e.g. radomes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S138/00Pipes and tubular conduits
    • Y10S138/10Metal foil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1003Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by separating laminae between spaced secured areas [e.g., honeycomb expanding]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1028Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith
    • Y10T156/103Encasing or enveloping the configured lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1314Contains fabric, fiber particle, or filament made of glass, ceramic, or sintered, fused, fired, or calcined metal oxide, or metal carbide or other inorganic compound [e.g., fiber glass, mineral fiber, sand, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • This invention relates to a method for constructing a radar reflector. More particularly, it relates to a method of making a radar reflector of new and improved light weight and rigidity containing a minimum of metal while obtaining all the advantages normally attributed to allmetal reflectors. It likewise relates to an improved method of making the desired reflector, largely of plastic and fibrous materials.
  • Yet another object of the invention is the provision of a. method of making a new and improved plastic construction for radar reflectors incorporating metal as the electronically eflective ingredient, and the plastic as a durable, weather-resistant and non-corrosive structural foundation.
  • Yet another object of the invention is to provide a method of making a plastic radar reflector construction capable of satisfying the rigid standards of the Armed Forces of the United States, as well as commercial requirements, and Whose utility is susbtantially unaffected by increases in size, said increase being accompanied by disproportionate increases in weight, foundation, and reinforcement.
  • Yet another object of the invention is the provision of a new and improved method for insuring suflicient I'lgld-' ity of the metal reflector portion of the device of the 1n-- stant invention.
  • Figure l is a perspective view, partially in section, of a mold and radar reflector constructed thereon in accordance with the teaching of this invention.
  • FIG. 2 is a flow diagram of the method of this invention.
  • Figure 3 is a fragmentary sectional view of one edge of a finished reflector made by the method of this invention.
  • a mold is of plastic or the like, having a base 11 by which the same is supported in any suitable fashion, as upon a floor, and provided with any reinforcing rim, as of wood or steel, 12.
  • the upper surface 13 of the mold is convex to conform to the desired reflective shape of the intended reflector surface.
  • the mold is further preferably provided with an annular flange portion 14 for a purpose to be described.
  • a layer of fiberglass cloth 15, thoroughly impregnated with a resin is closely laid over the upper surface of the convex portion 13 of the mold, and also to the upper surface 16 of the flange 14 thereof.
  • the resin is preferably also applied, prior to the application of the impregnated fiberglass sheet 15, to the mold surfaces 13 and 16, as by means of a brush, a spatula, by spraying, or by hand.
  • Said resin is most desirably an unsaturated polyester selected from any of those commercially available products more specifically, styrene copolymers of unsaturated alkyd resins, e. g., alkyd made from diethylene glycol with maleic anhydride and phthalate, soluble in styrene, or from diallyl phthalate.
  • unsaturated alkyd resins e. g., alkyd made from diethylene glycol with maleic anhydride and phthalate, soluble in styrene, or from diallyl phthalate.
  • the purpose of the first layer of cloth 15 is to provide a weather-proof coating for the reflective side of the reflector, to protect the metal coating 17 from oil and corrosion, and to provide a body which is conveniently and easily removed from the mold upon completion of the product.
  • a fiberglass woven mat of approximately ten thousandt'ns of an inch thickness is used.
  • the initial layer of fiberglass 15, together with the resin impregnated therein and thereunder, is next cured as under an ultraviolet lamp, which assists the activity of the lightactivated catalysts, if any, which may be incorporated in the resin, within the skill of those familiar with the art, or such curing may be accomplished in any conventional fashion, as in an oven for approximately an hour, at approximately 200 degrees Fahrenheit, or other satisfactory temperature.
  • an ultraviolet lamp which assists the activity of the lightactivated catalysts, if any, which may be incorporated in the resin, within the skill of those familiar with the art, or such curing may be accomplished in any conventional fashion, as in an oven for approximately an hour, at approximately 200 degrees Fahrenheit, or other satisfactory temperature.
  • the exposed upper surface of the fiberglass mat is subjected to a sandblasting.
  • sandblasting provides a satisfactory surface for the; next operation, which is the application, by means ofa, metal spray, of alayer of metal of substantially uniform thickness over the entire convex surface of the mold and cloth layer 15.
  • Alayer of aluminum has been found satisfactory forthe instant purposes if deposited, for example, in a layer pf approxi mately ten thousandths of an inch.
  • Other metals may also be employed, but if so, they should be selected from those which. do not require such a high temperature for spraying that the resultant heat of the sprayed metal willdeleteriously or otherwise afiectthe resin.
  • a layer of said resin over which is similarly laid a fiberglass mat 18, preferably of woven fiberglass.
  • Said layer 18 has been found satisfactory if comprised of three layers of such fiberglass fabric of about thirty thousandths of an inch combined thickness. Also satisfactory is a single fiberglass mat of woven fiberglass fibers of approximately the same total thickness.
  • honeycomb core 19 Over the last named layer 18 is placed a preferably honeycomb core 19. If it be assumed in the instant example that the diameter of the reflecter is to be approximately eight to nine feet, a honeycomb core of approximately one and three-quarter inches in thickness has been found suitable.
  • the honeycomb itself comprises woven fiberglass impregnated with a polyester resin.
  • the individual cells of the core by way of example, may be hexagonal and extend continuously from the inside to the outside walls of the core.
  • the walls of the core defining the honeycomb-like chambers are approximately three thousandths of an inch in thickness and are impregnated with said resin to give them a total thickness, including said resin, of about five thousandths of an inch.
  • a further backing 20 of woven fiberglass fabric impregnated with said resin is laid over the .core 19.
  • Such a backing has been found satisfactory. in the form of approximately four layers or plies of woven fiberglass, each of which ply has an approximate thickness of ten thousandths of an inch, the whole backing 20 thereby having. an over-all thickness of approximately forty thousandths of an inch.
  • the upper surface of the mold is covered with a flexible bag 21 of any material such as polyvinyl acetate, or the like, non-compatible material which 'does not, like rubber, inhibit curing of the resin,
  • Said bag 21 is laid also over the upper surface of the corresponding layers 16 through 29 disposed upon the flange 14, and if desired, also over'the outermost edge 22 of the flange 12, but prior to the positioning of the bag 21, a porous or otherwise open tube 23 is coiled about the mold.
  • Such tube 23 may take the form merely of a coil spring or other coil of material comprising a helix.
  • a layer of sealing compound such as zinc chromate, is employed, having the desired quality that it does not flow under the contemplated heat to which the mold is to be subjected.
  • the bag 21 is pressed into position over the zinc chromate seal, which seal, however, is not deposited inwardly, as at 26, between the tube 23 and the convex portion 13 of the mold.
  • a vacuum is next interconnected with the tube 23.
  • the vacuum heretofore employed has been that required to subjectth'e dome 27, or convexity, to a pressure of approximately nine pounds per square inch; While the vacuum is applied, any air under the dome portion 27 is rubbed out as by brushing, rubbing, rolling or the like,
  • the cured part is removed from the mold by physical stripping after the bag 21 has been removed.
  • the edges designated collectively at 28 overlying the flange 14 are trimmed off, and the raw edges 29 thus exposed are capped as by two layers 3.0.31 of woven fiberglass mat, each having a thickness of approximately ten thousandths of an inch, impregnated with said resin, as under a heat lamp, to approximately 200 degrees Fahrenheit, for approximately an hour.
  • the over-all thickness which may be substantially the.
  • the reflector may be made in any diameter, as for example, from two inches to fifty or even feet in diameter.
  • the curve of the reflector surface is preferably parabolic.
  • the weight of a corresponding steel frame of effective nine-foot diameter is approximately 350 pounds; whereas, the corresponding weight of an effective nine-foot reflector made in accordance with this invention is only. ninety pounds. Even the cost of the instant reflector is substantially less than that of its steel counterpart.
  • a reflector made in accordance with the teaching of this invention has, under test, withstood a mile-per-hour gale directed axially at same, or while rotating the same, with less than one-eighth of an inch deflection while mounted on a standard support.
  • a radar reflector comprising forming and retaining a layer of resinous material in a generally dish-shaped condition, curing said resin, sandblasting the outer' curved surface of said resin, spraying a metal uniformly over the sandblasted surface, permitting said metal to' harden on said surface, impregnating the" surface of said sprayed layer of metal with such thermosetting resin, impregnating a fiberglass cloth with said resin and applying the impregnated cloth to said impregnated sprayed metal surface, applying a cellular substantially rigid member on the outer surface of the impreg-.
  • nated fiberglass cloth layer impregnating a second fiberglass cloth with said resin and applying said cloth over said cellular member, removing entrapped air and pressing.
  • thermo-setting resin is an unsaturated polyester.
  • a radar reflector of the character described comprising forming a dome-shaped mold, positioning said mold with said dome shape uppermost upon a solid foundation, forming an annular flange around said dome at the base thereof, impregnating with a thermosetting resin and applying over said dome a layer of fiberglass cloth, curing said thermo-setting resin in and upon said cloth, sandblasting the upper cured surface of said resin, spraying a substantially uniform layer of aluminumlike metal over said sandblasted surface, impregnating with a thermo-setting resin and laying thereover a second fiberglass cloth, laying over said second fiberglass cloth a rigid material to a substantial thickness, impregnating with a thermo-setting resin and laying thereover a third fiberglass cloth, laying thereover an impervious flexible sheet, providing a vacuum under said last sheet substantially entirely around said dome at said flange, and wiping said dome downwardly toward said flange and vacuum while curing the resin, removing the cured reflector from the mold and trimming and finishing the edges thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Laminated Bodies (AREA)

Description

p 1957 M. BRUCKER 2,805,974
METHOD OF MAKING RADAR REFLECTOR Original Filed June 20, 1952 @020 PLASTEI? MOLD APPLY s/mv METAL f'F/BPE GLASS CURE SAND BLAST COAT/N6 540x w/n/ saw/.0 UP APPLY A Z; A P '-;:g FIBRE GLASS BACK/N6 0F SHEETS 0F SHEETS HONEYCOMB FIBRE GLASS M/LTON BRUCKER,
INVENTOR.
United States at 2,805,974 METHOD F MAKENG RADAR REFTECTGR Milton Brucker, Los Angeles, Calif., assignor, by mesne assignments, to Zenith Plastics Company, Gardena, Califi, a corporation of Delaware 5 Claims. (Cl. 154-411)) This invention relates to a method for constructing a radar reflector. More particularly, it relates to a method of making a radar reflector of new and improved light weight and rigidity containing a minimum of metal while obtaining all the advantages normally attributed to allmetal reflectors. It likewise relates to an improved method of making the desired reflector, largely of plastic and fibrous materials.
' This application is a division of my earlier application Serial Number 294,632 filed on June 20, 1952 now U. S. Patent No. 2,747,180.
Heretofore commercially acceptable radar reflectors, for use in particular by the Armed Forces of the United States for aircraft, seagoing, and land use, depended upon use of an all-metal concavity, or the like, all-metal shield, either cast integrally as a reflective unit, or made reticulate by metal bars, rods, mesh, and the like. Such prior art devices are relatively heavy in weight, costly in their manufacture and maintenance, and include the use of metal predominantly if not exclusively. Inasmuch as the larger radar reflectors are most effective in use, the weight-size relationship becomes critical, particularly for aircraft use. It is also important, to a somewhat lesser extent however, on ocean-going vessels, and even on land.
In view of the above considerations and others, it is among the objects of this invention to provide a method of making, from readily available plastic and fibrous materials, a satisfactory and commercially acceptable radar reflector utilizing a minimum of metal but without thereby diminishing either the utility or durability of a radar reflector of comparable size made in accordance with prior art teachings.
It is another object of this invention to provide, in a radar reflector of the desired character described, a weather-resistant, non-metallic surface, a relatively fine layer of reflective metal, and a relatively still and substantial highly reticulate backing of utmost lightness consistent with strength and durability, and in a manner corresponding to the first mentioned non-metallic surface which is closely adherent to and provides a strong backing and protection to the reflective metal layer.
Yet another object of the invention is the provision of a. method of making a new and improved plastic construction for radar reflectors incorporating metal as the electronically eflective ingredient, and the plastic as a durable, weather-resistant and non-corrosive structural foundation.
Yet another object of the invention is to provide a method of making a plastic radar reflector construction capable of satisfying the rigid standards of the Armed Forces of the United States, as well as commercial requirements, and Whose utility is susbtantially unaffected by increases in size, said increase being accompanied by disproportionate increases in weight, foundation, and reinforcement.
It is among the objects of this invention to provide a new and improved method of making a radar reflector as herein described and claimed.
2,805,974 Patented Sept. 10, 1957 Yet another object of the invention is the provision of a new and improved method for insuring suflicient I'lgld-' ity of the metal reflector portion of the device of the 1n-- stant invention. I
It is moreover an object to provide an improved method for insuring permanent adherence of the several metal and non-metal parts of the desired structure to one another.
It is a further object of the invention to provide new and improved means and molding method for obtaining a radar reflector of the instant invention.
In addition, it is among the objects of this specification and invention to set forth a suggested, preferred means and method for obtaining a new and improved radar reflector construction in accordance with the inventors conception; to improve prior art devices and methods heretofore intended to accomplish generally similar purposes.
These and other objects and purposes will be more fully understood by reference to the accompanying specification considered in the light of the drawings and the appended claims.
In the drawings:
Figure l is a perspective view, partially in section, of a mold and radar reflector constructed thereon in accordance with the teaching of this invention.
Figure 2 is a flow diagram of the method of this invention.
Figure 3 is a fragmentary sectional view of one edge of a finished reflector made by the method of this invention.
Referring more particularly to the drawings, there is illustrated by way of example but not of limitation a mold is of plastic or the like, having a base 11 by which the same is supported in any suitable fashion, as upon a floor, and provided with any reinforcing rim, as of wood or steel, 12. The upper surface 13 of the mold is convex to conform to the desired reflective shape of the intended reflector surface. The mold is further preferably provided with an annular flange portion 14 for a purpose to be described.
In the construction of the instant reflector, a layer of fiberglass cloth 15, thoroughly impregnated with a resin, is closely laid over the upper surface of the convex portion 13 of the mold, and also to the upper surface 16 of the flange 14 thereof. The resin is preferably also applied, prior to the application of the impregnated fiberglass sheet 15, to the mold surfaces 13 and 16, as by means of a brush, a spatula, by spraying, or by hand.
Said resin is most desirably an unsaturated polyester selected from any of those commercially available products more specifically, styrene copolymers of unsaturated alkyd resins, e. g., alkyd made from diethylene glycol with maleic anhydride and phthalate, soluble in styrene, or from diallyl phthalate.
The purpose of the first layer of cloth 15 is to provide a weather-proof coating for the reflective side of the reflector, to protect the metal coating 17 from oil and corrosion, and to provide a body which is conveniently and easily removed from the mold upon completion of the product. For such purpose a fiberglass woven mat of approximately ten thousandt'ns of an inch thickness is used.
The initial layer of fiberglass 15, together with the resin impregnated therein and thereunder, is next cured as under an ultraviolet lamp, which assists the activity of the lightactivated catalysts, if any, which may be incorporated in the resin, within the skill of those familiar with the art, or such curing may be accomplished in any conventional fashion, as in an oven for approximately an hour, at approximately 200 degrees Fahrenheit, or other satisfactory temperature. I 1
After the curing of the fiberglass impregnated resin, the exposed upper surface of the fiberglass mat is subjected to a sandblasting. Such sandblasting provides a satisfactory surface for the; next operation, which is the application, by means ofa, metal spray, of alayer of metal of substantially uniform thickness over the entire convex surface of the mold and cloth layer 15. Alayer of aluminum has been found satisfactory forthe instant purposes if deposited, for example, in a layer pf approxi mately ten thousandths of an inch. Other metals may also be employed, but if so, they should be selected from those which. do not require such a high temperature for spraying that the resultant heat of the sprayed metal willdeleteriously or otherwise afiectthe resin.
To the upper surface of the metal layer 17 there is applied, with or without sandblasting, and preferably also but not necessarily, a coating as by brush, spatula, by spray or by hand, a layer of said resin, over which is similarly laid a fiberglass mat 18, preferably of woven fiberglass. Said layer 18 has been found satisfactory if comprised of three layers of such fiberglass fabric of about thirty thousandths of an inch combined thickness. Also satisfactory is a single fiberglass mat of woven fiberglass fibers of approximately the same total thickness.
Over the last named layer 18 is placed a preferably honeycomb core 19. If it be assumed in the instant example that the diameter of the reflecter is to be approximately eight to nine feet, a honeycomb core of approximately one and three-quarter inches in thickness has been found suitable. The honeycomb itself comprises woven fiberglass impregnated with a polyester resin. The individual cells of the core, by way of example, may be hexagonal and extend continuously from the inside to the outside walls of the core. The walls of the core defining the honeycomb-like chambers are approximately three thousandths of an inch in thickness and are impregnated with said resin to give them a total thickness, including said resin, of about five thousandths of an inch.
After the honeycomb has been positioned over the layer 18, preferably though not necessarily as a continuous unit, a further backing 20 of woven fiberglass fabric impregnated with said resin is laid over the .core 19. Such a backing has been found satisfactory. in the form of approximately four layers or plies of woven fiberglass, each of which ply has an approximate thickness of ten thousandths of an inch, the whole backing 20 thereby having. an over-all thickness of approximately forty thousandths of an inch.
After the positioning of the layers 18, 19, and 20, over the sprayed metal layer 17, the upper surface of the mold is covered with a flexible bag 21 of any material such as polyvinyl acetate, or the like, non-compatible material which 'does not, like rubber, inhibit curing of the resin,
and which does not, after such curing, adhere to the resin.
Said bag 21 is laid also over the upper surface of the corresponding layers 16 through 29 disposed upon the flange 14, and if desired, also over'the outermost edge 22 of the flange 12, but prior to the positioning of the bag 21, a porous or otherwise open tube 23 is coiled about the mold. Such tube 23 may take the form merely of a coil spring or other coil of material comprising a helix. Moreover, at the outer edges of the flange, as at 24 and 25, a layer of sealing compound, such as zinc chromate, is employed, having the desired quality that it does not flow under the contemplated heat to which the mold is to be subjected.
The bag 21 is pressed into position over the zinc chromate seal, which seal, however, is not deposited inwardly, as at 26, between the tube 23 and the convex portion 13 of the mold.
A vacuum is next interconnected with the tube 23. The vacuum heretofore employed has been that required to subjectth'e dome 27, or convexity, to a pressure of approximately nine pounds per square inch; While the vacuum is applied, any air under the dome portion 27 is rubbed out as by brushing, rubbing, rolling or the like,
with pressure against the top of the dome, beginning in an oven, under ultra-violet light, or otherwise.
Thereupon the cured part is removed from the mold by physical stripping after the bag 21 has been removed. The edges designated collectively at 28 overlying the flange 14 are trimmed off, and the raw edges 29 thus exposed are capped as by two layers 3.0.31 of woven fiberglass mat, each having a thickness of approximately ten thousandths of an inch, impregnated with said resin, as under a heat lamp, to approximately 200 degrees Fahrenheit, for approximately an hour.
A reflector made as above described, by Way of ex:
ample, may have a diameter ,of approximately nine. feet.
The over-all thickness, which may be substantially the.
same from edge to edge, isaPPIOXimateIy 1.84 inches, not counting the added thickness of the cap 30-131.
The versatility of the instant. construction is such that a.
reflector may be made in any diameter, as for example, from two inches to fifty or even feet in diameter. The curve of the reflector surface is preferably parabolic. The weight of a corresponding steel frame of effective nine-foot diameter is approximately 350 pounds; whereas, the corresponding weight of an effective nine-foot reflector made in accordance with this invention is only. ninety pounds. Even the cost of the instant reflector is substantially less than that of its steel counterpart.
A reflector made in accordance with the teaching of this invention has, under test, withstood a mile-per-hour gale directed axially at same, or while rotating the same, with less than one-eighth of an inch deflection while mounted on a standard support. Y
It has excellent Weather-resistant qualities and may 'be used either exposed or under the protection of a radome or like shelter, in aircraft, aboard ship, or as part of a stationary or mobile land unit.
Although I have herein shown and described my in vention in what I have conceived to be the most practical and preferred embodiment, it is recognized that departures may be made therefrom within the scope of my invention, which is not to'be limited to the details dis: closed herein but is to be accorded the full scope of the claims so. as to embrace any and all equivalent structures and methods. e
' I claim:
1. The method of making a radar reflector comprising forming and retaining a layer of resinous material in a generally dish-shaped condition, curing said resin, sandblasting the outer' curved surface of said resin, spraying a metal uniformly over the sandblasted surface, permitting said metal to' harden on said surface, impregnating the" surface of said sprayed layer of metal with such thermosetting resin, impregnating a fiberglass cloth with said resin and applying the impregnated cloth to said impregnated sprayed metal surface, applying a cellular substantially rigid member on the outer surface of the impreg-.
nated fiberglass cloth layer, impregnating a second fiberglass cloth with said resin and applying said cloth over said cellular member, removing entrapped air and pressing.
all of said layers radially together and curing said resin in and between said layers, trimming the marginal edge:
of the resultant cured mass, impregnating a fiberglass material with a thermo-setting resin and applying said ma terial over said trimmed edge, and curing said last men-- tioned resin in place. 7 a
2. The method of making a radar reflector comprising forming and retaining a layer of woven fiberglass cloth in a generally dish-shaped condition, impregnating said cloth t a t me-s t e in e l psoid tesi is a i the outer curved surface of said resin-impregnatedcloth,
spraying a metal uniformly over the sandblasted surface, permitting said metal to harden on said surface, impregnating the surface of said sprayed layer of metal with such thermo-setting resin, impregnating a second fiberglass cloth with said resin and applying said impregnated second cloth to said impregnated sprayed metal surface, applying a cellular substantially rigid member on the outer surface of said second impregnated fiberglass cloth layer, impregnating a third fiberglass cloth with said resin and applying said cloth over said cellular member, removing entrapped air and pressing all of said layers radially together andcuring said resin in and between said layers, trimming the marginal edge of the resultant cured mass, impregnating a fiberglass material with a thcrmo-setting resin and applying said material over said trimmed edge, and curing said last mentioned resin in place.
3. The method of claim 2, wherein said thermo-setting resin is an unsaturated polyester.
4. The method of claim 2, including the additional steps of covering the foregoing layers with a flexible impervious layer of material non-compatible with said resin, and removing said air under vacuum around the circumferential periphery of said dish-shaped structure while pressing out any such entrapped air and residual resin in the direction of said circumferential periphery and said vacuum.
5. The method of making a radar reflector of the character described comprising forming a dome-shaped mold, positioning said mold with said dome shape uppermost upon a solid foundation, forming an annular flange around said dome at the base thereof, impregnating with a thermosetting resin and applying over said dome a layer of fiberglass cloth, curing said thermo-setting resin in and upon said cloth, sandblasting the upper cured surface of said resin, spraying a substantially uniform layer of aluminumlike metal over said sandblasted surface, impregnating with a thermo-setting resin and laying thereover a second fiberglass cloth, laying over said second fiberglass cloth a rigid material to a substantial thickness, impregnating with a thermo-setting resin and laying thereover a third fiberglass cloth, laying thereover an impervious flexible sheet, providing a vacuum under said last sheet substantially entirely around said dome at said flange, and wiping said dome downwardly toward said flange and vacuum while curing the resin, removing the cured reflector from the mold and trimming and finishing the edges thereof.
References Cited in the file of this patent UNITED STATES PATENTS 2,439,137 Keller Apr. 6, 1948 2,478,165 Collins Aug. 2, 1949 2,638,428 Gordon et al. May 12, 1953 2,706,832 Frost et al Apr. 26, 1955 FOREIGN PATENTS 365,755 Great Britain Jan. 28, 1932

Claims (1)

1. THE METHOD OF MAKING A RADAR REFLECTOR COMPRISING FORMING AND RETAINING A LAYER OF RESINOUS MATERIAL IN A GENERALLY DISH-SHAPED CONDIDTION, CURING SAID RESIN, SANDBLASTING THE OUTER CURVED SURFACE OF SAID RESIN, SPRAYING A METAL UNIFORMLY OVER THE SANDBLASTED SURFACE, PERMITTING SAID METAL TO HARDEN ON SAID SURFACE, IMPREGNATING THE SURFACE OF SAID SPRAYED LAYER OF METAL WITH SUCH THERMOSETTING RESIN, IMPREGNATING A FIBERGLASS CLOTH WITH SAID RESIN AND APPLYING THE IMPREGNATED CLOTH TO SAID IMPREGNATED SPRAYED METAL SURFACE, APPLYING A CELLULAR SUBSTANTIALLY RIGID MEMBER ON THE OUTER SURFACE OF THE IMPREGNATED FIBERGLASS CLOTH LAYER, IMPREGNATING A SECOND FIBERGLASS CLOTH WITH SAID RESIN AND APPLYING SAID CLOTH OVER SAID CELLULAR MEMBER, REMOVING ENTRAPPED AIR AND PRESSING ALL OF SAID LAYERS RADIALLY TOGETHER AND CURING SAID RESIN IN AND BETWEEN SAID LAYERS, TRIMMING THE MARGINAL EDGE OF THE RESULTANT CURED MASS, IMPREGNATING A FIBERGLASS MATERIAL WITH A THERMO-SETTING RESIN AND APPLYING SAID MATERIAL OVER SAID TRIMMED EDGE, AND CURING SAID LAST MENTIONED RESIN IN PLACE.
US540796A 1952-06-20 1955-10-17 Method of making radar reflector Expired - Lifetime US2805974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US540796A US2805974A (en) 1952-06-20 1955-10-17 Method of making radar reflector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US294632A US2747180A (en) 1952-06-20 1952-06-20 Radar reflector
US540796A US2805974A (en) 1952-06-20 1955-10-17 Method of making radar reflector

Publications (1)

Publication Number Publication Date
US2805974A true US2805974A (en) 1957-09-10

Family

ID=26968631

Family Applications (1)

Application Number Title Priority Date Filing Date
US540796A Expired - Lifetime US2805974A (en) 1952-06-20 1955-10-17 Method of making radar reflector

Country Status (1)

Country Link
US (1) US2805974A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909791A (en) * 1956-07-19 1959-10-27 Jr Robert R Malary Sandwich construction for seaplane floats
US2913036A (en) * 1956-08-10 1959-11-17 Anthony Bros Fibre Glass Pool Process and apparatus for molding large plastic structures
US2950883A (en) * 1955-06-14 1960-08-30 Wesley K Landes Skifor aircraft and the like
US2958621A (en) * 1956-11-20 1960-11-01 Goodyear Aircraft Corp Method of making a dome-like body of plastic reinforced fibers
US2987983A (en) * 1958-10-28 1961-06-13 Isel I Solzman Plastic casing for air exhauster
US3043054A (en) * 1959-03-23 1962-07-10 Goodyear Aircraft Corp Spherical self-supporting enclosures
US3060453A (en) * 1959-12-18 1962-10-30 Swan George Dewey Stall enclosure
US3065940A (en) * 1956-06-22 1962-11-27 Emil L Eckstein Aircraft outer surface covering
US3074832A (en) * 1957-12-04 1963-01-22 Detag Plastic window plate structure and method of making same
US3085925A (en) * 1957-02-20 1963-04-16 Konenklijke Nl Vliegtuigenfabr Method of forming an aircraft part having a pliable deicer boot thereon
US3087581A (en) * 1960-03-07 1963-04-30 Pitman Mfg Company Fiberglas structural member and method of making same
US3091262A (en) * 1957-08-19 1963-05-28 Darworth Inc Metal-fiber reinforced resin laminate
US3136674A (en) * 1959-12-09 1964-06-09 Robert V Dunkle Method of making electromagnetic wave reflector
US3161556A (en) * 1961-08-01 1964-12-15 Bonafide Mills Inc Method of making plastic terrazzo sheet material
US3369843A (en) * 1965-07-16 1968-02-20 Philip E. Prew Laminated wheel and method of manufacture
US3932249A (en) * 1973-04-13 1976-01-13 Comalco (J. & S.) Pty. Limited Mesh reinforced elastomeric polymers
US3977773A (en) * 1975-01-17 1976-08-31 Rohr Industries, Inc. Solar energy concentrator
US4171563A (en) * 1977-05-20 1979-10-23 U.S. Philips Corporation Method of manufacturing an antenna reflector
US4188358A (en) * 1976-03-29 1980-02-12 U.S. Philips Corporation Method of manufacturing a metallized plastic reflector
US4216047A (en) * 1978-09-15 1980-08-05 Boeing Commercial Airplane Company No-bleed curing of composites
US4255364A (en) * 1977-12-12 1981-03-10 Talbert John W Large mirror replication process
US4563321A (en) * 1977-10-13 1986-01-07 Gessford James D Method of producing a plastic unitary curved structure with two surfaces and a honeycomb shaped core
US4780262A (en) * 1986-01-15 1988-10-25 The Boeing Company Method for making composite structures
US4836765A (en) * 1987-12-03 1989-06-06 United Technologies Corporation Molding apparatus for composite materials
US5437756A (en) * 1990-07-16 1995-08-01 United Technologies Corp. Method of making a composite sphere for a motion base simulator with a low center of gravity
US5440801A (en) * 1994-03-03 1995-08-15 Composite Optics, Inc. Composite antenna
WO2008061661A1 (en) * 2006-11-21 2008-05-29 Novation S.P.A. Process for the moulding of multilayered fibre-reinforced polymer articles and articles so obtained
CN103407170A (en) * 2013-07-26 2013-11-27 北京卫星制造厂 Manufacturing method for satellite borne antenna reflecting surface
WO2017042442A1 (en) * 2015-09-10 2017-03-16 Airbus Safran Launchers Sas Method for manufacturing an antenna reflector shell with a metallized ply, in particular for a spacecraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB365755A (en) * 1930-07-28 1932-01-28 Joseph Rockoff Improvements in or relating to applying rubber to metal
US2439137A (en) * 1940-12-20 1948-04-06 Thompson S Ltd Laminated plastic article
US2478165A (en) * 1946-05-24 1949-08-02 Owens Corning Fiberglass Corp Low-pressure molding apparatus
US2638428A (en) * 1948-02-23 1953-05-12 Gordon James Edward Method of producing a metal facing on hardenable material
US2706832A (en) * 1951-08-23 1955-04-26 North American Aviation Inc Thin shell dies and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB365755A (en) * 1930-07-28 1932-01-28 Joseph Rockoff Improvements in or relating to applying rubber to metal
US2439137A (en) * 1940-12-20 1948-04-06 Thompson S Ltd Laminated plastic article
US2478165A (en) * 1946-05-24 1949-08-02 Owens Corning Fiberglass Corp Low-pressure molding apparatus
US2638428A (en) * 1948-02-23 1953-05-12 Gordon James Edward Method of producing a metal facing on hardenable material
US2706832A (en) * 1951-08-23 1955-04-26 North American Aviation Inc Thin shell dies and method of making same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950883A (en) * 1955-06-14 1960-08-30 Wesley K Landes Skifor aircraft and the like
US3065940A (en) * 1956-06-22 1962-11-27 Emil L Eckstein Aircraft outer surface covering
US2909791A (en) * 1956-07-19 1959-10-27 Jr Robert R Malary Sandwich construction for seaplane floats
US2913036A (en) * 1956-08-10 1959-11-17 Anthony Bros Fibre Glass Pool Process and apparatus for molding large plastic structures
US2958621A (en) * 1956-11-20 1960-11-01 Goodyear Aircraft Corp Method of making a dome-like body of plastic reinforced fibers
US3085925A (en) * 1957-02-20 1963-04-16 Konenklijke Nl Vliegtuigenfabr Method of forming an aircraft part having a pliable deicer boot thereon
US3091262A (en) * 1957-08-19 1963-05-28 Darworth Inc Metal-fiber reinforced resin laminate
US3074832A (en) * 1957-12-04 1963-01-22 Detag Plastic window plate structure and method of making same
US2987983A (en) * 1958-10-28 1961-06-13 Isel I Solzman Plastic casing for air exhauster
US3043054A (en) * 1959-03-23 1962-07-10 Goodyear Aircraft Corp Spherical self-supporting enclosures
US3136674A (en) * 1959-12-09 1964-06-09 Robert V Dunkle Method of making electromagnetic wave reflector
US3060453A (en) * 1959-12-18 1962-10-30 Swan George Dewey Stall enclosure
US3087581A (en) * 1960-03-07 1963-04-30 Pitman Mfg Company Fiberglas structural member and method of making same
US3161556A (en) * 1961-08-01 1964-12-15 Bonafide Mills Inc Method of making plastic terrazzo sheet material
US3369843A (en) * 1965-07-16 1968-02-20 Philip E. Prew Laminated wheel and method of manufacture
US3932249A (en) * 1973-04-13 1976-01-13 Comalco (J. & S.) Pty. Limited Mesh reinforced elastomeric polymers
US3977773A (en) * 1975-01-17 1976-08-31 Rohr Industries, Inc. Solar energy concentrator
US4188358A (en) * 1976-03-29 1980-02-12 U.S. Philips Corporation Method of manufacturing a metallized plastic reflector
US4171563A (en) * 1977-05-20 1979-10-23 U.S. Philips Corporation Method of manufacturing an antenna reflector
US4563321A (en) * 1977-10-13 1986-01-07 Gessford James D Method of producing a plastic unitary curved structure with two surfaces and a honeycomb shaped core
US4255364A (en) * 1977-12-12 1981-03-10 Talbert John W Large mirror replication process
US4216047A (en) * 1978-09-15 1980-08-05 Boeing Commercial Airplane Company No-bleed curing of composites
US4780262A (en) * 1986-01-15 1988-10-25 The Boeing Company Method for making composite structures
US4836765A (en) * 1987-12-03 1989-06-06 United Technologies Corporation Molding apparatus for composite materials
US5437756A (en) * 1990-07-16 1995-08-01 United Technologies Corp. Method of making a composite sphere for a motion base simulator with a low center of gravity
US5440801A (en) * 1994-03-03 1995-08-15 Composite Optics, Inc. Composite antenna
US5771027A (en) * 1994-03-03 1998-06-23 Composite Optics, Inc. Composite antenna
WO2008061661A1 (en) * 2006-11-21 2008-05-29 Novation S.P.A. Process for the moulding of multilayered fibre-reinforced polymer articles and articles so obtained
CN103407170A (en) * 2013-07-26 2013-11-27 北京卫星制造厂 Manufacturing method for satellite borne antenna reflecting surface
CN103407170B (en) * 2013-07-26 2016-03-30 北京卫星制造厂 A kind of preparation method of satellite antenna reflecting surface
WO2017042442A1 (en) * 2015-09-10 2017-03-16 Airbus Safran Launchers Sas Method for manufacturing an antenna reflector shell with a metallized ply, in particular for a spacecraft
FR3041165A1 (en) * 2015-09-10 2017-03-17 Airbus Defence & Space Sas METHOD FOR MANUFACTURING ANTENNA REFLECTOR SHELL WITH METALLIZED PLI, IN PARTICULAR A SPACE DEVICE

Similar Documents

Publication Publication Date Title
US2805974A (en) Method of making radar reflector
US2747180A (en) Radar reflector
CN108521016B (en) Shipborne radar antenna housing and manufacturing method thereof
US2794756A (en) Reinforced plastic article
US2755216A (en) Process for forming a multi-ducted shell
US3150030A (en) Laminated plastic structure
US2029048A (en) Tubular structural unit and method of making the same
US3129014A (en) Fuel cells and manufacture thereof
GB1560257A (en) Eletromagnetic reflectors
US4242686A (en) Three-dimensionally curved, knit wire electromagnetic wave reflector
GB1595078A (en) Composite sheet structure and method for manufacturing same
US5378078A (en) Manhole cover
US4191604A (en) Method of constructing three-dimensionally curved, knit wire reflector
US3179531A (en) Method of coating a laminated plastic structure
US4212693A (en) Fishing rod and process for its production
US3658612A (en) Method of fabricating cellular foam core structure assembly
RU164302U1 (en) RADIO TRANSPARENT ANTENNA SHELTER
FI113031B (en) A method of making a boat hull in a female mold
US3467345A (en) Foam plastic float and method for the preparation thereof
US3593354A (en) Boat hull construction
US3197352A (en) Method of forming rigid panels and rigid panel products
US3855027A (en) On-site fabrication of antennas
US3680425A (en) Cylindrical drum shell
US2392844A (en) Structural unit and method of making structures therewith
US2420488A (en) Method of forming laminated hollow structures