US2786626A - Process for the compression of gases - Google Patents

Process for the compression of gases Download PDF

Info

Publication number
US2786626A
US2786626A US303181A US30318152A US2786626A US 2786626 A US2786626 A US 2786626A US 303181 A US303181 A US 303181A US 30318152 A US30318152 A US 30318152A US 2786626 A US2786626 A US 2786626A
Authority
US
United States
Prior art keywords
gases
compression
gas
liquid
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US303181A
Inventor
Aaron K Redcay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulf Oil Corp
Original Assignee
Gulf Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Oil Corp filed Critical Gulf Oil Corp
Priority to US303181A priority Critical patent/US2786626A/en
Application granted granted Critical
Publication of US2786626A publication Critical patent/US2786626A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Definitions

  • This invention relates to a process for the compression of gases and more particularly to an improved method for the handling of ajgas or mixture of gases undergoing compression in a centrifugal compressor.
  • a further object of this invention is to reduce the power" required to compress a thermallyv sensitive, hydrocarbon. containing gas in a centrifugal compressor.
  • Fig. 1 is a cross-sectional view of a standard centrifugal compressor, four pressure stages of compressionbeingrepresented, in which liquid injectors have been incorporated;
  • Fig. .2 is a diagrammaticalrepresentation of operating conditions and eifects'where gascompression is achieved without either liquid injection'or interstage cooling;
  • Fig. 3 is a diagrammatical representation of operating conditions and effects where'gas compression is achieved with interstage cooling
  • Fig. 4 is adiagrammaticalrepresentation of operating; conditions and effects Where liquid 'is injected in accordance with my invention.
  • the centrifugal compressor shown in Fig. 1 is of The gases to be compressed enter-i may be injected through atomizer 11.
  • the vaporizable; liquid vaporizes within the stream of gases to becom pressed, and in so doing an amount 'of heat equaljtothe heat of evaporation of the vaporizable liquid is abstracted. from the stream of gases being compressed, thereby cooling the gases.
  • the cooled gases then pass through inlet guide vane '12 into impeller 13 attached to rotating shaft 14.
  • the high angular velocity of the shaft and impeller throws the gases centrifugally through passage way 15 into deflector 16 at which point more vaporizable liquid can be injected through atomizer 17 to achieve a direct cooling of the gases being compressed in the same jection or interstage cooling the gaseous mixture requires seven stages of compression to be raised from 33.7 p. s. i. a. to 85 p. s. i. a'., with a power requirement of 1740 horsepower.
  • compressed I can employ any liquid which is vaporized
  • water is injected into the gases being compressed toa substantial extent at the pressures and temperatures in accordance with my invention, as represented in Fig. 4, existing at the point of injection.
  • water only six stages of compression and only 1680 horsepower can be used to good'elfect, sutficient vaporization taking are required to compress the gases to the same pressure, place even at temperaturesbelow its boiling. point at the namely, 85 p. s. i. a., achieved in the methods shown pressurev involved to exert a cooling. effect.
  • the discharge temperature of the gases normally gaseous hydrocarbon, such.
  • liquid ethane or is 219 F; it is to be borne in mind that" the discharge propane, or low boiling normally liquid hydrocarbon,- temperature and power requirements may be even further such as pentane or hexane can also be employed.
  • propane, or low boiling normally liquid hydrocarbon,- temperature and power requirements may be even further such as pentane or hexane can also be employed.
  • mixtures of water and hydrocarbons can be pressure stages. employed, or water can be employed in some compres-
  • the foregoing example clearly shows the temperature sion stages such as the initial stages, and hydrocarbons control achieved and the powersavings and reduction in in the other compression stages, such as the later stages. compressor size that are made possible by the injection It.
  • compressors Bm 1 5 having more or less pressure stages thanthat shown in Water 3 7 Figure 1 can be employed.
  • the vaporizable liquid can be injected into the gases entering the 100.0 suction of the compressor, directly into the compressor Flg ⁇ ; 2 a 4 No Water Injection Interstage Cooling Water Injection or Interstage Cooling Press, Temp., Press, Temp., Press, Temp, p. s. i. a. T. p..s .1 a T. p. s.i :1 F.
  • Fig. 2 shows that without either vaporizabl'e liquid in 75 Qbviously many modifications and variations of the invention as hereinbefore set forth may be made without departing from the spirit and scope thereof and therefore only such limitations should be imposed as are indicated in the appended claims.
  • a method of centrifugally compressing a gaseous mixture containing as constituents hydrogen, methane, acetylene, ethylene, ethane, propylene, propane, butanes, butylenes, related dienes and water while controlling the temperature of compression to avoid reactions to which the constituents would be subject under normal uncontrolled compression which comprises compressing said mixture, injecting into said mixture,a vaporizable liquid, which liquid is vaporized to a substantial extent at the pressures and temperatures existing at the point of injection, atomizing said vaporizable liquid, and continuing the injection and atomization until said vaporizable liquid is vaporized to a substantial extent in said gaseous mixture, thereby lowering the temperature of the aforesaid mixture to avoid thermal reactions of the constituents in the mixture undergoing compression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

March 26, 1957 A. K. REDCAY PROCESS FOR THE COMPRESSION OF GASES Filed Aug. 7, 1952 F1 Ci. 1. -t 1o 6 ,ucauxb l COOQLHIN'T NJCTIOQN 1] 2 Shets-Sheet 1 IN V EN TOR. *VKR N B- RE AY ms ATTo mey March 26, 1957 K REDCAY 2,786,626
PROCESS FOR THE COMPRESSION OF GASES Filed Aug. 7; 1952 2 Sheets-Sheet 2 FIG. 2.
GAS COMPRESSION WITHOUT LIQUID INJlEC/IION 0R INT/ERSTBGF COOLING 6 PSIR 132 mix-:0. --1soo 6 0 $377,351}; HP '25"? 3) 174 105"? FI G. 25.
GAS C MPRE SION WITH INTERSTAGE COOLING.
53.'? Pau 75%EFF-- 2220 96 MPRE I N ITH LIQUID INJECTION- I H-P THO.--- 125 P5126 FF---168O 105? wsmn INJE CT ION IN VEN TOR.
AARON K- RED A flIS ETTORNEY United States Patent PROCESS FOR THE COMPRESSION OF GASES Aaron K. Redcay, MountLebanon, Pa., assignor to Gulf Oil Corporatiomlittsburgh, Pa., a corporation of Pennsylvania Application August 7, 1952, Serial No. 303,181 1 Claim. or. 230-209 This invention relates to a process for the compression of gases and more particularly to an improved method for the handling of ajgas or mixture of gases undergoing compression in a centrifugal compressor.
In the case of a purely adiabatic compression of a gas, which is, by definition, one in which no heat is added to or removed from the gas during compression, there is nevertheless an increase in the temperature of the gas. This increase in temperature is a manifestation of a change in form of the mechanical work done on the gas into heat energy within the gas. In addition, the inefficiency of a centrifugal compressor changes gas conditions within the compressor so that in practice an adiabatic compression is not achieved. For example, various energy losses taking place within the compressor such as mechanical friction, gas friction and turbulence are all transformed into heat and raise the temperature of the gas beyond that calculated from adiabatic compression conditions.
This increase in temperature, or internal energy res-ulting from those causes discussed above may haveparticularly detrimental effects. In the case of any gas the increased internal energy of the gas makes further compression more diflicult and expensive by virtue of the extra work required. In the case of many normally gaseous hydrocarbons, particularly hydrocarbon-containing gases such as inflammable gas-es like gas mixtures containing acetylene; and refinery gases and those derived from the cracking of normally gaseous hydrocarbons, such as ethane and propane, at the elevated temperatures resulting during compression, the gases or mixtures of gases may be thermally sensitive; that is, they may be reactive at the temperatures attained during compression to undergo decomposition, alkylation, or polymerization reactions and the like. p 7
Since the foregoing hydrocarbon-containing gases contain valuable constituents, such as ethylene, it has become can polymerize eitherlby themselves or-in a-copolyn'ieri'za tion reaction with the mono-olefinic hydrocarbons'{ to form solid polymers which tend to plug up subsequent-i separating apparatus and represent a loss-of valuable" components. Similarly the diene hydrocarbons or the; mono-olefinic hydrocarbons can become involved in at: kylationr'eac'tions with each other or with the saturated hydrocarbons, againresulting'in 'a loss of valuable centponents. V
Conventional methods for controllingthe 'increasein temperature 'of gases being compressed have employed 1 multistage compressors with interstagecooling by means of indirect heat exchange. The volume of ordinary cooling media in such a case is so great, however, as to entail a large capital investment for coolers. Furthermore, a considerable increase is required in the number of cornpression stages to achieve sufiicient finalcompressionof customary to subject such gases to various separationprocesses to recover the valuable constituents therefrom; The separation processes employed have included fractional distillation, oil absorption or extraction, or combinations of such processes. In any of these processes, it is necessary to at least partially liquefy the initial gaseous mixture, such liquefaction involving compression of the gases followed by cooling. in compressing thermally sensitive hydrocarbon-containing gases for the purpose of liquefying them, the controlled temperatures attained during compression tend to cause thermal reactions, thereby resulting in a loss of valuable components of the gaseous I standard design. I through suction inlet 10 at which point vaporizable liquid the gases. 7, H
It is therefore an object of this invention to compress a thermally sensitive, hydrocarbon-containing gaseous mix ture while avoiding thermal reactions of such mixture.
It is also an object of this invention to limit the in-; crease in temperature normally encountered in the centrif-1i ugal compression of athermal-ly sensitive hydrocarboncontaining gas. 4
A further object of this invention is to reduce the power" required to compress a thermallyv sensitive, hydrocarbon. containing gas in a centrifugal compressor.
These and other objects areachieved by the presentinvention wherein, in the centrifugal'compression of hyi', drocarbon-containing gases also containing thermally sensitive constituents, there is injected into the gases undergoing compression a vaporizable liquid. The vaporization of the vaporizable liquid in the stream of gases undergoing compression serves to cool the compressed gases, and thus produces a temperature level within said gases lower than the temperature which would otherwisebe attained by reason of the normal heat of compression. Thermal reaction of the thermally sensitive gases isthereby avoided. Furthermore, as compared with conventional compression, less power is required to compress the gases to the same pressure.
- In order more fully to describe my invention reference is made to the accompanying drawings in which:
Fig. 1 is a cross-sectional view of a standard centrifugal compressor, four pressure stages of compressionbeingrepresented, in which liquid injectors have been incorporated;
Fig. .2'is a diagrammaticalrepresentation of operating conditions and eifects'where gascompression is achieved without either liquid injection'or interstage cooling;
Fig. 3 is a diagrammatical representation of operating conditions and effects where'gas compression is achieved with interstage cooling;
Fig. 4 is adiagrammaticalrepresentation of operating; conditions and effects Where liquid 'is injected in accordance with my invention.
The centrifugal compressor shown in Fig. 1 is of The gases to be compressed enter-i may be injected through atomizer 11. The vaporizable; liquid vaporizes within the stream of gases to becom pressed, and in so doing an amount 'of heat equaljtothe heat of evaporation of the vaporizable liquid is abstracted. from the stream of gases being compressed, thereby cooling the gases. The cooled gases then pass through inlet guide vane '12 into impeller 13 attached to rotating shaft 14. The high angular velocity of the shaft and impeller throws the gases centrifugally through passage way 15 into deflector 16 at which point more vaporizable liquid can be injected through atomizer 17 to achieve a direct cooling of the gases being compressed in the same jection or interstage cooling the gaseous mixture requires seven stages of compression to be raised from 33.7 p. s. i. a. to 85 p. s. i. a'., with a power requirement of 1740 horsepower. In compressing the gases through pellers 1-9 and 20, in eachof-which the gases undergo 5 the seven stages they are heated from an initial temfurther eompressiontwithcooling betweentpressure stages perature of 105 F. to a discharge temperature of 280 by the injection of vaporizable liquid-from atomizers 21 F. Such a discharge temperature will tend to cause therand 22. Finally, the compressed. gases are discharged mal reaction of the thermally sensitive constituents.- through-outlet 23. Elements 24 through 28 inclusive, Fig. 3 indicates that, to achieve the same degree of represent drainplugs located inthe lower portion of the compression With interstage cooling of the gases at the compressor casing for removal of any liquids that may points indicated, eight stages'are required with a horsecollect at those points during compression. power requirement of 2220. The discharge temperature As vaporizable liquids'for injection into the gases being of the gases is 214 F. compressed I can employ any liquid which is vaporized When water is injected into the gases being compressed toa substantial extent at the pressures and temperatures in accordance with my invention, as represented in Fig. 4, existing at the point of injection. For example, water only six stages of compression and only 1680 horsepower can be used to good'elfect, sutficient vaporization taking are required to compress the gases to the same pressure, place even at temperaturesbelow its boiling. point at the namely, 85 p. s. i. a., achieved in the methods shown pressurev involved to exert a cooling. effect. A liquefied in' Figs} 2 and 3. The discharge temperature of the gases normally gaseous hydrocarbon, such. as liquid ethane, or is 219 F; it is to be borne in mind that" the discharge propane, or low boiling normally liquid hydrocarbon,- temperature and power requirements may be even further such as pentane or hexane can also be employed. In reduced by injection of water into a greater number of some cases mixtures of water and hydrocarbons can be pressure stages. employed, or water can be employed in some compres- The foregoing example clearly shows the temperature sion stages such as the initial stages, and hydrocarbons control achieved and the powersavings and reduction in in the other compression stages, such as the later stages. compressor size that are made possible by the injection It. is'preferred to employ asthe vaporizable liquid' water of vaporizable liquidsinto a stream of a thermally sensiobtained from cooling the compressed gas to at least partive, hydrocarbon-containing gaseous mixture undergoing tially liquefy the vwater component. compression. Such temperature control effectuates econ- The' following example shoWs the elfect of water inomies by preventing (l) costly losses of a portion of jection in the compression of a hydrocarbon-containing reactive gases through their polymerization, alkylation gaseous mixture,- the results being illustrated diagram and the like, and (,2) operating difficulties that may be matically in Figs. 2, 3 and 4. The charge gas has the folcaused thereby. The reduction in'compressor size that 1Wlfig0mP0$1tl01E is possible by the method of my invention is another Charge gas economy attained. In addition, heavy and expensive Component. v01. percent heat exchangers and piping such as are used in Figure 3 Hydrogen 2&1 to achieve indirect cooling, can be ellmmated with re- Methane sultant reduction of installation costs. Ethykm. 3L9 Although I have disclosed the use of water as the va- Acetylene 0'4 40 porizable liquid-in the specific example, it will be ob- Ethane 261 vious that any other vaporizable liquid which vaporizes propylene 1.2 at the pressures and temperatures existing at the point of propane; ()5 injection can. be employed. In addition, compressors Bm 1 5 having more or less pressure stages thanthat shown in Water 3 7 Figure 1 can be employed. Furthermore, the vaporizable liquid can be injected into the gases entering the 100.0 suction of the compressor, directly into the compressor Flg}; 2 a 4 No Water Injection Interstage Cooling Water Injection or Interstage Cooling Press, Temp., Press, Temp., Press, Temp, p. s. i. a. T. p..s .1 a T. p. s.i :1 F.
Suction Sta-gem tone-"- 3: 3313 $3 1313 .133 3335 i2? Stage 2eDischarge 47. 0 160 47. 0 160 47. 0 160 Stage 3 ischar e 64 0 186 iit b e iiis ltfl sta es Discharge- 62:0 210 a i C 191, W 84 i t 196 SW DH v ers a e 00 er ater njec ion at 227 iii a I a stage-1 mscnsrgennua 85.0 280 000E557 Y? j l f i sta spsDischarges 85 214 B. P,.The0. 1, 00 1,667 1 259 B. H. P. 1, 740 2,220 1; 680
v In'the example and in Figs. 2, 3 and 4, the theoretical itself, between the stages of a multistage compressor, or horsepower requirement of'the variou methods repreat any or all of these points. Moreover, an amount of sented therein is the calculated horsepower required. to vaporizable liquid can be injected into the stream of gases compress thegases delivered by the compressor through undergoing compression in excess of that completely vathe sgecl f iedrange' of pressures. The actual horsepower porized. The unvaporized liquid would be discharged in requirement isbas'edon a percent effi'eiency. the compressed gases at the compressor outlet.
Fig. 2 shows that without either vaporizabl'e liquid in 75 Qbviously many modifications and variations of the invention as hereinbefore set forth may be made without departing from the spirit and scope thereof and therefore only such limitations should be imposed as are indicated in the appended claims.
I claim:
A method of centrifugally compressing a gaseous mixture containing as constituents hydrogen, methane, acetylene, ethylene, ethane, propylene, propane, butanes, butylenes, related dienes and water while controlling the temperature of compression to avoid reactions to which the constituents would be subject under normal uncontrolled compression, which comprises compressing said mixture, injecting into said mixture,a vaporizable liquid, which liquid is vaporized to a substantial extent at the pressures and temperatures existing at the point of injection, atomizing said vaporizable liquid, and continuing the injection and atomization until said vaporizable liquid is vaporized to a substantial extent in said gaseous mixture, thereby lowering the temperature of the aforesaid mixture to avoid thermal reactions of the constituents in the mixture undergoing compression.
References Cited in the file of this patent UNITED STATES PATENTS 1,400,813 Graerniger Dec. 20, 1921 1,751,537 Vianello Mar. 25, 1930 2,164,761 Ashley July 4, 1939 2,280,845 Parker Apr. 28, 1942
US303181A 1952-08-07 1952-08-07 Process for the compression of gases Expired - Lifetime US2786626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US303181A US2786626A (en) 1952-08-07 1952-08-07 Process for the compression of gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US303181A US2786626A (en) 1952-08-07 1952-08-07 Process for the compression of gases

Publications (1)

Publication Number Publication Date
US2786626A true US2786626A (en) 1957-03-26

Family

ID=23170873

Family Applications (1)

Application Number Title Priority Date Filing Date
US303181A Expired - Lifetime US2786626A (en) 1952-08-07 1952-08-07 Process for the compression of gases

Country Status (1)

Country Link
US (1) US2786626A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129566A (en) * 1959-08-17 1964-04-21 Favre Donavon Lee Low temperature heat engine and air conditioner
US3369361A (en) * 1966-03-07 1968-02-20 Gale M. Craig Gas turbine power plant with sub-atmospheric spray-cooled turbine discharge into exhaust compressor
DE2352561A1 (en) * 1973-10-19 1975-04-24 Linde Ag PROCEDURE FOR DRAINING THE COMPRESSION HEAT ARISING FROM THE COMPRESSION OF A GAS OR GAS MIXTURE
EP0073097A1 (en) * 1981-08-14 1983-03-02 Exxon Research And Engineering Company Separate quench and evaporative cooling of compressor discharge stream
FR2519383A1 (en) * 1982-01-04 1983-07-08 Gen Electric Multiple stage radial compressor with water injection - has jet openings through walls of stages, arranged symmetrically about axis
US4695224A (en) * 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
US4711771A (en) * 1983-03-16 1987-12-08 Linde Aktiengesellschaft Process and apparatus for cooling a gaseous stream before and/or during its compression
EP0344517A1 (en) * 1988-05-30 1989-12-06 Siemens Aktiengesellschaft Side channel compressor
US5282726A (en) * 1991-06-21 1994-02-01 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
DE4407829A1 (en) * 1994-03-09 1995-09-14 Abb Patent Gmbh Method for quasi-isothermal compression of air
US5499509A (en) * 1994-08-16 1996-03-19 American Standard Inc. Noise control in a centrifugal chiller
US20050252231A1 (en) * 2002-06-04 2005-11-17 Carlos Jimenez Haertel Method for operating a compressor
US20060245913A1 (en) * 2003-09-25 2006-11-02 Abb Research Ltd. Compressor cleaning system
US20090193845A1 (en) * 2008-02-06 2009-08-06 Noriyasu Sugitani Turbo compressor and refrigerator
US20110142607A1 (en) * 2008-06-12 2011-06-16 Cerretelli Ciro Centrifugal compressor for wet gas environments and method of manufacture
CN103047190A (en) * 2012-04-17 2013-04-17 溧阳德维透平机械有限公司 Centrifugal compressor
WO2016153627A1 (en) * 2015-03-26 2016-09-29 Exxonmobil Upstream Research Company Wet gas compression
EP3441621A1 (en) * 2017-08-10 2019-02-13 Siemens Aktiengesellschaft Turbocompressor with injection of liquefied process gas in the flow path
US10215184B2 (en) 2015-03-26 2019-02-26 Exxonmobil Upstream Research Company Controlling a wet gas compression system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400813A (en) * 1920-11-03 1921-12-20 Graemiger Benjamin Process of compressing vapor in multistage centrifugal compressors
US1751537A (en) * 1921-02-25 1930-03-25 Vianello Emilio Apparatus for compressing air, gases, or vapors
US2164761A (en) * 1935-07-30 1939-07-04 Carrier Corp Refrigerating apparatus and method
US2280845A (en) * 1938-01-29 1942-04-28 Humphrey F Parker Air compressor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1400813A (en) * 1920-11-03 1921-12-20 Graemiger Benjamin Process of compressing vapor in multistage centrifugal compressors
US1751537A (en) * 1921-02-25 1930-03-25 Vianello Emilio Apparatus for compressing air, gases, or vapors
US2164761A (en) * 1935-07-30 1939-07-04 Carrier Corp Refrigerating apparatus and method
US2280845A (en) * 1938-01-29 1942-04-28 Humphrey F Parker Air compressor system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129566A (en) * 1959-08-17 1964-04-21 Favre Donavon Lee Low temperature heat engine and air conditioner
US3369361A (en) * 1966-03-07 1968-02-20 Gale M. Craig Gas turbine power plant with sub-atmospheric spray-cooled turbine discharge into exhaust compressor
DE2352561A1 (en) * 1973-10-19 1975-04-24 Linde Ag PROCEDURE FOR DRAINING THE COMPRESSION HEAT ARISING FROM THE COMPRESSION OF A GAS OR GAS MIXTURE
US3947146A (en) * 1973-10-19 1976-03-30 Linde Aktiengesellschaft Removal of heat of compression
EP0073097A1 (en) * 1981-08-14 1983-03-02 Exxon Research And Engineering Company Separate quench and evaporative cooling of compressor discharge stream
US4417847A (en) * 1981-08-14 1983-11-29 Exxon Research & Engineering Co. Separate quench and evaporative cooling of compressor discharge stream
DE3248440A1 (en) * 1982-01-04 1983-07-14 General Electric Co., Schenectady, N.Y. Compressor
FR2519383A1 (en) * 1982-01-04 1983-07-08 Gen Electric Multiple stage radial compressor with water injection - has jet openings through walls of stages, arranged symmetrically about axis
US4695224A (en) * 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
US4711771A (en) * 1983-03-16 1987-12-08 Linde Aktiengesellschaft Process and apparatus for cooling a gaseous stream before and/or during its compression
EP0344517A1 (en) * 1988-05-30 1989-12-06 Siemens Aktiengesellschaft Side channel compressor
US4907945A (en) * 1988-05-30 1990-03-13 Siemens Aktiengesellschaft Side-channel compressor
US5282726A (en) * 1991-06-21 1994-02-01 Praxair Technology, Inc. Compressor supercharger with evaporative cooler
DE4407829A1 (en) * 1994-03-09 1995-09-14 Abb Patent Gmbh Method for quasi-isothermal compression of air
US5499509A (en) * 1994-08-16 1996-03-19 American Standard Inc. Noise control in a centrifugal chiller
US20050252231A1 (en) * 2002-06-04 2005-11-17 Carlos Jimenez Haertel Method for operating a compressor
US7093450B2 (en) * 2002-06-04 2006-08-22 Alstom Technology Ltd Method for operating a compressor
US20060245913A1 (en) * 2003-09-25 2006-11-02 Abb Research Ltd. Compressor cleaning system
US7524166B2 (en) * 2003-09-25 2009-04-28 Abb Research Ltd Compressor cleaning system
US8800310B2 (en) 2008-02-06 2014-08-12 Ihi Corporation Turbo compressor and refrigerator
JP2009185712A (en) * 2008-02-06 2009-08-20 Ihi Corp Turbo compressor and refrigerator
US20090193845A1 (en) * 2008-02-06 2009-08-06 Noriyasu Sugitani Turbo compressor and refrigerator
US20110142607A1 (en) * 2008-06-12 2011-06-16 Cerretelli Ciro Centrifugal compressor for wet gas environments and method of manufacture
US8845281B2 (en) 2008-06-12 2014-09-30 General Electric Company Centrifugal compressor for wet gas environments and method of manufacture
CN103047190A (en) * 2012-04-17 2013-04-17 溧阳德维透平机械有限公司 Centrifugal compressor
WO2016153627A1 (en) * 2015-03-26 2016-09-29 Exxonmobil Upstream Research Company Wet gas compression
US10215184B2 (en) 2015-03-26 2019-02-26 Exxonmobil Upstream Research Company Controlling a wet gas compression system
US10253781B2 (en) 2015-03-26 2019-04-09 Exxonmobil Upstream Research Company Wet gas compression
US20190145419A1 (en) * 2015-03-26 2019-05-16 Michael T. MATHEIDAS Controlling a Wet Gas Compression System
US10989212B2 (en) 2015-03-26 2021-04-27 Exxonmobile Upstream Research Company Controlling a wet gas compression system
EP3441621A1 (en) * 2017-08-10 2019-02-13 Siemens Aktiengesellschaft Turbocompressor with injection of liquefied process gas in the flow path

Similar Documents

Publication Publication Date Title
US2786626A (en) Process for the compression of gases
US3947146A (en) Removal of heat of compression
US2944966A (en) Method for separation of fluid mixtures
AU2016250325B2 (en) System and method for liquefaction of natural gas
US2522787A (en) Method of and apparatus for liquefying gases
US4966612A (en) Process for the separation of hydrocarbons
US2497421A (en) Absorption process
US2552451A (en) Fractionation of low molecular weight component mixtures
IE45862B1 (en) Improvements in or relating to the separation of multicomponent mixtures
US3160489A (en) Nitrogen removal from natural gas
AU2020201573B2 (en) Parallel compression in lng plants using a double flow compressor
US3401111A (en) Hydrogen compression by centrifugal compressors
US2134700A (en) Separation of hydrocarbons
US2134699A (en) Separation of hydrocarbons
US2876865A (en) Cooling hot gases
US2236978A (en) Manufacture of acetylene
US3354663A (en) Hydrate removal from wet natural gas
US2230219A (en) Production of hydrocarbons
US2242299A (en) Vapor recovery system
US2222276A (en) Apparatus and a process for the recovery of gasoline from cracked petroleum hydrocarbons
US2221000A (en) Polymerizing olefin hydrocarbons
CA1173741A (en) Separate quench and evaporative cooling of compressor discharge stream
US2629239A (en) Separation of closely boiling fractions from a binary mixture
US1987267A (en) Method for the absorption of gases
US2711085A (en) Apparatus for pumping volatile liquids