US2733247A - Whitening agents fos cellulosic fiber - Google Patents

Whitening agents fos cellulosic fiber Download PDF

Info

Publication number
US2733247A
US2733247A US2733247DA US2733247A US 2733247 A US2733247 A US 2733247A US 2733247D A US2733247D A US 2733247DA US 2733247 A US2733247 A US 2733247A
Authority
US
United States
Prior art keywords
sodium
fos
parts
cellulosic fiber
whitening agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US2733247A publication Critical patent/US2733247A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)

Description

' 2,733,247 Patented Jan. 31, 1956 Fire 2,733,247 WHITENING AGENTS FOR CELLULOSIC FIBER Arthur A. Baum and Paul A. Sanders, N ew Castle County, Del., assignors to E. I. du Pont de Nemours & Company, Wilmington, DeL, a corporation of Delaware No Drawing. Application November 20, 1052, Serial No. 321,736
Claims. (Cl. 260--$04) This invention relates to the production of novel organic compounds which are useful as whitening agents for fibrous material such as textiles or paper. It is an object of this invention to produce compounds of the above general nature, but which are characterized further by bleach fastness and by correct shade of fluorescence. Additional objects and achievements of this invention will appear as the description proceeds.
The art of whitening or brightening textile fiber and paper is of relatively recent development. It has been found that fibrous materials which normally have a dull, yellowish cast when in the white, unbleached state, become whiter and brighter it treated with agents which fluoresce under ultraviolet light. Presumably the action of the ultraviolet rays present in ordinary daylight is sufiicient to excite these agents upon the fiber to emit fluorescence which overcomes the undesirable tinge of color in the unbleached fiber. Best results are obtained when the shade of fluorescence is complementary to that of the unbleached fiber, so that the colors will cancel out each other. Since the most common off-white shade of unbleached cellulosic fiber is yellowish, the most desirable shade in a fluorescent is blue. Many fluorescents of green or pink shade have been proposed and tried, but these can be used only in very minute concentration, inasmuch as larger concentrations of these tend to shade the fiber in undesirable green or pink shades. The bluefluorescents, however, can be used in relatively large concentration (say up to 0.10% by weight of the fiber), and are very effective in producing bright, white textiles.
Another very important demand developed by the trade is bleach fastness. Inasmuch as the aforementioned fluorescent agents are generally incorporated into soap and synthetic detergents, which are packaged and marketed for household use, and inasmuch as in household practice laundered articles are often subjected to bleaching with various agents, for instance hypochlorites, it is essential that the fluorescent transferred from the detergent to the fiber shall not be destroyed by the action of bleach. Unfortunately, most of the fluorescent agents now on the market, and having the desirable blue shade, are Weak in respect to this qualification of bleach resistance.
In addition to the above two primary qualifications, an agent to be commercially successful must be capable of being synthesized economically from readily available materials, and must have suflicient fluorescent power (often referred to as tinctorial strength) to give the desired eifect at a minimum cost. It must also have affinity for the fiber that is to be treated and must possess suflicient water-solubility to be applicable from an aqueous bath in the concentrations that would normally be used.
Now according to our invention new chemical compounds are synthesized which satisfy to an excellent degree all the aforegoing qualifications. The novel com- 2 pounds of this invention may be defined by the general formula Rl l-ll l N:
oooM
these, While M stands for hydrogen, an alkali-metal or the ammonium radical.
These compounds may be synthesized by diazoting 2- (p-aminophenyl)-benzothiazole, dehydro-thio-p-toluidine or dehydro-thio-m-xylidine or their monosulfo derivatives, then coupling (in acid medium) to a naphthoic acid having an NHz group in position 1 or 2. The resulting ortho-arnino azo compounds is then converted into a triazole by oxidation in known manner, for instance by heating in an aqueous solution of cupric ammonium sulfate or of sodium hypochlorite until the color of the intermediate azo dye has disappeared, followed by recovery of the product in a desired physical or chemical form, for instance in the form of an alkali-metal or ammonium salt.
Without limiting this invention, the following examples are given to illustrate our preferred mode of operation. Parts mentioned are by weight.
Example I .-Synthesis 34.2 parts (0.1 mol) of dehydrothio-p-toluidine sodium sulfonate were diazotized, at 0--5 C., with sodium nitrite and an excess of hydrochloric acid, in 1000 parts of water. A solution of 24.6 parts (011 mol) of the hydrochloride of 2,3-aminonaphthoic acid in 900 parts of water was added. The acidity was reduced by the aid of sodium acetate to a weakly acid test on Congo red paper, and the mixture was allowed slowly to assume room temperature. The mixture was then made alkaline to brilliant yellow paper, and the amino-azo dye was salted out and filtered off.
The wet dye cake thus prepared was dissolved in 2000 parts of water at 60 C. A solution of 50 parts of CuSO4.5HzO in parts of water and 300 parts of concentrated ammonia-(28%) was added. The mixture was then heated to reflux, maintained at reflux temperature for 3 hours and diluted with 1000 parts of water. 24 parts of sodium hydroxide were added, and the mixture was boiled 1 hour. The solution was clarified while hot with charcoal, filtered hot, then salted out with sodium chloride. The precipitated product was filtered oil and dried. The product was soluble in water with a bright bluish fluorescene.
Example 2.Synthesis Example 3.Pmctical application and testing Cotton cloth was washed with a heavy duty detergent containing 60 p. p. m. (based on fabric) of the aforegoing triazole sodium salt. (The heavy duty detergent employed was a commercial detergent composed, by weight, of approximately 30% of along chain alkyl aryl sulfonate, 2% of carboxy methyl cellulose and 68% of sodium polyphosphate.)
The treated cloth fluoresced with a blue light when exposed to ultraviolet light in the absence of visible light and was considerably whiter in day-light than untreated cloth.
The bleach resistance of this agent was demonstrated by the following test.
An aqueous solution containing by weight 0.4% of a heavy duty detergent (same as above) and 60 p. .p 111. (based on the cloth to be treated) of the above triazole sodium salt was heated to 130 F., and sodium hypochlorite was added in quantity calculated to yield a concentration of 0.02% of available chlorine (based on bath weight). Two minutes later, cotton cloth was entered into the dye bath and the temperature of the mixture was maintained at 130 The cloth was then removed from the dye bath, rinsed and dried. The cloth thus treated was measured by spectrophotometric methods and found to have 96- 100% of the fluorescence produced in a control sample of cloth treated under the same conditions in a similar bath but containing no bleach.
A third sample of cloth, treated under identical conditions in the presence of sodium hypochlorite, but using as fluorescent agent a present-day commercial product based on diaminostilbene, measured barely of the fluorescence of a fourth piece of cloth (control) treated with the same agent in the absence of bleach.
Tests for light-fastness, substantivity and wash fastness were also carried out, and showed our novel compound to compare favorably in respect to these qualities with the best fluorescents which are now on the market.
If the 34.2 parts of dehydro-thio-p-toluidine sodium sulfonate in the above examples are replaced by 37 parts of dehydro-thio-m-xylidine sodium sulfonate or 32.8 parts of 2-(p-aminophenyl)-benzothiazole sodium sulfonate, products of similar characteristics are obtained. Essentially similar compounds are also obtained if the respective primary amines free of sulfo groups are employed.
Compounds of essentially the same characteristics are also obtained when the 2,3-aminonaphthoic acid is replaced by the 1,4-, 2,5-, 2,6-, or 2,8 isomer (the first numeral referring to the position of the NHz-group).
The compounds given in the above examples have been isolated as sodium salts. By using potassium hydroxide and potassium salts in lieu of sodium hydroxide and sodium salts, throughout, the products may be obtained as postassium sulfonate and carboxylate. Isolation as the free acids can be effected by acidification of the condensation mass, and the products thus obtained may be reacted with ammonium hydroxide or any suitable organic or inorganic base, to yield the corresponding salts.
F. for twenty minutes.
In addition to producing a whitening effect upon textile material or paper, our novel compounds may also be used for various other purposes where fluorescence or absorption of ultraviolet light is desirable, for instance to achieve fluorescent effects in costumes or stage settings, to achieve novel effects on photographic paper, as ultraviolet filters when impregnated on cellulosic films which are used for wrapping materials, etc.
We claim as our invention:
1. A compound of the general formula wherein R represents the radical of a Z-phenyl-benzothiazole of the group consisting of Z-phenyl-benzothiazole itself, its monomethyl and trimethyl homologs, and the monosulfo derivatives of any of these, and wherein M designates a cation of the group consisting of the alkalimetals, ammonium and hydrogen.
2. The process of producing a fluorescent agent of bluish fluorescence and good bleach-fastness, which comprises diazotizing a p-amino-phenyl-benzothiazole compound of the group consisting of Z-(p-aminophenyD- benzothiazole, dehydro-thio-p-toluidine, dehydro-thio-mxylidine and their monosulfo derivative, coupling the diazonium compound to a naphthoic acid having a primary amino group in one of the 1,2-positions and a hydrogen atom in the other of said positions, and oxidizing the resulting ortho-amino azo compound to produce a triazole.
3. A process as in claim 2, the oxidation being effected by heating the compound in an aqueous solution of cupric-ammonium sulfate.
4. A process as in claim 2, the oxidation being effected by heating the compound in an aqueous solution of sodium hypochlorite.
5. A compound as in claim 1, R being the 4'-radical of monosulfo-6-methyl-2-phenyl benzothiazole, and the COOM group being located in the 3 position of the naphthalene nucleus.
References Cited in the file of this patent UNITED STATES PATENTS 1,149,582 Huismann Aug. 10, 1915 1,871,673 Ellis et al. Aug. 16, 1932 2,362,988 Conzetti Nov. 21, 1944 FOREIGN PATENTS 4,448 Great Britain 1895 57,557 Germany Sept. 14, 1890 410,857 Great Britain May 28, 1934

Claims (1)

1. A COMPOUND OF THE GENERAL FORMULA
US2733247D Whitening agents fos cellulosic fiber Expired - Lifetime US2733247A (en)

Publications (1)

Publication Number Publication Date
US2733247A true US2733247A (en) 1956-01-31

Family

ID=3442856

Family Applications (1)

Application Number Title Priority Date Filing Date
US2733247D Expired - Lifetime US2733247A (en) Whitening agents fos cellulosic fiber

Country Status (1)

Country Link
US (1) US2733247A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE57557C (en) * remy, Erhart & Co. in Neuwied-Weifsenthurm Process for the preparation of azo dyes from amidobenzenylphenylamidomercaptan
GB189504448A (en) * 1895-03-01 1895-12-28 Arthur George Green The Manufacture and Production of a New Amido Base, and of Colouring Matters therefrom.
US1149582A (en) * 1914-06-02 1915-08-10 Synthetic Patents Co Inc Sulfonic acids of aromatic aminothiazoles.
US1871673A (en) * 1927-11-28 1932-08-16 Celanese Corp Coloring of cellulose derivatives
GB410857A (en) * 1932-04-20 1934-05-28 Ig Farbenindustrie Ag Manufacture of hydroxynaphthotriazoles
US2362988A (en) * 1940-11-26 1944-11-21 Geigy Ag J R Mordant triazole dyestuffs and process for making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE57557C (en) * remy, Erhart & Co. in Neuwied-Weifsenthurm Process for the preparation of azo dyes from amidobenzenylphenylamidomercaptan
GB189504448A (en) * 1895-03-01 1895-12-28 Arthur George Green The Manufacture and Production of a New Amido Base, and of Colouring Matters therefrom.
US1149582A (en) * 1914-06-02 1915-08-10 Synthetic Patents Co Inc Sulfonic acids of aromatic aminothiazoles.
US1871673A (en) * 1927-11-28 1932-08-16 Celanese Corp Coloring of cellulose derivatives
GB410857A (en) * 1932-04-20 1934-05-28 Ig Farbenindustrie Ag Manufacture of hydroxynaphthotriazoles
US2362988A (en) * 1940-11-26 1944-11-21 Geigy Ag J R Mordant triazole dyestuffs and process for making the same

Similar Documents

Publication Publication Date Title
NO125656B (en)
US2713057A (en) Fluorescent benzgtriazqle compounds
US2737516A (en) Fluorescent whitening agents
US2563493A (en) Sulfonated
US2713055A (en) Whitening agents for cellulosic fiber
US3274171A (en) Monoazo dyestuffs containing a benzothiazole nucleus
US2733247A (en) Whitening agents fos cellulosic fiber
US2844594A (en) 3-aryl-7-dialkylaminocoumarins
US3049438A (en) Pyridotriazole brighteners
US2704286A (en) Fluorescent whitening agents
US2702759A (en) Method of brightening fabrics with sulfonated dibenzothiophene dioxide derivatives
US2713054A (en) Whitening agents for cellulosic fiber
US2700044A (en) Compounds of the benzimidazolylphenyl-1, 2-naphthotriazole type, useful as whiteningagents
US2713056A (en) Fluorescent whitening agents
US2715632A (en) Whitening agents for cellulosic fiber
US2527427A (en) Stilbene disulfonic acid derivatives
US2700043A (en) Fluorescent whitening agents
US2715630A (en) Fluorescent whitening agents
US2865916A (en) Triazole brighteners
US2928830A (en) Pyrazolo-triazole optical brighteners
US3558611A (en) Novel stilbene derivatives
US2684966A (en) Triazole dyestuffs
US2733165A (en) Naoas
US2702296A (en) Fluorescent whitening agents
US2762801A (en) Bis-triazinylamino stilbene compounds