US2728691A - Flame retarding solution and method for treatment of cellulosic materials therewith - Google Patents
Flame retarding solution and method for treatment of cellulosic materials therewith Download PDFInfo
- Publication number
- US2728691A US2728691A US315434A US31543452A US2728691A US 2728691 A US2728691 A US 2728691A US 315434 A US315434 A US 315434A US 31543452 A US31543452 A US 31543452A US 2728691 A US2728691 A US 2728691A
- Authority
- US
- United States
- Prior art keywords
- chloride
- titanium
- solution
- titanium chloride
- tetravalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 16
- 230000000979 retarding effect Effects 0.000 title description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 64
- 239000000243 solution Substances 0.000 claims description 56
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 42
- 230000003113 alkalizing effect Effects 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 230000000717 retained effect Effects 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 239000010936 titanium Substances 0.000 description 62
- 229910052719 titanium Inorganic materials 0.000 description 53
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 52
- 239000004744 fabric Substances 0.000 description 26
- 239000003795 chemical substances by application Substances 0.000 description 18
- 235000013312 flour Nutrition 0.000 description 11
- 239000002023 wood Substances 0.000 description 11
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 8
- 238000004900 laundering Methods 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 230000009970 fire resistant effect Effects 0.000 description 6
- -1 titanium ions Chemical class 0.000 description 6
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 229910010062 TiCl3 Inorganic materials 0.000 description 3
- 229910003074 TiCl4 Inorganic materials 0.000 description 3
- 150000001805 chlorine compounds Chemical class 0.000 description 3
- 238000007706 flame test Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 208000031968 Cadaver Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241001049176 Charis Species 0.000 description 1
- 235000005612 Grewia tenax Nutrition 0.000 description 1
- 235000015847 Hesperis matronalis Nutrition 0.000 description 1
- 240000004533 Hesperis matronalis Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940054283 quartermaster Drugs 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000008149 soap solution Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000010875 treated wood Substances 0.000 description 1
- 239000010876 untreated wood Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/34—Ignifugeants
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/07—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
- D06M11/11—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
- D06M11/20—Halides of elements of Groups 4 or 14 of the Periodic Table, e.g. zirconyl chloride
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H5/00—Special paper or cardboard not otherwise provided for
- D21H5/0002—Flame-resistant papers; (complex) compositions rendering paper fire-resistant
Definitions
- fire-retarding agents which are non-launderable are the alkali phosphate, borate and sulfamate types.
- Launderable types of agent include resins, chlorinated resins or waxes added in combination with inorganic oxides, such as antimony oxide. They, however, have the disadvantage of altering the appearance of the material considerably, and that they must be added in large quantity. Titanium has been added in several fireresistant processes, but in most of these the titanium has been added as titanium dioxide in order to' obtain opaque pigment efiects.
- An object of this invention is to provide a treating agent suitable for rendering fibrous cellulosic material fire-resistant. Still another object is to provide an agent for treating fibrouscellulosic materials to impart flame and glow resistant properties thereto which More specifically it relates to the treatment of will not be affected by washing or laundering. A further object is to produce an agent forrendering fire-resistant fibrous cellulosic materials in which the appearance, texture and tensile strength of the materials have not been altered by the treating agent.
- this invention contemplates a flame-retarding solution for rendering fibrous cellulosic materials fire-resistant or non-inflammable, said solution comprising an aqueous solution of tetravalent titanium' chloride and trivalent titanium chloride.
- this invention contemplates basic solutionsof the type described.
- This invention further contemplates production of a fire-resistant cellulosic material by impregnating the same with such a solution, gelatinizing said solution on said material to form a transparent gel, alkalizing said gel-containing material with an alkaline neutralizing agent, and subsequently washing and drying said material.
- the titanium tetrachloride and trichloride solution may advantageously also contain antimony chloride and this improved solution is also contemplated by the present invention.
- amount of chloride up to 3.0 parts chloride per part of titanium may be employed if desired.
- values for the chloride content refer only to the chloride associated with the tetravalent titanium, and are in addition to the chloride values of the trivalent titanium chloride and, if present, antimony trichloride.
- the amount of tetravalent titanium chloride present in the solution may vary widely, but it is particularly desirable to have present in the solution amounts from about 50 grams per liter to about 150 grams per liter calculated as titanium.
- trivalent titanium chloride With respect to the amount of trivalent titanium chloride which is employed in conjunction with the tetravalent titanium chloride, it has been found desirable to employ amounts from about one gram per liter to about 100 grams per liter calculated as TiCl3. For most types of cellulosic materials it is particularly desirable to employ trivalent titanium chloride in amounts from 5 grams per liter to grams per liter calculated as TiCls.
- chloride values present in solution are considered as being associated with the tetravalent titanium, and are expressed as parts of chloride (Cl-) for each part of tetravalent titanium, the tetravalent titanium values themselves being expressed as parts of tetravalent titanium and calculated as Ti.
- the amount of antimony trichloride which may be added to the flame retarding solution for particularly desirable results may also vary widely. It has been found that the antimony trichloride should be present in an amount up to about 7.5 parts of SbCl3 for each part of tetravalent titanium, the preferred range lying between 1.5 and 5.5 parts of SbCls for each part of tetravalent titanium.
- Fibrous cellulosic materials which may be rendered fire-resistant by the process of the instant invention, in clude 'fabrics such as cotton, linen, regenerated cellulose such as viscose, cuprammonium, and cellulose acetate Patented Dec. 27, 1955 about /2 to A of its original weight.
- the cellulosic material is treated with the titanium salt solution by any convenient means such as by dipping the material in the solution or by spraying the solution on the material. Any excess solution on the cellulosic material may 'be removed, for example, by squeezing between rolls, deliquoring in a centrifuge, or by any other appropriate method, depending upon the physical nature of'the material. It is preferred to leave a quantity of solution on the material about equal to the weight of the material itself, i. e., a Weight pick-up of about 100%.
- the titanium salt solution impregnated in the cellulosic material is gelatinized, for example by exposing the treated material to the atmosphere for a short interval of time. Satisfactory results have been obtained when the exposure is such as to reduce the Weight of solution held by the cellulosic material to The cellulosic material containing the gelatinized'treating'agent is then subjected to an alkalizing agent in order to raise the pH of the treated material to above 7.5, preferably above 9.0,
- alkalizing agent used is unimportant although weak alkalizing agents such as, for example, sodium carbonate or ammonium hydroxide Ithas been found to be desirable, although not essential, to use alkalizing solutions which contain small amounts of soluble silicates, such as the alkali silicates, since these agents increase the efficacy of the treatment and contribute toward improved resistance to afterglow.
- the material is then rinsed well with water, for example by decantation, in order to remove the soluble salts therefrom, and is subsequently dried.
- the preferred amount of impregnant on the final material is about 7% to 14% of the weight of the fibrous cellulosic material when the basic tetravalent titanium chloride and trivalent titanium chloride are used alone, while about 15% to 30% is preferred when the combination of basic tetravalent titanium chloride, trivalent titanium chloride and antimony triehloride is employed.
- the entire process may be carried out at room temperature although if desired, higher temperatures may be employed.
- the amount of, trivalent titanium chloride may vary depending upon the type of the cellulosic materials to be treated. With respect to cellulosic fabrics, it has been found particularly desirable to use small amounts of trivalent titanium chloride in the solution for treatment of light weight materials lower than 6 oz. per square yard, such as, for example organdy,'marquisette, poplin, cotton fiannelette, broadcloth, muslin, damask linen, and regenerated textile'fabrics and the like.
- medium weight fabrics such as those with weights of 6-10 ounces per square yard, which include oxford weave, twills, denim, ticking, velveteen, corduroy and the like, it is particularly'desirable though not essential to use trivalent .titanium chloride in amounts from 25 to 65 g. p. 1. calculated as TiCla in the treating solution.
- trivalent titanium chloride in amounts about 65 g. p. 1. calculated as TiClz in the treating solution.
- the cellulosic materials may be absorbedor adsorbed on the surface, or may react to some extent with the cellulosic materials.
- Titanium triehloride appears to act as a swelling and penetrating agent, and opens up the structureof the cellulosic fiber, allowing easier and more thorough impregnation of the fiber by the tetravalent titanium chloride.
- Photomicrographic examination supports this hypothesis, showing that when tetravalent titanium chloride alone is used, the titanium values are concentrated upon the surface of'the fiber, whereas when the combination of tetravalent titanium chloride with titanium trichloride is employed, the titanium values appear to be more or less uniformly dispersed throughout the fiber.
- Titanium .trichloride when employed alone, still exhibits this penetrating action and upon oxidation of the trivalent titanium values .to thetetravalent. state, exhibits a considerable degree of flameproofing action.
- it is difficult to completely oxidize the trivalent titanium values without either completely drying the cloth or employing strong, harsh oxidizing agents, it ispreferred to supply a portion of the titanium in the tetravalent state.
- the trivalent titanium values render the fiber susceptible of easy penetration by the tetravalent titanium values, and the tetravalent titanium values, whether originally present as such or derived by oxidation from the trivalent titanium, are believed to function as the principal fiameproofing agent.
- EXAMPLE I An aqueous solution containing 51 g. p. 1. tetravalent titanium chloride calculated as Ti and containing 1.6 parts of chloride, calculated as Cl, for each part of titanium, and 29 g. p. 'l. trivalent titanium chloride calculated as TiCl3 were placed in a vessel.
- the tetravalent titanium chloride was obtained by adding 1 part of titanium tetrachloride to 5 parts of ice water over a period of /2 hour withrapid agitation to keep the temperature below and subsequently adding sufficient hydrous titanium oxide pulp, to reduce the amount of chloride present for each part of titanium to the amount above specified.
- the trivalent titanium chloride was prepared by electrolytic reduction of TiCl4 in the cathode chamber of an electrolytic cell having an aqueous HCl electrolyte and a porous diaphragm to isolate the cathode chamber. This solution was used for treating cloth.
- the cloth was cotton twill weighing 8.2 ounces per square yard.
- the cloth was immersed in the solution for two minutes and was passed through a hand w'ringer.
- the immersing and wringing operation was repeated to obtain thorough soaking.
- the treated cloth was then partially dried by exposing the cloth to the atmosphere for 1 /2 hours at room temperature to gelatinize the treating agent on the cloth.
- the gelatinized cloth was then immersed for ten minutes in a solutionof sodium carbonate and sodium silicate to alkanize the solution containedon the cloth.
- the pHof the retainedsolution held by the cloth was 9.5.
- the excess solution was squeezed out of the cloth .by passing the cloth through a hand wringer.
- the cloth was thenwashed well with water until the retained solution had a pH of 8.0 and was then thoroughly dried.
- the 45 microburner test consistsof exposing .thesmooth side of the fabric at an angle of 45, %1 inch above the top of the burner. The flame, 1% inches in length, is played on the fabric for 12 seconds. Theextent of the charred area is recorded,.as well as the afterfiaming and afterglow data in seconds.
- the sample being tested is suspended vertically inch above the top of a Bunsen or Tirrill gas burner.
- the flame height is regulated to 1% inches with the air supply completely shut off.
- the resulting flame is luminous and non-waving.
- Theflame is applied vertically in the middle of the lower end of the specimen for 12 seconds and then withdrawn.
- the afterflaming in seconds is recorded.
- the specimen remains in place to determine afterglow which is also noted in seconds and the length of resulting char is measured.
- the char is measured by inserting hooks in the lower portion of the specimen, one on each side of the charred area, supporting a given weight on one hook and slowly raising the other.
- the char length is defined as the distance from the lower edge of the specimen to the extremity of the tear produced.
- test is widely used and is the test employed by the United States Bureau of Standards, the National Fire Protection :Association, United States Government agencies, American Society for Testing Materials and the National Research Council of Canada and is also described in Flameproofing Textile Fabrics, by Robert W. Little, Reinhold Publishing Corporation, 1947, pages l1ll15.
- EXAMPLE II Another solution contained 51 g. p. l. tetravalenttitanium chloride calculated as titanium in which there were 1.6 parts-of chloride for each part of titanium, 29 g. p. l.
- Atterflame (sea) After low (see) Char; ength (in) Tensile Strength Loss (percent Hand Appearance g very good Testing Solution Table I clearly illustrated that flame resistantproperties are imparted to clothtreated'witha solution containing tetravalent titanium chloride and, trivalenttitanium chloride when used alone or, in combination with antimony trichloride; when tetravalent titanium chloride and trivalent titanium chloride are used in a combination with the antimony trichloride the cloth also exhibits glow-resistant properties.
- EXAMPLE HI A solution containing 230 'g. p. l. titanium tetrachloride, i. e. 5 8 g. p. l.
- Example I Example I Were obtained, except that aloss of about 25 in tensile strength was sustained. i
- EXAMPLE IV A solution containing 45.5 g. p. l. of tetravalent titanium, for each part of tetravalent titanium approximately 1.5 parts of chloride, and 95 g. prl. trivalent titanium chloride was prepared. This solution was used.
- EXAMPLE V A solution similar to that shown in Example III was used to treat Wood flour. The wood flour was immersed in the solution and agitated for ten minutes to insure thorough soaking. The excess solution was separated from the wood flour by deliquoring on a filter press. The filter cake was removed from themes and partially dried by three hours exposure to the atmosphere to gelatinize the solution on the wood flour.
- This treated partially dried wood flour was then nexttralized with a solution of sodium carbonate and agitated for ten minutes to alkalize the solution on the wood flour.
- the wood flour was then deliquored and thoroughly washed in water.
- the treated wood flour was tested for flame retardancy by holding it in a flame of a Bunsen burner for several seconds. It was observedto char but not flame. Untreated Wood flour when tested similarly flamed immediately and was almost entirely consumed.
- fibrous cellulosic materials treated with a solution containing tetravalent titanium chloride and trivalent titanium chloride retained flame resistance. after laundering. The laundering is carried out in a tumbling chamber with 0.5% neutral soap solution at C.
- the preferred method of this invention is employed utilizing the combination of tetravalent titanium chloride, trivalent titanium chloride and antimony trichloride as described, the superior flame and glow-resistant characteristics are retained even after repeated laundering. After six launderings, for instance, results are substantially equal to those before laundering.
- antimony trichloride appears to have a beneficial effect upon'the resistance of the titanium compounds to removal by "laundering.
- Recoveries of b'oth'titanium and antimony values are substantially 100% during processing.
- the amounts of titanium and 'antimony'originally absorbed on the fibrous cellulosic material are equal to the amounts retained in the final material after processing.
- the treated material has an unpleasant, chalky tone and a white dust may be continually renroved' fromthe-surface;
- the titanium values are fixed -in the material in a form which does not substantially alter the appearance or texture of the material.
- the treatment'process is simple, convenient and economical to use. By employment of this invention fibrous cellulosic materials may be treated to render them substantially permanently .resistant to fire.
- a solution for treatment of fibrous cellulosic materials to impart flame resi-stancethereto comprising an aqueous solution of tetravalent titanium chloride and trivalent titanium chloride, said trivalent titanium chloride being present in amount from 1 g. p. l. to 100 g.-p. 1. calculated as 'TiCls, andin said tetravalent titanium chloride, said tetravalent titanium being present in amount from about .50 gap. 1. vto 150g. p. 1. calculated as Ti, the chloride values of said tetravalent titanium chloride being present in amount from about 0.75 to about 3.0 parts Cl for each partofTi, in addition to the chloride values of said TiCls.
- Asolution for-treatmentoffibrous cellulosic materials to impart flame resistance thereto comprising an aqueous solution of tetravalenttitanium chloride; trivalent titanium chloride, and antimony trichloride; said trivalent titanium chloride beingpresent in amount from about .1. g. p. 1. to about 100 g. p. 1., said antimony chloride being present in amount up'to'about 7.5 parts SbCl3 for each part of tetravalent titanium, and in said tetravalent titanium chloride, said tetravalent titanium being. present in amount from about '50 to about 150 g. p. 1.
- the chloride values of saidtetravalent titanium chloride being present in amount from about 0.75 to about 2.25 parts Cl for each part of tetravalent Ti in addition to the chloride values of said trivalent titanium chloride and said antimony trichloride.
- a solution according to claim 4 in which said antim'ony trichloride is present'inlamountfrom about 1.5 to about 5.5 parts SbCla for each part of tetravalent titanium.
- process for treatment of fibrous cellulosic materials to impart flame-resistance thereto which comprises impregnating said material with an aqueous solution-containing trivalent titanium chloride in amount from 1 to 100 grams per liter calculated as TiCl3 and tetravalent titanium chloride, said tetravalent titanium chloride being present in amount from 50 grams per liter to 150 grams per liter calculated as Ti, and the chloride values of said tetravalent titanium chloride being present in amount from about'0.75 to about 3.0 grams of Cl for each gram of Ti in addition to the chloride.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE523579D BE523579A (ko) | 1952-10-17 | ||
US315434A US2728691A (en) | 1952-10-17 | 1952-10-17 | Flame retarding solution and method for treatment of cellulosic materials therewith |
FR1085248D FR1085248A (fr) | 1952-10-17 | 1953-10-17 | Solution d'ignifugation pour le traitement des matières cellulosiques, procédé pour l'application de cette solution et produits conformes à ceux obtenus |
DEN7895A DE1013617B (de) | 1952-10-17 | 1953-10-17 | Verfahren zum Flammfestmachen Cellulose enthaltenden Materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US315434A US2728691A (en) | 1952-10-17 | 1952-10-17 | Flame retarding solution and method for treatment of cellulosic materials therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
US2728691A true US2728691A (en) | 1955-12-27 |
Family
ID=23224413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US315434A Expired - Lifetime US2728691A (en) | 1952-10-17 | 1952-10-17 | Flame retarding solution and method for treatment of cellulosic materials therewith |
Country Status (4)
Country | Link |
---|---|
US (1) | US2728691A (ko) |
BE (1) | BE523579A (ko) |
DE (1) | DE1013617B (ko) |
FR (1) | FR1085248A (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3236870A (en) * | 1961-05-08 | 1966-02-22 | Du Pont | Thermally stable polymers |
US4784875A (en) * | 1986-08-04 | 1988-11-15 | Olin Corporation | Process for treatment of separator for sodium hydrosulfite membrane cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570566A (en) * | 1947-01-24 | 1951-10-09 | Du Pont | Textile treating solutions and compositions containing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2563656A (en) * | 1946-09-18 | 1951-08-07 | Du Pont | Process for producing lustrous titanium impregnated yarns |
US2607729A (en) * | 1950-06-24 | 1952-08-19 | Du Pont | Textile treating compounds |
-
0
- BE BE523579D patent/BE523579A/xx unknown
-
1952
- 1952-10-17 US US315434A patent/US2728691A/en not_active Expired - Lifetime
-
1953
- 1953-10-17 DE DEN7895A patent/DE1013617B/de active Pending
- 1953-10-17 FR FR1085248D patent/FR1085248A/fr not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570566A (en) * | 1947-01-24 | 1951-10-09 | Du Pont | Textile treating solutions and compositions containing same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3236870A (en) * | 1961-05-08 | 1966-02-22 | Du Pont | Thermally stable polymers |
US4784875A (en) * | 1986-08-04 | 1988-11-15 | Olin Corporation | Process for treatment of separator for sodium hydrosulfite membrane cell |
Also Published As
Publication number | Publication date |
---|---|
FR1085248A (fr) | 1955-01-28 |
BE523579A (ko) | |
DE1013617B (de) | 1957-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2983623A (en) | Flame proofing agents derived from methylol phosphorus polymers | |
Hanson et al. | The absorption of dyestuffs by cellulose. Part VI. The effect of modification of the cellulose, and a theory of the electrolyte effect | |
US2381863A (en) | Method of fungusproofing textiles | |
NO116178B (ko) | ||
NO127651B (ko) | ||
US4072784A (en) | Fixation of multivalent metal salts of carboxyl-containing vinyl monomers on fibrous substrates | |
US2526462A (en) | Moisture-resistant flameproofed product and method of making same | |
GB855547A (en) | Cellulosic textile materials and processes for making the same | |
US2401479A (en) | Treatment of wool | |
US2771379A (en) | Stabilized-flameproofed fabric and method | |
US2728691A (en) | Flame retarding solution and method for treatment of cellulosic materials therewith | |
US2728680A (en) | Flame retarding agent | |
US2390032A (en) | Treatment of cellulosic fibers | |
DE1237527B (de) | Verfahren zur Verminderung der Wassersaugfaehigkeit und zur Knitterfestausruestung von cellulosehaltigen Textilien | |
US4264320A (en) | Production of black flame-resistant flexible textile materials | |
US2662834A (en) | Flameproofing process | |
US2691594A (en) | Solution for flameproofing cellulosic materials | |
US3323944A (en) | Process and composition for improving the mechanical properties of flameproofed cellulosic textile materials | |
US1885870A (en) | Process of flame-proofing and product formed thereby | |
US2570566A (en) | Textile treating solutions and compositions containing same | |
US2668780A (en) | Method for rendering cellulosic materials fire resistant | |
US2668784A (en) | Process for flameproofing textile materials | |
US2868673A (en) | Treatment of materials | |
US1085783A (en) | Flame-extinguishing material. | |
US2243682A (en) | Cellulosic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PNC BANKING, NATIONAL ASSOCIATION, AS ADMINISTRATI Free format text: SECURITY AGREEMENT;ASSIGNOR:J.W. PET COMPANY, INC.;REEL/FRAME:029486/0633 Effective date: 20121214 |
|
AS | Assignment |
Owner name: CHASE CAPITAL CORPORATION, AS COLLATERAL AGENT, IL Free format text: SECURITY AGREEMENT;ASSIGNOR:J. W. PET COMPANY, INC.;REEL/FRAME:029510/0787 Effective date: 20121214 |