US2717861A - Selective hydrogenation process - Google Patents

Selective hydrogenation process Download PDF

Info

Publication number
US2717861A
US2717861A US449128A US44912854A US2717861A US 2717861 A US2717861 A US 2717861A US 449128 A US449128 A US 449128A US 44912854 A US44912854 A US 44912854A US 2717861 A US2717861 A US 2717861A
Authority
US
United States
Prior art keywords
naphtha
olefins
hydrogen
range
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US449128A
Inventor
Peter K Baumgarten
Edward J Hoffmann
Edward F Wadley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US449128A priority Critical patent/US2717861A/en
Application granted granted Critical
Publication of US2717861A publication Critical patent/US2717861A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • Thepresent invention will be: described. as a hydrogenation process in which a naphtha, such as-a:cracked naphtha, containing monoand di-olefins is-hydrogenated to improve the quality thereof for use as a. motor fuel.
  • the steps in the hydrogenation process of-thespresent invention involve contacting the naphtha witha sulfur insensitive catalystata temperature in the rangewbetween 350 and 650 F.
  • the sulfur insensitive. catalyst employed in the practice of the present invention may be a sulfideof a heavy metal, such as nickel, molybdenumand tungsten. Mixtures of these catalystsmay be employed, such as'rnixtures of nickel sulfide and tungsten sulfide. Other molybdenum-containing catalysts suchas molybdenunr oxide, molybdenum sulfide,.and the like, may. be used. The catalyst may be used as such-or may. be'depositedon a suitable carrier material, such as a porousadsorbentzinert material, such as clay, kieselguhnalumina and theslike.
  • a suitable carrier material such as a porousadsorbentzinert material, such as clay, kieselguhnalumina and theslike.
  • the hydrogen-containing gas involved in the practice of the present invention should contain atleast 10% of hydrogen and may contain up to 100% of hydrogen. --As a preferred range the hydrogen-containing.gas willzcontain from 50 to 100% of hydrogen.
  • temperatures may range from 350tt0 650 :the foregoing conditions is removed'from the catalyst and may be subsequentlytreated.prionto .result from the hydrogenation reaction.
  • the hydrogenated naphtha. or. product produced. under contact with use as a motor fuel may include-distillation; to recovera desired; fraction, and/or-washing; the hydrogenated productwithaa solution of aeausfiqalkali .such as an aqueous or alcoholicsolutionof sodium hydroxide having a gravity in the rangebetweenS and'.30 B. to remove hydrogen sulfide and other caustic soluble sulfur compoundswhich may be present in the gfeeda or h hyd ogenated product may be treated with the alkaline solution prior or subsequent to the distillation step to recover motor fuel. constituents.
  • the present invention is basedon the discovery -that for any given set of conditions of temperatures, pressures and space velocities in the ranges set out above when employing a hydrogen-containinggas containing, at least 10% hydrogenthat itis possible toobtain maximum conversion of conjugated .di-olefins .with a.low.-conversion of mono-olefins if a ratio of gas to naphtha being hydrogenated of 1:1 isma-intained.
  • This ratio of 1:1 is independent of the concentration of hydrogen in-the gas employed in the hydrogen medium and it is the only ratio that will permit maximum conversion of conjugated diolefins when operatingunder any fixed set of conditions Withinthe ranges given; for example, for a given set of conditions of temperature, pressure and space velocity by maintaining aratio of hydrogen-containing gas to naphtha of 1:1 only is it possible t o ob t.ain,maximum conversion of conjugated di-olefins. ---Increasing the gas to oil ratio increases monowlefin conersion wi a decrease in conjugated di-olefin content.
  • the present invention eliminates thetobjectionable features of the prior'art processesin .that. thedifollowing series, of runs in.whieh. a. naphtha from a thermal cracking operation was contacted with a nickel sulfide-tungsten sulfide catalyst at atemperatureofv500 F. and at a pressure of 100 pounds per square inch gauge employing. gas from a commer ial hydroforming ,unit containing approximately 72% hydrogen.
  • gThemaphtha was charged to contact WithLthe catalyst at, a;space.v e1ocity of 6 v./v./hour. The results of these runs are shown in the following table:
  • Tables I and II are also presented graphically in the single figure which is a plot of conversion against the mole of gas per mole of naphtha. From an examination of this figure it will be seen that at a ratio of 1:1 maximum conversion of di-olefins is obtained irrespective of the space velocity of the feed in contact with the catalyst While at the ratio of 1:1 the conversion of mono-olefins has not reached a maximum. It will be further noted from an examination of the curves that when a ratio in excess of 1:1 is employed the conversion of di-olefins drops otf while the conversion of mono-olefins increases. It may be concluded, therefore, from these results that only at a ratio of 1:1 are the beneficial results of the present invention obtained.
  • the present invention has been described and illustrated by reference to a naphtha from a thermal cracking operation, it will be apparent to the skilled. workman that the invention is not restricted to ther-- mally cracked naphthas.
  • the invention will apply equal-- ly to naphthas from catalytic cracking operations and reformed naphthas.
  • the invention may be preferably applied to stocks boiling in the gasoline and naphtha boiling range but may be applied to fractions having a boiling point up to 700 F.
  • a method for hydrogenating a naphtha containing monoand di-olefins to improve the quality thereof for use as a motor fuel which comprises contacting said naphtha with a molybdenum-containing catalyst at a tem perature in the range between 350 and 656 F.
  • a method for hydrogenating a cracked naphtha containing monoand di-olcfins to improve the quality thereof for use as a motor fuel which comprises contacting said cracked naphtha with a molybdenum-containing catalyst at a temperature in the range between 356 and 650 F.
  • a method for hydrogenating a cracked naphtha containing monoand di-olefins to improve the quality thereof for use as a motor fuel which comprises contacting said cracked naphtha with a molybdenum-containing catalyst at a temperature in the range between 500 and 600 F.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

United States Patent 2,717,861 SELECTIVEHYDROGENATION PROCESS Peter K. Baumgarten, Newark, DeL, and Edward J Hoffmann and Edward F. Wadley,'-Baytown, Tex., asslgnors, by mesne assignments, to-Esso Research .andEngmeering Company, Elizabeth,5 N. J., a corporation of Delaware Application August-.11, 1954, Serial No. 449,128 7 Claims. (CL 19636) The present invention is directed-to aselective'hydrogenation process. More particularly, the invention is directed to the hydrogenation of naphthas containing olefins and di-olefins, such as cracked naphthas,-=u-nder conditions such that the di-olefins are selectively hydrogenated.
This application is a continuation-impart of Serial No. 182,648, filed September 1, 1950, for 'Peter K; Baumgarten, 'Edward J. Hoffman, and Edward -Wadley, entitled Selective *Hydrogenation Process, now U. S. Patent No. 2,694,671.
Thepresent inventionwill be: described. as a hydrogenation process in which a naphtha, such as-a:cracked naphtha, containing monoand di-olefins is-hydrogenated to improve the quality thereof for use as a. motor fuel. The steps in the hydrogenation process of-thespresent invention involve contacting the naphtha witha sulfur insensitive catalystata temperature in the rangewbetween 350 and 650 F. andat a pressure in therange'between 15 and 500 pounds per square inchwgaugeandat a liquid space velocity in the range between 1 and..20iv./v./hour in the presence of a sufiicientamount1of1avhydrogencontaining gas containingat least 10% hydrogentozmaintain a molal ratio ofgas to naphtha of 1:1 for afixedset of conditions within the ranges of temperatures,.pressures, and space velocities. given to obtain maximum. conversion of conjugated di-olefins and to forma product suitable for use as a. motor. fuel. 'Finally, the product is recovered from contact with the catalystandzmay be treated subsequently prior to use as a motorlfuel.
The sulfur insensitive. catalyst employed in the practice of the present inventionimay be a sulfideof a heavy metal, such as nickel, molybdenumand tungsten. Mixtures of these catalystsmay be employed, such as'rnixtures of nickel sulfide and tungsten sulfide. Other molybdenum-containing catalysts suchas molybdenunr oxide, molybdenum sulfide,.and the like, may. be used. The catalyst may be used as such-or may. be'depositedon a suitable carrier material, such as a porousadsorbentzinert material, such as clay, kieselguhnalumina and theslike.
The hydrogen-containing gas involved in the practice of the present invention should contain atleast 10% of hydrogen and may contain up to 100% of hydrogen. --As a preferred range the hydrogen-containing.gas willzcontain from 50 to 100% of hydrogen. The other-material present in the gas should be inert from the standpoint of reacting with the cracked naphtha being hydrogenated or deleteriously affecting the catalyst. activity. :.=Such.;inert material may be C1 to C paraffinic hydrocarbons,.flue gas and the like.
While the space velocityemployed in the =practice of the present invention may range from 1 to 20 v.-/v./hour, a preferred range is from 3 to 8 v./v./hour.
As stated, temperatures may range from 350tt0 650 :the foregoing conditions is removed'from the catalyst and may be subsequentlytreated.prionto .result from the hydrogenation reaction.
2,717,861 Patented Sept. 13, 1955 F. with temperatures preferably in the range from 500 to 600 F. Pressures ordinarily may range from 15 to 500 pounds per square inch gauge with a preferred range from 50m pounds per square inch gauge.
The hydrogenated naphtha. or. product produced. under contact with use as a motor fuel. Such treatments may include-distillation; to recovera desired; fraction, and/or-washing; the hydrogenated productwithaa solution of aeausfiqalkali .such as an aqueous or alcoholicsolutionof sodium hydroxide having a gravity in the rangebetweenS and'.30 B. to remove hydrogen sulfide and other caustic soluble sulfur compoundswhich may be present in the gfeeda or h hyd ogenated product may be treated with the alkaline solution prior or subsequent to the distillation step to recover motor fuel. constituents.
The present invention is basedon the discovery -that for any given set of conditions of temperatures, pressures and space velocities in the ranges set out above when employing a hydrogen-containinggas containing, at least 10% hydrogenthat itis possible toobtain maximum conversion of conjugated .di-olefins .with a.low.-conversion of mono-olefins if a ratio of gas to naphtha being hydrogenated of 1:1 isma-intained. This ratio of 1:1 is independent of the concentration of hydrogen in-the gas employed in the hydrogen medium and it is the only ratio that will permit maximum conversion of conjugated diolefins when operatingunder any fixed set of conditions Withinthe ranges given; for example, for a given set of conditions of temperature, pressure and space velocity by maintaining aratio of hydrogen-containing gas to naphtha of 1:1 only is it possible t o ob t.ain,maximum conversion of conjugated di-olefins. ---Increasing the gas to oil ratio increases monowlefin conersion wi a decrease in conjugated di-olefin content.
The reason that it is important to remove the maximum amount of conjugated di-olefins under a given set of conditionswhile minimizing the removal.-.of-.monoolefins is that the di-olefins are contributors to the formation of gums and engine deposits on use of .cracked-naphthas, in motor fuels. eWhile-removal of theconjugated 'di-olefins may be achieved-by subjecting cracked naphtha also result .in removal of mono-olefins by conversion ofparaflins. h-Whenstraight chain mono-olefins are converted to normal parafiins, the octane numbers of the cracked naphthaare seriously impaired. The present invention eliminates thetobjectionable features of the prior'art processesin .that. thedifollowing series, of runs in.whieh. a. naphtha from a thermal cracking operation was contacted with a nickel sulfide-tungsten sulfide catalyst at atemperatureofv500 F. and at a pressure of 100 pounds per square inch gauge employing. gas from a commer ial hydroforming ,unit containing approximately 72% hydrogen. gThemaphtha was charged to contact WithLthe catalyst at, a;space.v e1ocity of 6 v./v./hour. The results of these runs are shown in the following table:
From the foregoing results in Table I, it will be seen that at a ratio of 1 mole of gas per mole of naphtha that 88% of the conjugated diene-olefin content is converted while at the same ratio only 17% of the total olefin content is removed indicating that the di-olefins were selectively hydrogenated. It will be noted that it is only at a ratio of 1:1 that a maximum conversion of di-olefins takes place while minimizing conversion of mono-olefins.
Similar values may be obtained when contacting a cracked naphtha from a thermal cracking unit under conditions such as those represented in the foregoing example. Exemplary of the results obtainable at lower and higher space velocities are the data presented in Table II in which comparisons are made between space velocities of 3 and 12 v./ v./ hour under similar conditions to those of the preceding example:
1 Conjugated.
The data presented in Table II show the same unexpected results as the data presented in Table I, namely, that at a ratio of 1:1 mole of hydogcn-containing gas per mole of naphtha, maximum conversion of di-olefins takes place with a low conversion of mono-olefins showing that the mono-olefins are substantially unaffected at this ratio.
The data presented in Tables I and II are also presented graphically in the single figure which is a plot of conversion against the mole of gas per mole of naphtha. From an examination of this figure it will be seen that at a ratio of 1:1 maximum conversion of di-olefins is obtained irrespective of the space velocity of the feed in contact with the catalyst While at the ratio of 1:1 the conversion of mono-olefins has not reached a maximum. It will be further noted from an examination of the curves that when a ratio in excess of 1:1 is employed the conversion of di-olefins drops otf while the conversion of mono-olefins increases. It may be concluded, therefore, from these results that only at a ratio of 1:1 are the beneficial results of the present invention obtained.
It will be noted that it is the ratio of hydrogen-contain ing gas to naphtha which is important and not the content of hydrogen contained in the hydrogen-containing gas provided the amount of hydrogen contained therein. is above Referring again to the data in Tables I and II it will be clear that at a ratio of 1:1 the amount of hydrogen in cubic feet per barrel of naphtha is less than that employed at higher ratios of gas to naphtha. Thus it is important in the practice of the present invention that the ratio of hydrogen-containing gas to naphtha be: maintained at 1:1 for a given set of operating conditions.
To illustrate the effect of hydrogen purity additional runs were made in which a naphtha from a thermal cracking operation was contacted with a nickel sulfide-tungsten sulfide catalyst at a temperature of 500 F. and at a pressure of pounds per square inch gauge, employing a gas containing 99.7% hydrogen and about 0.3% nitrogen. This gas was carefully purified to exclude oxygen. The aforesaid naphtha was contacted with the catalyst at a space velocity of 6 v./v./hour. The results of these runs are shown in Table III:
It will be seen from the results of the runs presented in Table III that a ratio of 1.02 mols of gas per mol of naphtha 93% of the conjugated diene olefin were converted with 24% conversion of the total olefins. At a ratio of 2.4 mols of gas per mol of naphtha the total olefin conversion was increased while the conjugated dienc olefin conversion decreased slightly. It will be noted that the amount of hydrogen in the second run was over double the amount of that employed in the first run.
While the present invention has been described and illustrated by reference to a naphtha from a thermal cracking operation, it will be apparent to the skilled. workman that the invention is not restricted to ther-- mally cracked naphthas. The invention will apply equal-- ly to naphthas from catalytic cracking operations and reformed naphthas. As a general statement, the invention may be preferably applied to stocks boiling in the gasoline and naphtha boiling range but may be applied to fractions having a boiling point up to 700 F.
The nature and objects of the present invention haw ing been completely described and illustrated, what we desire to claim as new and useful and to secure by Letters Patent is:
l. A method for hydrogenating a naphtha containing monoand di-olefins to improve the quality thereof for use as a motor fuel which comprises contacting said naphtha with a molybdenum-containing catalyst at a tem perature in the range between 350 and 656 F. at a pressure in the range between 15 and 500 pounds per square inch gauge and at a liquid space velocity in the range between 1 and 20 v./v./hour in tie presence of a sufficient amount of a hydrogen-containing gas containing at least 10 mol percent hydrogen to maintain a mol ratio of gas to naphtha of 1:1 for a fixed set of conditions within the ranges of temperatures, pressures and space velocities given to obtain maximum selective conversion of conjugated di-olefins at low mono-olefin conversion and to form a product suitable for use as a motor fuel and recovering said product.
2. A method in accordance with claim 1 in which the molybdenum-containing catalyst is molybdenum sulfide.
3. A method in accordance with claim 1 in which the molybdenum-containing catalyst is molybdenum oxide.
4. A method for hydrogenating a cracked naphtha containing monoand di-olcfins to improve the quality thereof for use as a motor fuel which comprises contacting said cracked naphtha with a molybdenum-containing catalyst at a temperature in the range between 356 and 650 F. at a pressure in the range between 15 and 500 pounds per square inch gauge and at a liquid space velocity in the range between 1 and 20 v./v./hour in the presence of a suflicient amount of a hydrogen-containing gas containing at least 10 mol percent hydrogen to maintain a mol ratio of gas to cracked naphtha of 1:1 for a fixed set of conditions within the ranges of temperatures, pressures and space velocities given to obtain maximum selective conversion of conjugated di-olefins at low monoolefin conversion and to form a product suitable for use as a motor fuel and recovering said product.
5. A method for hydrogenating a cracked naphtha containing monoand di-olefins to improve the quality thereof for use as a motor fuel which comprises contacting said cracked naphtha with a molybdenum-containing catalyst at a temperature in the range between 500 and 600 F. at a pressure in the range between 60 and 300 pounds per square inch gauge and at a liquid space velocity in the range between 3 and 8 v./v./hour in the pres ence of a sufiicient amount of a hydrogen-containing gas containing at least 10 mol percent hydrogen to maintain 21 mol ratio of gas to cracked naphtha of 1:1 for a fixed set of conditions within the ranges of temperatures, pressures and space velocities given to obtain maximum selective conversion of conjugated di-olefins at low monoolefin conversion and to form a product suitable for use as a motor fuel and recovering said product.
6. A method in accordance with claim 5 in which the molybdenum-containing catalyst is molybdenum sulfide.
7. A method in accordance with claim 5 in which the molybdenum-containing catalyst is molybdenum oxide.
No reference cited.

Claims (1)

1. A METHOD FOR HYDROGENATING A NAPHTHA CONTAINING MONO- AND DI-OLEFINS TO IMPROVE THE QUALITY THEREOF FOR USE AS A MOTOR FUEL WHICH COMPRISES CONTACTING SAID NAPHTHA WITH A MOLYBDENUM-CONTAINING CATALYST AT A TEMPERATURE IN THE RANGE BETWEEN 350* AND 650* F. AT A PRESSURE IN THE RANGE BETWEEN 15 AND 500 POUNDS PER SQUARE INCH GAUGE AND AT A LIQIUD SPACE VELOCITY IN THE RANGE BETWEEN 1 AND 20V./V./HOUR IN THE PRESENCE OF A SUFFICIENT AMOUNT OF A HYDROGEN-CONTAINING GAS CONTAINING AT LEAST 10 MOLE PERCENT HYDROGEN TO MAINTAIN A MOL RATIO OF GAS TO NAPHTHA OF 1:1 FOR A FIXED SET OF CONDITIONS WITHIN THE RANGES OF TEMPERATURES, PRESSURES AND SPACE VELOCITIES GIVEN TO OBTAIN MAXIMUM SELECTIVE CONVERSION OF CONJUGATED DI-OLEFINS AT LOW MONO-OLEFIN CONVERSION AND TO FORM A PRODUCT SUITABLE FOR USE AS A MOTOR FUEL AND RECOVERING SAID PRODUCT.
US449128A 1954-08-11 1954-08-11 Selective hydrogenation process Expired - Lifetime US2717861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US449128A US2717861A (en) 1954-08-11 1954-08-11 Selective hydrogenation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US449128A US2717861A (en) 1954-08-11 1954-08-11 Selective hydrogenation process

Publications (1)

Publication Number Publication Date
US2717861A true US2717861A (en) 1955-09-13

Family

ID=23782972

Family Applications (1)

Application Number Title Priority Date Filing Date
US449128A Expired - Lifetime US2717861A (en) 1954-08-11 1954-08-11 Selective hydrogenation process

Country Status (1)

Country Link
US (1) US2717861A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877172A (en) * 1952-07-14 1959-03-10 Exxon Research Engineering Co Combined thermal reforming, catalytic cracking and hydrofining process to improve engine cleanliness
US2878193A (en) * 1955-10-26 1959-03-17 California Research Corp Preparation of iron group hydrogenation catalyst support on molybdenum oxide-aluminasupport
US2916434A (en) * 1956-01-03 1959-12-08 Exxon Research Engineering Co Method for simultaneous hydroforming and hydrodesulfurizing dissimilar feed stocks
US2934574A (en) * 1957-01-11 1960-04-26 Tidewater Oil Company Selective hydrogenation of butadiene in admixture with butenes with cobalt molybdateas catalyst
US2963420A (en) * 1958-11-24 1960-12-06 Pure Oil Co Method of improving olefinic gasoline blending components
DE1169067B (en) * 1957-09-06 1964-04-30 British Petroleum Co Process for the stabilization of mineral spirits containing diolefins and / or styrenes
DE1186163B (en) * 1958-07-25 1965-01-28 British Petroleum Co Process for the stabilization of mineral spirits
US3271297A (en) * 1960-12-15 1966-09-06 Bayer Ag Recycle of monoolefines to a hydrocarbon pyrolysis process
US3316318A (en) * 1961-03-22 1967-04-25 Shell Oil Co Process for recovery of aromatics from cracked gasoline fractions
US5208405A (en) * 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877172A (en) * 1952-07-14 1959-03-10 Exxon Research Engineering Co Combined thermal reforming, catalytic cracking and hydrofining process to improve engine cleanliness
US2878193A (en) * 1955-10-26 1959-03-17 California Research Corp Preparation of iron group hydrogenation catalyst support on molybdenum oxide-aluminasupport
US2916434A (en) * 1956-01-03 1959-12-08 Exxon Research Engineering Co Method for simultaneous hydroforming and hydrodesulfurizing dissimilar feed stocks
US2934574A (en) * 1957-01-11 1960-04-26 Tidewater Oil Company Selective hydrogenation of butadiene in admixture with butenes with cobalt molybdateas catalyst
DE1169067B (en) * 1957-09-06 1964-04-30 British Petroleum Co Process for the stabilization of mineral spirits containing diolefins and / or styrenes
DE1186163B (en) * 1958-07-25 1965-01-28 British Petroleum Co Process for the stabilization of mineral spirits
US2963420A (en) * 1958-11-24 1960-12-06 Pure Oil Co Method of improving olefinic gasoline blending components
US3271297A (en) * 1960-12-15 1966-09-06 Bayer Ag Recycle of monoolefines to a hydrocarbon pyrolysis process
US3316318A (en) * 1961-03-22 1967-04-25 Shell Oil Co Process for recovery of aromatics from cracked gasoline fractions
US5208405A (en) * 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins

Similar Documents

Publication Publication Date Title
US3898299A (en) Production of gaseous olefins from petroleum residue feedstocks
US2604438A (en) Catalytic dehydrogenation of hydrocarbon oils
US2694671A (en) Selective hydrogenation process
US2697683A (en) Treatment of hydrocarbon oils
US3155608A (en) Process for reducing metals content of catalytic cracking feedstock
US2717861A (en) Selective hydrogenation process
US2929775A (en) Hydrocarbon conversion process with substantial prevention of coke formation during the reaction
US2209458A (en) Motor fuel
GB781706A (en) Hydrocracking and hydrodesulfurizing crude petroleum oils containing sulfur
US2459465A (en) Two-stage hydrogenation treatment for hydrocarbon oils
US2315144A (en) Treatment of hydrocarbons
US3213012A (en) Starting up procedure in the hydrocaracking of hydrocarbons
US2463741A (en) Desulfurization and reforming process
US2779715A (en) Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst
US2574451A (en) Catalytic desulfurization of petroleum hydrocarbons
US2406864A (en) Manufacture of hydrocarbons
US3113096A (en) Refining of petroleum hydrocarbons
US2904500A (en) Hydrogen treatment of hydrocarbons
US2632739A (en) Catalyst for producing aromatic hydrocarbons
US3006843A (en) Preparing hydrocarbon fuels by solvent extraction, hydrodesulfurization and hydrogenation of cracked gas oils
US2357741A (en) Production of gasolines
US1944236A (en) Process for simultaneously producing high grade motor fuels and lubricants from heavy hydrocarbons by the action of hydrogen
US2406200A (en) Catalytic treatment of hydrocarbon oils
US2574450A (en) Desulfurization of hydrocarbon extracts
GB1323105A (en) Process for preparing oils