US2714470A - Container construction - Google Patents

Container construction Download PDF

Info

Publication number
US2714470A
US2714470A US302153A US30215352A US2714470A US 2714470 A US2714470 A US 2714470A US 302153 A US302153 A US 302153A US 30215352 A US30215352 A US 30215352A US 2714470 A US2714470 A US 2714470A
Authority
US
United States
Prior art keywords
nozzle
flange
shield
container
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US302153A
Inventor
Elbert A Sanford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfaudler Inc
Original Assignee
Pfaudler Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US217345A external-priority patent/US2725159A/en
Application filed by Pfaudler Co Inc filed Critical Pfaudler Co Inc
Priority to US302153A priority Critical patent/US2714470A/en
Application granted granted Critical
Publication of US2714470A publication Critical patent/US2714470A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0218Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components of ceramic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/29Welded seam

Definitions

  • This invention relates to container nozzle constructions and, more particularly, to the variety thereof adapted for use in combination With containers for processing corrosive materials such as acid or alkaline substances.
  • containers for processing corrosive materials such as acid or alkaline substances.
  • containers for processing corrosive materials such as acid or alkaline substances.
  • Such containers have been commonly made of iron or steel with walls of substantial thickness or rigidity.
  • Such containers usually have a plurality of integrally-formed nozzles or openings through which the materials are passed, or through which agitators, sampling tubes, thermometers and the like may be inserted.
  • To protect the container and nozzle against corrosion it has been a common practice to provide their inner walls with a glass or enamel coating.
  • One object of the invention is to provide an improved corrosion-resistant container nozzle construction of a more effective and practical character.
  • Another object is to provide a construction of the above nature adapted for making satisfactory repairsiin the field.
  • Another object is to provide a construction having the above advantages and which is readily adaptable to protect various sections of said nozzle.
  • a further object is to provide a container nozzle construction having the above advantages and comprising parts adapted to be readily and economically manufactured and assembled.
  • Fig. l is an enlarged sectional elevation of a portion of a container or tank having a nozzle located eccentrically on its upper pressure head and showing in detail the application of a nozzle shield to the inner swaged .throat portion of said nozzle and container;
  • Fig. 2 shows similar container and nozzle portions but having the shield applied over the outer throat and flange of said nozzle;
  • Fig. 3 is similar to Fig. 2 but shows a somewhat modifled construction
  • Fig. 4 is a View of a similar container nozzle but shows a two-part shield covering the entire nozzle and flange;
  • Fig. 5 shows a similar container nozzle with a threepart shield covering the nozzle and flange
  • Fig. 6 is an enlarged sectional elevation of a portion of a container having a nozzle located concentrically in its bottom head and showing a shield covering the inner throat of said nozzle and the adjoining swaged portion of the container;
  • Fig. 7 is a view similar to Fig. 6 but showing the shield applied to the outer throat portion of the nozzle and its flange, and
  • Fig. 8 is a View similar to Fig. 7 but showing a two-part shield covering the entire nozzle throat and its flange and showing the connection therewith of a communicating pipe line.
  • the preferred embodiment of the invention comprises a processing container or tank of the known variety, for example, having cylindrical side walls of heavy sheet metal, such as mild steel plate, with dished or domed upper and lower pressure heads 15 and 16, respectively.
  • Such tanks are commonly provided with nozzles connected to the heads or side walls thereof, for the supply or delivery of materials, or for access to the interior for other purposes, as for inserting dip pipes, thermometer wells, or the in the present instance, by way of illustration, the nozzles are shown as communicating through the tank heads, either eccentrically, as shown generally at 17, Figs. 1 to 5, inclusive, or concentrically, as shown at 13, Figs. 6 to inclusive.
  • nozzles are usually formed by swaging outwardly a portion 19 of the container head or wall to form a nozzle and welding thereto a short section 29 of pipe formed with a flange 21, as shown in the drawings and as well understood in the art. This connects the flanged nozzle with the head or wall of the container by a smoothly curved, swaged shoulder portion 22.
  • any one or more of these exposed, curved or otherwise uneven nozzle portions can be effectively repaired, in the installed location of the tank, by the application thereto of one or more protective shield sections made of flexible, thin, corrosion-resisting metal, such as tantalum or the like, known to be resistant to corrosion by acid or alkaline materials to be handled.
  • a sheet or plate 24 (Fig. l) of thin, corrosion-resisting metal, such as tantalum, having a thickness, for example, of 0.03 of an inch and readily shaped to fit the coated and curved surface of the container about the swaged shoulder of the nozzle.
  • This plate is formed with a central opening around which it is spun outwardly, as at 25', to substantially fit the inner swaged portion of the nozzle, preferably in a somewhat spaced relation, as shown.
  • the space between this shield portion and the coated surfaces of the tank and nozzle are preferably filled with a layer 26 of corrosion-resisting resin or silicate cement, such as the commercially available Alkor or Penchlor cements, depending upon the chemical conditions to be met.
  • inner plate portion 24 of the shield is further secured to the wall of the container by a ring of circumferentially spaced stud bolts 27 made of tantalum or other known corrosion-resisting metal, the bolts being screwed into holes tapped part way through the tank Wall, as shown.
  • the edge of the plate portion 24 is mounted on a gasket 28 of corrosion-resisting material, such, for example, as the commercially known Teflon or the like, having a thickness of 0.05 of an inch.
  • the nuts 29 of the stud bolts serve to draw the periphery of the plate and the gasket against the interposed layer of cement, the margin 36 of the plate bein preferably formed with a narrow flange turned inwardly to retain and protect the cement, thus forming a tight seal between the plate and the coated surface of the container.
  • the outer end 31 of the sleeve portion of the shield is also formed with a narrow flange turned outwardly for contact with the coated surface of the nozzle to similarly protect and retain the interposed cement and form a substantially smooth and tight joint between the sleeve and the nozzle throat.
  • a plate 32 of tantalum, Fig. 2 having a thickness, for example, of 0.03 of an inch, is cut to fit and completely cover the flange 21 and formed with a central opening around which the plate is spun inwardly to form an inwardly extending sleeve 33 fitting the coated outer end of the throat of the nozzle in slightly spaced relation.
  • the space between the sleeve and nozzle is filled with a layer of corrosion-resisting cement 34, as described above and the inner end of the sleeve portion is preferably turned or flanged outwardly as at 35 to engage the coated surface of the nozzle, thus protecting and retaining with cement and forming a substantially smooth and continous joint with the throat.
  • the outer end of the sleeve is pressed outwardly to form a flange 37 which, from practical considerations, is of limited width and only partially covers the coated outer surface of the nozzle flange 21.
  • a ring 38 of tantalum is shaped to fit around and lie under the outwardly-flanged end 37 of the tube and to cover the coated outer surface of the nozzle flange 21.
  • a layer 39 of corrosion-resisting cement is interposed between the shield and ring parts and the nozzle, as shown, to secure the shield in place and seal its joint with the nozzle and the inner end of the sleeve portion is turned or flanged outwardly as at 40 to protect and retain the cement.
  • This modified construction completely covers and protects the outer throat and flange surface, as described above, and has the additional advantage that the tube 36 may be extended as far as desired into the nozzle so as to cover the welded joint 41 between the nozzle 19 and its flange member 20 at any distance at Which this welded joint may lie from the nozzle flange.
  • the invention is adaptable also to cases in which both the swaged inner end of the nozzle and its outwardlyflanged portion may have become damaged. In such situations, use may be made of both of the shield portions described above and shown in Figs. 1 and 2, with an interposed connecting sleeve or Dutchman.
  • the swaged inner end of the throat may be protected by a plate 42 having an outwardly spun sleeve 43 substantially fitting the nozzle throat, this shield portion being secured as before to the container by stud bolts 44 and further secured and sealed by corrosionresisting cement 45.
  • the outer shield portion 46 is constructed and applied as described above in connection with the construction shown in Fig.
  • a section of tubing 48 or Dutchman, has its inner end 49 fitted into the outer end of sleeve 43 and its outer end 50 fitted over the inner end of sleeve 47, so as to provide a continuous shield over the entire nozzle including its swaged inner shoulder and its outer flange surface.
  • the layer of securing and sealing cement is continued throughout the space between the three shield portions and the portions of the nozzle so as to also seal the joints between the shield portions and provide altogether a complete protection for the coated nozzle surface. Since the sleeve portion 48, is formed from a tube, it may be made of any suitable length for a nozzle of any length.
  • a similar complete shield may be made in two parts by employing the modified construction of the outer shield portion shown in Fig. 3.
  • an inner shield portion 51 is formed and secured as described above in connection with Fig. 5.
  • the outer shield portion is formed from a section of tubing 52 having its inner end 53 fitted within the end of sleeve portion of plate 51, while its other end is pressed outwardly to form a flange 54 partly covering the outer surface of the nozzle flange 21.
  • a ring 55 is cut to fit about and lie under flange 54 and completely cover the outer surface of the nozzle flange, as shown.
  • a continuous layer 56 of cement is interposed between the shield portions and nozzle for the purposes described.
  • the sleeve portion 52 since the sleeve portion 52 is formed from tubing, it may be made of any desired length to suit the length of the nozzle.
  • Figs. 6, 7 and 8 show adaptations of the invention to nozzles located concentrically in the dished bottom head or in the side walls of a container, such nozzles being generally of shorter length and symmetrical shape.
  • Fig. 6 shows an inner shield portion generally similar to that described above in connection with Fig. 1, formed from a plate 57 secured to the container wall by a plurality of stud bolts 58, with an interposed gasket 59 and a layer of cement 60, as described above.
  • the sleeve portion 61 spun outwardly from the plate, may usually be extended to cover the welded connection 62 between the shorter swaged nozzle 63 of the container and the flanged nozzle member 64.
  • the outer end 65 of the sleeve portion is preferably flanged or turned outwardly as at 66 to retain and protect the cement and maintain a substantially smooth and continuous joint with the nozzle throat, as previously described.
  • Fig. 7 shows the adaptation to a shorter symmetrical nozzle, such as referred to, of a outer shield portion similar to that described in connection with Fig. 2, a plate 67 being formed to completely cover the outer coated surface of the nozzle flange and spun to form a nozzle sleeve 68.
  • the sleeve may usually be spun in sufficient length to cover the welded connection 62 between the swaged nozzle portion 63 and its flanged outer member 64.
  • This shield portion is secured and sealed as before by interposed layer 69 of corrosionresisting cement.
  • the invention may be employed to provide complete protection for both such portions.
  • an inner shield portion 70 generally similar in construction and arrangement to those described above in connection with Figs. 4 and 5.
  • the outer end of its sleeve portion 71 is fitted closely within the inner end 72 of the sleeve of anouter shield portion 73, spun from the plate substantially as described above in connection with Fig. the joint between the shield portions and the spaces between them and the nozzle being sealed by a securing layer of cement 74-, as shown.
  • This figure shows such a shielded nozzle connected to a communicating pipe line 75 with an interposed gasket 76.
  • the flange 77 of the pipe line is secured to the flange member 64 of the nozzle by bolts 78 and nuts 79, as well understood in the art.
  • the invention provides means for effectively covering and protecting any portion of a tank nozzle which may have its ceramic lining damaged, so as to prevent corrosive attack of the underlying metal by the contents of the tank.
  • Such protective means are easily applied in the field without disturbing the position of the tank or its connections.
  • the several shield parts employed are of such a nature that they are readily manufactured and supplied at a relatively low cost.
  • a repair shield comprising a plate of relatively thin, corrosion-resisting sheet metal having a flange portion covering the flange of said member and a sleeve portion spun inwardly from said plate to fit the coated throat surfaces of said nozzle and member, and means for securing said shield to said nozzle and sealing the space therebetween.
  • a repair shield comprising a plate of relatively thin, corrosion-resisting sheet metal having a flange portion covering the flange of said member and a sleeve portion spun inwardly from said plate to fit the coated throat surfaces of said nozzle and member and extending inwardly over the welded connection between said nozzle and member, and means for securing said shield to said nozzle and member and sealing the space therebetween.
  • a repair shield comprising a plate of relatively thin, corrosion-resisting sheet metal having a flange portion covering the flange of said member and a sleeve portion spun inwardly from said plate to fit the coatedthroat surfaces of said nozzle and member and a layer of corrosion-resisting cement interposed between said sleeve portion and the coated surface of said flange member for securing said shield to said nozzle and sealing the space therebetween, said sleeve portion having at its inner end a flange turned toward the coated surface of said member for retaining and protecting said cement.
  • a repair shield comprising a tube section of relatively thin, corrosionresisting sheet metal fitting the coated inner surfaces of said member and nozzle and having a flange pressed therefrom to partially cover the flange of said member, a ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, and means for securing said shield and ring to said member and nozzle and for sealing the space therebetween.
  • a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said member and nozzle and extending over the welded connection therebetween, said tube section having a flange pressed therefrom to partially cover the flange of said member, a
  • a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said member and nozzle and having a flange pressed therefrom to partially cover the flange of said member, a ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, and a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle member for securing said shield and ring to said nozzle and member and sealing the spaces therebetween.
  • a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said nozzle and member and extending over the welded connection therebetween, said tube section having its outer end pressed outwardly to form a flange partially covering the flange of said member, a ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle and member to secure said shield to said nozzle and member and seal the spaces therebetween, the inner end of said tube section having a flange engaging the coated surface of said nozzle for protecting and retaining said cement in place.
  • a repair shield comprising a tube section of relatively thin corrosion-resisting sheet metal fitting the coated inner surfaces of said nozzle and member and having a flange to cover the flange of said member, and a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle and member for securing said shield to said nozzle and member and sealing the spaces therebetween.
  • a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said nozzle and member and extending over the Welded connection therebetween, said tube section having a flange to cover the flange of said member, a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle and member to secure said shield to said nozzle and member and seal the spaces therebetween, the inner end of said tube section having a flange engaging the coated surface of said nozzle for protecting and retaining said cement in place.

Description

Aug. 2, 1955 E. A. SANFORD 2,714,470
Y CONTAINER CONSTRUCTION Original Filed March 24, 1951 3 Sheetsheet l INVENTOR. ELBERT A. SANFORD HIS A7 TORNEY 2, 1955 E. A. SANFORD 2,714,470
CONTAINER CONSTRUCTION Original Filed March 24, 1951 3 Sheets-Sheet 2 INVENTOR. ELBERT A. SANFORD I775 A TTORNEY g- 2, 1955 E. A. SANFORD CONTAINER CONSTRUCTION 3 Sheets-Sheet 3 Original Filed March 24, 1951 INVENTOR. ELBERT A. SANFORD HIS ATTORNEY United States Patent CUNTAINER CONSTRUCTION Elbert A. Sanford, Irondequoit, N. Y., assignor to The llfaudler (10., Rochester, N. Y., a corporation of New York @riginal application March 24, 1951, Serial No. 217,345. Divided and this application August 1, 1952, Serial N 0. 392,153
9 Claims. (Cl. 22064) This invention relates to container nozzle constructions and, more particularly, to the variety thereof adapted for use in combination With containers for processing corrosive materials such as acid or alkaline substances. To afford the necessary strength, such containers have been commonly made of iron or steel with walls of substantial thickness or rigidity. Such containers usually have a plurality of integrally-formed nozzles or openings through which the materials are passed, or through which agitators, sampling tubes, thermometers and the like may be inserted. To protect the container and nozzle against corrosion, it has been a common practice to provide their inner walls with a glass or enamel coating. In the use of this equipment, it has been found that mechanical strains may be set up in pipe lines connected to these nozzles, and these strains may be transmitted to the containers, causing the glass coating to crack or craze, especially over curved sections. Such strains may be caused by physical movement in the pipe line, as in making or breaking a flanged connection, or operating a valve. Again, they may result from expansion and contraction of the pipe, resulting from temperature changes. Another cause of corrosion of nozzle openings is the use of unsuitable porous gaskets to protect glass-coated flange surfaces, which permit corrosive liquids to seep through gasketed joints and come into contact with the uncoated outer portions of the nozzle flange, so that the glass coatingmay be undermined. As many of these containers or tanks are of large size, the difficulties involved in dismantling and returning them to the factory for repairs is well under stood and appreciated in the art.
One object of the invention, therefore, is to provide an improved corrosion-resistant container nozzle construction of a more effective and practical character.
Another object is to provide a construction of the above nature adapted for making satisfactory repairsiin the field.
Another object is to providea construction having the above advantages and which is readily adaptable to protect various sections of said nozzle.
A further object is to provide a container nozzle construction having the above advantages and comprising parts adapted to be readily and economically manufactured and assembled.
To these and other ends the invention resides in certain improvements and combinations of parts, all as will be hereinafter more fully described, the novel features being pointed out in the claims at the endof the specification.
In the drawings:
Fig. l is an enlarged sectional elevation of a portion of a container or tank having a nozzle located eccentrically on its upper pressure head and showing in detail the application of a nozzle shield to the inner swaged .throat portion of said nozzle and container;
Fig. 2 shows similar container and nozzle portions but having the shield applied over the outer throat and flange of said nozzle;
Fig. 3 is similar to Fig. 2 but shows a somewhat modifled construction;
ice
Fig. 4 is a View of a similar container nozzle but shows a two-part shield covering the entire nozzle and flange;
Fig. 5 shows a similar container nozzle with a threepart shield covering the nozzle and flange;
Fig. 6 is an enlarged sectional elevation of a portion of a container having a nozzle located concentrically in its bottom head and showing a shield covering the inner throat of said nozzle and the adjoining swaged portion of the container;
Fig. 7 is a view similar to Fig. 6 but showing the shield applied to the outer throat portion of the nozzle and its flange, and
Fig. 8 is a View similar to Fig. 7 but showing a two-part shield covering the entire nozzle throat and its flange and showing the connection therewith of a communicating pipe line.
The preferred embodiment of the invention, herein disclosed by way of illustration, comprises a processing container or tank of the known variety, for example, having cylindrical side walls of heavy sheet metal, such as mild steel plate, with dished or domed upper and lower pressure heads 15 and 16, respectively. Such tanks are commonly provided with nozzles connected to the heads or side walls thereof, for the supply or delivery of materials, or for access to the interior for other purposes, as for inserting dip pipes, thermometer wells, or the in the present instance, by way of illustration, the nozzles are shown as communicating through the tank heads, either eccentrically, as shown generally at 17, Figs. 1 to 5, inclusive, or concentrically, as shown at 13, Figs. 6 to inclusive. These nozzles are usually formed by swaging outwardly a portion 19 of the container head or wall to form a nozzle and welding thereto a short section 29 of pipe formed with a flange 21, as shown in the drawings and as well understood in the art. This connects the flanged nozzle with the head or wall of the container by a smoothly curved, swaged shoulder portion 22.
The inner surfaces of such a tank employed in processing corrosive substances are commonly coated and protected by a fused ceramic coating 23, of glass or enamel of suitable composition, as well understood in the art, extending continuously over the inner wall and nozzle surfaces and over the outer surface of the nozzle flange, as shown.
I have found that any one or more of these exposed, curved or otherwise uneven nozzle portions, Where the glass coating is most likely to become damaged, can be effectively repaired, in the installed location of the tank, by the application thereto of one or more protective shield sections made of flexible, thin, corrosion-resisting metal, such as tantalum or the like, known to be resistant to corrosion by acid or alkaline materials to be handled.
Thus, to repair and protect the swaged and curved portion 22 adjacent the inner end of the nozzle, I apply a sheet or plate 24 (Fig. l) of thin, corrosion-resisting metal, such as tantalum, having a thickness, for example, of 0.03 of an inch and readily shaped to fit the coated and curved surface of the container about the swaged shoulder of the nozzle. This plate is formed with a central opening around which it is spun outwardly, as at 25', to substantially fit the inner swaged portion of the nozzle, preferably in a somewhat spaced relation, as shown. The space between this shield portion and the coated surfaces of the tank and nozzle are preferably filled with a layer 26 of corrosion-resisting resin or silicate cement, such as the commercially available Alkor or Penchlor cements, depending upon the chemical conditions to be met. The
inner plate portion 24 of the shield is further secured to the wall of the container by a ring of circumferentially spaced stud bolts 27 made of tantalum or other known corrosion-resisting metal, the bolts being screwed into holes tapped part way through the tank Wall, as shown.
To insure a more perfect seal, the edge of the plate portion 24 is mounted on a gasket 28 of corrosion-resisting material, such, for example, as the commercially known Teflon or the like, having a thickness of 0.05 of an inch. The nuts 29 of the stud bolts serve to draw the periphery of the plate and the gasket against the interposed layer of cement, the margin 36 of the plate bein preferably formed with a narrow flange turned inwardly to retain and protect the cement, thus forming a tight seal between the plate and the coated surface of the container. The outer end 31 of the sleeve portion of the shield is also formed with a narrow flange turned outwardly for contact with the coated surface of the nozzle to similarly protect and retain the interposed cement and form a substantially smooth and tight joint between the sleeve and the nozzle throat.
It is apparent that by this construction, the plate portion 24 and its sleeve portion 25 are effectively secured and sealed to the glass-coated surfaces which they cover, so as to prevent the access thereto of the corrosive materials in the tank, thus protecting such parts against pitting at portions of the glass coating which may have become cracked or crazed in use.
It is often desirable to protect the outer end of the nozzle throat and the outer surface of its flange when the ceramic coating of such parts has been damaged. In such cases, a plate 32 of tantalum, Fig. 2, having a thickness, for example, of 0.03 of an inch, is cut to fit and completely cover the flange 21 and formed with a central opening around which the plate is spun inwardly to form an inwardly extending sleeve 33 fitting the coated outer end of the throat of the nozzle in slightly spaced relation. The space between the sleeve and nozzle is filled with a layer of corrosion-resisting cement 34, as described above and the inner end of the sleeve portion is preferably turned or flanged outwardly as at 35 to engage the coated surface of the nozzle, thus protecting and retaining with cement and forming a substantially smooth and continous joint with the throat.
In forming such outer shield portions, by spinning them from a plate, as described, it has been found that there is a practical limit to the extent to which suitable metals may be spun to form the inwardly extending nozzle sleeve and it has been found desirable in some applications, as in eccentrically-positioned nozzles of tank heads, to form such nozzle portions by using a tube section of the desired diameter to form the nozzle sleeve and pressing one end of the tube outwardly to form a flange portion to partially cover the nozzle flange. Thus, as shown in Fig. 3, a section of tubing 36 is employed to form a nozzle sleeve of suitable diameter for lying within the nozzle throat in slightly spaced relation as shown. The outer end of the sleeve is pressed outwardly to form a flange 37 which, from practical considerations, is of limited width and only partially covers the coated outer surface of the nozzle flange 21. A ring 38 of tantalum is shaped to fit around and lie under the outwardly-flanged end 37 of the tube and to cover the coated outer surface of the nozzle flange 21. A layer 39 of corrosion-resisting cement is interposed between the shield and ring parts and the nozzle, as shown, to secure the shield in place and seal its joint with the nozzle and the inner end of the sleeve portion is turned or flanged outwardly as at 40 to protect and retain the cement. This modified construction completely covers and protects the outer throat and flange surface, as described above, and has the additional advantage that the tube 36 may be extended as far as desired into the nozzle so as to cover the welded joint 41 between the nozzle 19 and its flange member 20 at any distance at Which this welded joint may lie from the nozzle flange.
The invention is adaptable also to cases in which both the swaged inner end of the nozzle and its outwardlyflanged portion may have become damaged. In such situations, use may be made of both of the shield portions described above and shown in Figs. 1 and 2, with an interposed connecting sleeve or Dutchman. Thus, as shown in Fig. 5, the swaged inner end of the throat may be protected by a plate 42 having an outwardly spun sleeve 43 substantially fitting the nozzle throat, this shield portion being secured as before to the container by stud bolts 44 and further secured and sealed by corrosionresisting cement 45. The outer shield portion 46 is constructed and applied as described above in connection with the construction shown in Fig. 2, except that the inner end of its sleeve portion 47 and the inner end of sleeve portion 43 of the inner plate 42 are left straight and unflanged, as shown. A section of tubing 48, or Dutchman, has its inner end 49 fitted into the outer end of sleeve 43 and its outer end 50 fitted over the inner end of sleeve 47, so as to provide a continuous shield over the entire nozzle including its swaged inner shoulder and its outer flange surface. The layer of securing and sealing cement is continued throughout the space between the three shield portions and the portions of the nozzle so as to also seal the joints between the shield portions and provide altogether a complete protection for the coated nozzle surface. Since the sleeve portion 48, is formed from a tube, it may be made of any suitable length for a nozzle of any length.
A similar complete shield may be made in two parts by employing the modified construction of the outer shield portion shown in Fig. 3. Thus, as shown in Fig. 4, an inner shield portion 51 is formed and secured as described above in connection with Fig. 5. In this case, however, the outer shield portion is formed from a section of tubing 52 having its inner end 53 fitted within the end of sleeve portion of plate 51, while its other end is pressed outwardly to form a flange 54 partly covering the outer surface of the nozzle flange 21. A ring 55 is cut to fit about and lie under flange 54 and completely cover the outer surface of the nozzle flange, as shown. A continuous layer 56 of cement is interposed between the shield portions and nozzle for the purposes described. In this construction, since the sleeve portion 52 is formed from tubing, it may be made of any desired length to suit the length of the nozzle.
Figs. 6, 7 and 8 show adaptations of the invention to nozzles located concentrically in the dished bottom head or in the side walls of a container, such nozzles being generally of shorter length and symmetrical shape. Fig. 6 shows an inner shield portion generally similar to that described above in connection with Fig. 1, formed from a plate 57 secured to the container wall by a plurality of stud bolts 58, with an interposed gasket 59 and a layer of cement 60, as described above. In this case, the sleeve portion 61, spun outwardly from the plate, may usually be extended to cover the welded connection 62 between the shorter swaged nozzle 63 of the container and the flanged nozzle member 64. The outer end 65 of the sleeve portion is preferably flanged or turned outwardly as at 66 to retain and protect the cement and maintain a substantially smooth and continuous joint with the nozzle throat, as previously described.
Fig. 7 shows the adaptation to a shorter symmetrical nozzle, such as referred to, of a outer shield portion similar to that described in connection with Fig. 2, a plate 67 being formed to completely cover the outer coated surface of the nozzle flange and spun to form a nozzle sleeve 68. In this case also the sleeve may usually be spun in sufficient length to cover the welded connection 62 between the swaged nozzle portion 63 and its flanged outer member 64. This shield portion is secured and sealed as before by interposed layer 69 of corrosionresisting cement.
- In the event that a nozzle has become damaged at both its inner swaged portion and its outer flange portion, the invention may be employed to provide complete protection for both such portions. For this purpose, as shown in Fig. 8, use may be made of an inner shield portion 70 generally similar in construction and arrangement to those described above in connection with Figs. 4 and 5. The outer end of its sleeve portion 71 is fitted closely within the inner end 72 of the sleeve of anouter shield portion 73, spun from the plate substantially as described above in connection with Fig. the joint between the shield portions and the spaces between them and the nozzle being sealed by a securing layer of cement 74-, as shown. This figure shows such a shielded nozzle connected to a communicating pipe line 75 with an interposed gasket 76. The flange 77 of the pipe line is secured to the flange member 64 of the nozzle by bolts 78 and nuts 79, as well understood in the art.
This application is a continuation-in-part of my copending application Serial No. 134,513, now abandoned, filed December 22, 1949, for Container Nozzle Construction, and is a division of my copending application, Serial No. 217,345, filed March 24, 1951.
It is apparent from the above description that the invention provides means for effectively covering and protecting any portion of a tank nozzle which may have its ceramic lining damaged, so as to prevent corrosive attack of the underlying metal by the contents of the tank. Such protective means are easily applied in the field without disturbing the position of the tank or its connections. Furthermore, the several shield parts employed are of such a nature that they are readily manufactured and supplied at a relatively low cost.
It will thus be seen that the invention accomplishes its objects and while it has been herein disclosed by reference to the details of preferred embodiments, it is to be understood that such disclosure is intended in an illustrative, rather than a limiting sense, as it is contemplated that various modifications in the construction and arrangement of the parts will readily occur to those skilled in the art, within the spirit of the invention and the scope of the appended claims.
I claim:
1. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a plate of relatively thin, corrosion-resisting sheet metal having a flange portion covering the flange of said member and a sleeve portion spun inwardly from said plate to fit the coated throat surfaces of said nozzle and member, and means for securing said shield to said nozzle and sealing the space therebetween.
2. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a plate of relatively thin, corrosion-resisting sheet metal having a flange portion covering the flange of said member and a sleeve portion spun inwardly from said plate to fit the coated throat surfaces of said nozzle and member and extending inwardly over the welded connection between said nozzle and member, and means for securing said shield to said nozzle and member and sealing the space therebetween.
3. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a plate of relatively thin, corrosion-resisting sheet metal having a flange portion covering the flange of said member and a sleeve portion spun inwardly from said plate to fit the coatedthroat surfaces of said nozzle and member and a layer of corrosion-resisting cement interposed between said sleeve portion and the coated surface of said flange member for securing said shield to said nozzle and sealing the space therebetween, said sleeve portion having at its inner end a flange turned toward the coated surface of said member for retaining and protecting said cement.
4. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a tube section of relatively thin, corrosionresisting sheet metal fitting the coated inner surfaces of said member and nozzle and having a flange pressed therefrom to partially cover the flange of said member, a ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, and means for securing said shield and ring to said member and nozzle and for sealing the space therebetween.
5. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said member and nozzle and extending over the welded connection therebetween, said tube section having a flange pressed therefrom to partially cover the flange of said member, a
' ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, and means for securing said shield and ring to said nozzle and member and sealing the space therebetween.
6. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said member and nozzle and having a flange pressed therefrom to partially cover the flange of said member, a ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, and a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle member for securing said shield and ring to said nozzle and member and sealing the spaces therebetween.
7. The combination with a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member, of a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said nozzle and member and extending over the welded connection therebetween, said tube section having its outer end pressed outwardly to form a flange partially covering the flange of said member, a ring of relatively thin, corrosion-resisting sheet metal surrounding said tube section under the flange thereof and covering the flange of said member, a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle and member to secure said shield to said nozzle and member and seal the spaces therebetween, the inner end of said tube section having a flange engaging the coated surface of said nozzle for protecting and retaining said cement in place.
8. The combination With a processing container having an outwardly swaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member and on the flange of said member, of a repair shield comprising a tube section of relatively thin corrosion-resisting sheet metal fitting the coated inner surfaces of said nozzle and member and having a flange to cover the flange of said member, and a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle and member for securing said shield to said nozzle and member and sealing the spaces therebetween.
9. The combination with a processing container having an outwardly sWaged nozzle, a nozzle flange member welded to said nozzle and a fused ceramic coating on the inner surfaces of said container, nozzle and member, of a repair shield comprising a tube section of relatively thin, corrosion-resisting sheet metal fitting the coated inner surfaces of said nozzle and member and extending over the Welded connection therebetween, said tube section having a flange to cover the flange of said member, a layer of corrosion-resisting cement interposed between said tube section and the coated surfaces of said nozzle and member to secure said shield to said nozzle and member and seal the spaces therebetween, the inner end of said tube section having a flange engaging the coated surface of said nozzle for protecting and retaining said cement in place.
References Cited in the file of this patent UNITED STATES PATENTS
US302153A 1951-03-24 1952-08-01 Container construction Expired - Lifetime US2714470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US302153A US2714470A (en) 1951-03-24 1952-08-01 Container construction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US217345A US2725159A (en) 1951-03-24 1951-03-24 Container nozzle construction
US302153A US2714470A (en) 1951-03-24 1952-08-01 Container construction

Publications (1)

Publication Number Publication Date
US2714470A true US2714470A (en) 1955-08-02

Family

ID=26911859

Family Applications (1)

Application Number Title Priority Date Filing Date
US302153A Expired - Lifetime US2714470A (en) 1951-03-24 1952-08-01 Container construction

Country Status (1)

Country Link
US (1) US2714470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010601A (en) * 1959-02-02 1961-11-28 Pfandler Permutit Inc Container nozzle means and method for making the same
DE4136270C1 (en) * 1991-06-08 1992-12-17 Email-Cover R. Scholz Gmbh, 5354 Weilerswist, De Repairing damaged enamelled connection piece of enamel vessel - using skirt consisting of metal support and acid-resistant enamel material which is inserted from inside vessel against a seal
US5908280A (en) * 1997-04-29 1999-06-01 Allison; James Wheel lift apparatus for vehicle towing and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US360993A (en) * 1887-04-12 William henry brown
US782290A (en) * 1904-08-15 1905-02-14 Smooth On Mfg Company Boiler-patch.
US2239509A (en) * 1938-06-24 1941-04-22 Smith Corp A O Vitreous enamel tank connection and method of construction
US2266609A (en) * 1940-05-18 1941-12-16 Smith Corp A O Enameled tank connection
US2356047A (en) * 1941-06-12 1944-08-15 Pfaudler Co Inc Container
US2620830A (en) * 1950-02-18 1952-12-09 Schultz Herman Self-sealing tube insert

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US360993A (en) * 1887-04-12 William henry brown
US782290A (en) * 1904-08-15 1905-02-14 Smooth On Mfg Company Boiler-patch.
US2239509A (en) * 1938-06-24 1941-04-22 Smith Corp A O Vitreous enamel tank connection and method of construction
US2266609A (en) * 1940-05-18 1941-12-16 Smith Corp A O Enameled tank connection
US2356047A (en) * 1941-06-12 1944-08-15 Pfaudler Co Inc Container
US2620830A (en) * 1950-02-18 1952-12-09 Schultz Herman Self-sealing tube insert

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010601A (en) * 1959-02-02 1961-11-28 Pfandler Permutit Inc Container nozzle means and method for making the same
DE4136270C1 (en) * 1991-06-08 1992-12-17 Email-Cover R. Scholz Gmbh, 5354 Weilerswist, De Repairing damaged enamelled connection piece of enamel vessel - using skirt consisting of metal support and acid-resistant enamel material which is inserted from inside vessel against a seal
US5908280A (en) * 1997-04-29 1999-06-01 Allison; James Wheel lift apparatus for vehicle towing and related methods

Similar Documents

Publication Publication Date Title
US4046406A (en) Fire-safe jacket for fluid piping components
US2266611A (en) Connection for glass lined tanks
US2356047A (en) Container
US2216033A (en) Method of forming lined connectors
US1748138A (en) Container for liquids or gases under pressure and method of making the same
JPH0573958B2 (en)
US1978608A (en) Welded nozzle for jacketed vessels
US2725159A (en) Container nozzle construction
US2714470A (en) Container construction
US2475007A (en) Hot-water tank fitting
US2382489A (en) Connection for containers
US2471716A (en) Barrel sput
US5046638A (en) Seamless pressure vessel with recessed indentation
US2327656A (en) Container
US2157357A (en) Alloy-lined tubular connection for vessels
US2374733A (en) Connection for lined tanks
US2354532A (en) Hot water tank construction
US2353477A (en) Hot-water tank connection
US3151894A (en) Expansible connection capable of expanding and contracting radially and axially
US2266610A (en) Hot water tank connection
US1343169A (en) Tank
US1180812A (en) Metal cask.
US2535437A (en) Dip pipe for processing containers
US2753893A (en) Dip tube for tanks and the like
US2335153A (en) Glass-lined head for tanks