US2690958A - Production of sodium sulfide from sodium sulfate - Google Patents

Production of sodium sulfide from sodium sulfate Download PDF

Info

Publication number
US2690958A
US2690958A US289874A US28987452A US2690958A US 2690958 A US2690958 A US 2690958A US 289874 A US289874 A US 289874A US 28987452 A US28987452 A US 28987452A US 2690958 A US2690958 A US 2690958A
Authority
US
United States
Prior art keywords
sodium
sodium sulfate
sulfide
production
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US289874A
Inventor
Wintersberger Karl
Koudela Gerhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Application granted granted Critical
Publication of US2690958A publication Critical patent/US2690958A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/24Preparation by reduction
    • C01B17/28Preparation by reduction with reducing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • This invention relates to improvements in the production of sodium sulfide from sodium sulfate.
  • the reduction of sodium, sulfate to-sodium sulfide is usually carried out either with coal or with reducing gases.
  • reducing with coal the operation is carried out at temperatures of about 1000 C. in flame furnaces, shaft furnaces or rotary tubular furnaces, and a crude melt is obtained which contains, besides sodium sulfide, also sulfate, sulfite, thiosulfate, soda and, as an insoluble residue, ash and unburnt coal.
  • a commercial product is not obtained until the melt has been dissolved and the resulting solution has been clarified and concentrated.
  • a particular drawback of the said process is the low stability of the furnace linings by reason of the action of the strongly corrosive sodium sulfide melt.
  • caustic soda caustic soda, sulfur, carbon, metals, such as iron, nickel, chromium and copper, and mixtures of the said metals with molybdenum, tungsten, uranium, titanium, thorium, arsenic, antimony, bismuth or phosphorus.
  • sodium sulfate melts at about 880 C. and sodium sulfide not until about 1180 C.
  • the melting points of mixtures of sulfate and sulfide are considerably lower, at about 620 to 750 C., and in the case of incomplete and slow reduction there are obtained viscous melts which are deprived of further reaction with the reducing gases sweeping thereover.
  • the reaction speed must therefore be so increased by the addition of an active catalyst that the fusion temperature of the sulfate-sulfide mixture corresponding to the reaction temperature attained, is always somewhat higher than the latter.
  • heavy metal compounds in particular those of iron, are mainly used as catalysts; they impart to the sodiumsulfide a dark; unpleasant appearance and are troublesome in many of'the purposesv for which the sodium sulfide is used, as for example in the.
  • aliphatic acids having more than one carboxylic group as for example sodium oxalate and sodium tartrate, have proved to be especially suitable.
  • carboxylic acids having more than 5 C atoms may be also used we prefer to use salts of such acids as contain up to 5 C atoms for economical reasons. Additions of about 1 to 5 per cent, with reference to the sodium sulfate, are usually sufiicient.
  • Example 1 Sodium sulfate of technical purity has 5 per cent of sodium oxalate added thereto and is then treated in a rotary tubular furnace with hydrogen at a temperature of 650 to 700 C. After treatment for 3 to 4 hours, a to 99 per cent sodium sulfide of pale color is obtained.
  • Example 2 970 parts of commercial sodium sulfate are intimately mixed with 30 parts of sodium tartrate and treated for 6 hours at 680 C. with hydrogen. A high percentage sodium sulfide is obtained.
  • Example 3 Sodium formate is added to a solution of sodium sulfate in such an amount that in the salt obtained by evaporating the solution to dryness there are 50 parts of sodium formate to 950 parts of sodium sulfate. By reducing this salt under the conditions employed in Example 1 or 2, a colorless or pale rose-colored granulate is obtained which contains at least 95 per cent of sodium sulfide.
  • a process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of the sodium salt of lower aliphatic carboxylic acid having up to two carboxyl groups.
  • a process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium formate.
  • a process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium acetate.
  • a process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium oxalate.
  • a process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium tartrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Patented Oct. 5, 1954 PRODUCTION F SGDIUM SULFIDE. FROM SODIUM SULFATE Karl Wintersberger and Gerhard Kourlela, Lud-' wigshafen (Rhine),
Germany,
assignors. to
BadischeAni-lim- & Soda-Fabrik Aktiengesellscliaitt,v Ludwigshafen (Rhine), Germany No Drawing. Application May 24, 1952, SerialNo. 289,874:
Claims priority, application Germany June. 15, 1951 7" Claims. 1
This invention relates to improvements in the production of sodium sulfide from sodium sulfate.
The reduction of sodium, sulfate to-sodium sulfide is usually carried out either with coal or with reducing gases. When reducing with coal the operation is carried out at temperatures of about 1000 C. in flame furnaces, shaft furnaces or rotary tubular furnaces, and a crude melt is obtained which contains, besides sodium sulfide, also sulfate, sulfite, thiosulfate, soda and, as an insoluble residue, ash and unburnt coal. A commercial product is not obtained until the melt has been dissolved and the resulting solution has been clarified and concentrated. A particular drawback of the said process is the low stability of the furnace linings by reason of the action of the strongly corrosive sodium sulfide melt. This drawback is avoided by employing reducing gases instead of coal, for example the most lightly reacting hydrogen. The most favorable reaction temperature in this case is about 700 C. In this way a commercial sodium sulfide can be obtained from sodium sulfate by a one stage operation, and moreover at the low reaction temperature which permits working in the absence of the fused state, a long life of the furnace is ensured. A drawback of the process however is its dependence on the use of additions which are made in order to accelerate the reaction speed and which pass into the final product. The following have been proposed as catalysts: caustic soda, sulfur, carbon, metals, such as iron, nickel, chromium and copper, and mixtures of the said metals with molybdenum, tungsten, uranium, titanium, thorium, arsenic, antimony, bismuth or phosphorus. While sodium sulfate melts at about 880 C. and sodium sulfide not until about 1180 C., the melting points of mixtures of sulfate and sulfide are considerably lower, at about 620 to 750 C., and in the case of incomplete and slow reduction there are obtained viscous melts which are deprived of further reaction with the reducing gases sweeping thereover. The reaction speed must therefore be so increased by the addition of an active catalyst that the fusion temperature of the sulfate-sulfide mixture corresponding to the reaction temperature attained, is always somewhat higher than the latter.
In practice on a technical scale heavy metal compounds, in particular those of iron, are mainly used as catalysts; they impart to the sodiumsulfide a dark; unpleasant appearance and are troublesome in many of'the purposesv for which the sodium sulfide is used, as for example in the.
production of dyestuffs.
We have now found and this constitutes. the
object of our invention, that a high percentage,
- of aliphatic acids having more than one carboxylic group, as for example sodium oxalate and sodium tartrate, have proved to be especially suitable. Though carboxylic acids having more than 5 C atoms may be also used we prefer to use salts of such acids as contain up to 5 C atoms for economical reasons. Additions of about 1 to 5 per cent, with reference to the sodium sulfate, are usually sufiicient.
The tendency of mixtures of sulfate and sulfide to exhibit agglutination phenomena far below the melting point of the individual salts, is substantially suppressed by the said additions, and the reduction can be carried out without trouble in the temperature range of 600 to 800 C. When working in a rotary tubular furnace, the sodium sulfide is obtained in a conveniently employable granular form.
"Ihe following examples will further illustrate this invention but the invention is not restricted to these examples. The parts are by weight.
Example 1 Sodium sulfate of technical purity has 5 per cent of sodium oxalate added thereto and is then treated in a rotary tubular furnace with hydrogen at a temperature of 650 to 700 C. After treatment for 3 to 4 hours, a to 99 per cent sodium sulfide of pale color is obtained.
Example 2 970 parts of commercial sodium sulfate are intimately mixed with 30 parts of sodium tartrate and treated for 6 hours at 680 C. with hydrogen. A high percentage sodium sulfide is obtained.
3 Example 3 Sodium formate is added to a solution of sodium sulfate in such an amount that in the salt obtained by evaporating the solution to dryness there are 50 parts of sodium formate to 950 parts of sodium sulfate. By reducing this salt under the conditions employed in Example 1 or 2, a colorless or pale rose-colored granulate is obtained which contains at least 95 per cent of sodium sulfide.
What we claim is:
1. A process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of the sodium salt of lower aliphatic carboxylic acid having up to two carboxyl groups.
2. A process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium formate.
3. A process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium acetate.
4. A process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C.
4 which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of the sodium salt of lower aliphatic carboxylic acid having two carboxyl groups.
5. A process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium oxalate.
6. A process for the production of sodium sulfide by the reaction of sodium sulfate with reducing gases at temperatures of 600 to 800 C. which comprises subjecting to the action of said gases a sodium sulfate which contains a subordinate amount of sodium tartrate.
7. In a process for the production of sodium sulfide by reducing solid sodium sulfate with a reducing gas at a temperature below the fusion temperature of the reaction mixture, the improvement which comprises incorporating in the reaction mixture a sodium salt of a lower aliphatic carboxylic acid having up to two carboxyl groups in a minor amount sufficient to accelerate the said reduction.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 1,106,266 Wilson Aug. 4, 1914 1,374,209 Landers Apr. 12, 1921 1,916,803 Ley et al July 4, 1933

Claims (1)

1. A PROCESS FOR THE PRODUCTION OF SODIUM SULFIDE BY THE REACTION OF SODIUM SULFATE WITH REDUCING GASES AT TEMPERATURES OF 600* TO 800* C. WHICH COMPRISES SUBJECTING TO THE ACTION OF SAID GASES A SODIUM SULFATE WHICH CONTAINS A SUBORDINATE AMOUNT OF THE SODIUM SALT OF LOWER ALIPHATIC CARBOXYLIC ACID HAVING UP TO TWO CARBOXYL GROUPS.
US289874A 1951-06-15 1952-05-24 Production of sodium sulfide from sodium sulfate Expired - Lifetime US2690958A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2690958X 1951-06-15

Publications (1)

Publication Number Publication Date
US2690958A true US2690958A (en) 1954-10-05

Family

ID=7996783

Family Applications (1)

Application Number Title Priority Date Filing Date
US289874A Expired - Lifetime US2690958A (en) 1951-06-15 1952-05-24 Production of sodium sulfide from sodium sulfate

Country Status (1)

Country Link
US (1) US2690958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163258A1 (en) * 2010-01-05 2011-07-07 Basf Se Mixtures of alkali metal polysulfides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1106266A (en) * 1913-09-25 1914-08-04 Courtaulds Ltd Regeneration of sulfids of the alkalis or alkaline earths.
US1374209A (en) * 1919-11-17 1921-04-12 Henry S Loud Process of making alkaline sulfid
US1916803A (en) * 1929-05-06 1933-07-04 Ig Farbenindustrie Ag Production of sodium sulphide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1106266A (en) * 1913-09-25 1914-08-04 Courtaulds Ltd Regeneration of sulfids of the alkalis or alkaline earths.
US1374209A (en) * 1919-11-17 1921-04-12 Henry S Loud Process of making alkaline sulfid
US1916803A (en) * 1929-05-06 1933-07-04 Ig Farbenindustrie Ag Production of sodium sulphide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163258A1 (en) * 2010-01-05 2011-07-07 Basf Se Mixtures of alkali metal polysulfides
US20110163259A1 (en) * 2010-01-05 2011-07-07 Basf Se Heat transfer fluids and heat storage fluids for extremely high temperatures based on polysulfides
WO2011083053A1 (en) 2010-01-05 2011-07-14 Basf Se Heat transfer and heat storage fluids for extremely high temperatures, based on polysulfides

Similar Documents

Publication Publication Date Title
DE2361808B2 (en) PROCESS FOR PRODUCING ACTIVATED CHARCOAL
US5681790A (en) Catalyst for preparing methacrylic acid
KR900006439B1 (en) Process for producing methacrylic acid
US2690958A (en) Production of sodium sulfide from sodium sulfate
US2464194A (en) Reduction of nitrophenols
US2462900A (en) Reduction accelerator for the sponge iron rotary kiln process
DE2054942C3 (en) Process for the multi-stage conversion of carbon oxide and water vapor to hydrogen and carbon dioxide
DE878197C (en) Process for the preparation of sodium sulfide from sodium sulfate
US3200127A (en) 2-amino-1 sulfonic acids
US3162679A (en) Production of a tetrahydrophthalic acid and salts thereof
US2471767A (en) Preparation of fumaronitrile
US2259895A (en) Process for manufacture of aliphatic carboxylic acid anhydrides
US2093504A (en) Manufacture of sulphides
US2447003A (en) Production of carbon bisulfide
US2572238A (en) Carboxylic acids from mercaptans
US2664443A (en) Process of producing trichloromethane sulfonyl chloride
US605977A (en) Bruno richard seifert
US1968906A (en) Production of aryl mercapto compounds
US2004728A (en) Hydroxy aryl mercapto compounds and processes for preparing the same
US2573855A (en) Process of and batch for making amber glass
US1374209A (en) Process of making alkaline sulfid
US2025791A (en) Production of derivatives of an ortho cyano-aryl amide
US3721713A (en) Process for obtaining 2,4,7-trinitrofluorenone
US1640314A (en) Process of manufacture of alkali-metal sulphides
US2066951A (en) Hydroquinone manufacture