US2671885A - Rotary joint with axial recess for centimetric radars - Google Patents

Rotary joint with axial recess for centimetric radars Download PDF

Info

Publication number
US2671885A
US2671885A US275411A US27541152A US2671885A US 2671885 A US2671885 A US 2671885A US 275411 A US275411 A US 275411A US 27541152 A US27541152 A US 27541152A US 2671885 A US2671885 A US 2671885A
Authority
US
United States
Prior art keywords
guide
strips
rotary joint
coupler
centimetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US275411A
Inventor
Bouix Maurice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2671885A publication Critical patent/US2671885A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • H01P1/068Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around the axis of rotation, e.g. "around the mast" rotary joint

Definitions

  • the present invention relates to a rotary joint for eiiecting efficient transfer of high radio-frequency energy between a fixed transmitter and a rotating microwave antenna.
  • One of the objects of the present invention is to provide a ring-shaped coupler which leaves a free zone in the neighbourhood of its axis, so as to permit the superposition on the same axis of rotation, for example a mast of a vessel, of several rotary microwave antennas fed by diiferent transmitters.
  • Another object of the present invention is to provide an internally hollowed ring shaped coupler which may be used to couple high radio-frequency energy between an input, guide directed substantially along the axis of the coupler and an output guide directed substantially along a radius of said coupler.
  • the ring-shaped coupler consisted merely of an annular hollow wall structure, energy which is fed to this coupler would travel in both clockwise and counter-clockwise directions which would set up standing waves within the coupler.
  • standing waves are prevented by arranging strips movable in and out of the coupler which short-circuit the greater are of the coupler between the input and output guides and allow energy to travel only through the smaller arc of said coupler.
  • Figure 1 is a perspective view of the rotary joint of the invention with parts removed for purposes of clarity;
  • Figure 2 is an axial section along section line a-a of Figure 3;
  • Figure 3 is a cross-sectional view along section line 12-12 of Figure 2 and including accessory mechanical organs;
  • Figure 4 is a schematic view of the system of closing and opening the clappers of the joint.
  • Figure 5 is a view of a junction on a rectilinear guide electrically similar to the rotating joint junction, for explaining the principle of the invention.
  • 5 denotes a vertical axis, for example a mast of a vessel.
  • a stationary rectangular guide I is joined to the mast 5 by fastening clamps 24.
  • This guide I is bent twice at right angles, and is connected to the small side of a guide l0 having a rectangular cross-section wound in torus shape.
  • the large side of the guide l0 is parallel to themast 5.
  • the end of guide 4 opposite to that connected to guide I0 is perpendicular to the mast 5.
  • microwave antenna of any desired type, not shown, the type being independent of the present invention.
  • the rectangular toroidal guide l0 comprises two parts, a lower one 2 which is stationary, and another, an upper one 3, which is rotatably actuated.
  • the upper part 3 turns with respect to the lower part 2 with a slight play of a few hundredths of a millimeter, for example, for a wave 10 centimeters long.
  • Figure 5 shows a right angle connection between two rectilinear guides 21 and 28.
  • Guide 2? which delivers radio-frequency energy from a source not shown, ends in the small side of guide 28.
  • This latter has in the arm 29 to the left of the junction zone a metal strip 30 parallel to its small sides which divides arm 29 into two guides 3
  • the distance D between the side 33 of the strip 30 and the orthogonal junction is close to the fourth of the guided wavelength in guide 28.
  • the strip 30 behaves like a short-circuit plunger located inside the branch 29 of guide 28 and prevents the electromagnetic energy from propagating in said branch.
  • the fixed members 2 ofthe coupler ID are notched on both sides of the junction with the guide I and at a distance D from this junction computed on the large circle passing through the center of the rectangular section, by notches I3 and [4 providing passage for two short-circuiting strips 6 and I which are guided respectively by slideways II and 12.
  • the mobile member 3 of the guide 10 is notched on both sides of the junction with the guide 4 and at a distance D from this junction computed on the large circle passing through the center of the rectangular section, by notches l1 and 18 providing passage for two short-circuiting strips 8 and 9 which are guided respectively by slideways I5 and I6. These short-circuiting strips and slideways are integrally connected with the part 3 and rotate with it.
  • the short-circuiting strips 6, 1, 8 and 9 are metal strips of which the first two have their upper faces adjacent to the equatorial plan of the coupler l0 and the two last have their lower faces adjacent to the same plane. All these strips can occupy two positions, one off, completely outside of guide l0, and the other on,-
  • the waveguide I is then divided into two partial guides the cut-off frequency of which being greater than that of the wave transmitted by said guide. This wave cannot pass over an on strip, while it normally passes over an "off strip.
  • the strips 1 and 8 pass from the ofi position to the on position, and the strips 6 and 9 pass from the on" position to the off position.
  • the transmission of the electromagnetic power is then made by the are 2! of the coupler 19.
  • the strips keep this latter position which they have assumed up to the moment when the mouth of guide 4 comes in front of the mouth of guide I, the strips 8 and 9 respectively overlapping the strips 6 and 1.
  • the strips 1 and 8 pass from the on position to the off" position, the strips 6 and 9 from the off" position to the on position and power is again transmitted through the are 20.
  • 34 is a circular armature supporting the fixed member 2 of the rotary joint, attached to the mast by fixing or fastening members 35 and screws 52.
  • This circular armature carries one of the races 36 of a ball bearing.
  • Another circular armature 31, which supports the mobile part 3 of the rotary joint by the intermediary of adjustable fastening nuts 38 has the second race 39 of the ball bearing.
  • the armature 34 has a lateral platform 40 on which an electric motor 4
  • This endless screw drives, by means of a pinion, an internal toothed wheel rim 43 carried by the armature 31, which is for rotating the mobile member 3 of the coupler IOl
  • Each short-circuiting strip has an extension rod 44 which constitutes the plunging core of an electromagnet 45.
  • the electromagnet 45 When the electromagnet 45 is not energised, the corresponding strip is in on position owing to the action of a counteracting spring 59.
  • One of the ends of the Winding of each electromagnet 45 is grounded to the corresponding armature, and the other terminates in a brush.
  • These brushes are shown by 46, 4'1, 43 and 49, depending on whether they are associated with strips 6, 1, Band 9.
  • the brushes 48 and 49 are in operative contact with semi-circular rings 58 and 59 mounted on the armature 34, insulated with respect to this armature and brought to a positive potential by a battery 5
  • the rings 56, 51, 58, 59 are arranged as shown in Figure 4, in which can be seen the rotary joint I0, its junction with the guide I and the two strips 6 and 1, its junction with guide 4 and the two strips 3 and 9 and the brushes 46, 41, 48, 49 associated with the difierent strips.
  • a strip is o when it is radially aligned with a semi-circular conducting ring.
  • a rotary joint with an axial recess for centimetric radar installations comprising a torus shaped wave guide having a rectangular cross-section, the large side of which is parallel to the axis of the torus and the small side perpendicular to said axis, said guide being divided into upper and lower superposed parts by an equatorial plane perpendicular to its large side, the lower of said parts being stationary and the upper of said parts being rotatably mounted, an input wave feed guide adapted for connection to a high frequency energy source and the chamber of which is in communication with said lower part, an output wave feed guide adapted for connection to a microwave antenna and the chamber of which is in communication with said upper part, means to rotate said upper part, a pair of slidably supported strips in said lower part located on both sides of the input wave feed guide connected with said lower part, a pair of slidably supported strips in said upper part located on both sides of the output wave feed guide connected with said upper part, means for moving said strips in and out of the equatorial plane
  • a rotary joint with an axial recess for centimetrio radar installations comprising a torus shaped wave guide having a rectangular cross section the large side of which is parallel to the axis of the torus and the small side perpendicular to said axis, said guide being divided into upper and lower superposed parts by an equatorial plane perpendicular to its large side, the lower of said parts being stationary and the upper of said parts being rotatably mounted, an input wave feed guide adapted for connection to a high frequency energy source and the chamber of which is in communication with said lower part, an output wave feed guide adapted for connection to a microwave antenna and the chamber of which is in communication with the said upper part, means to rotate said upper part, a pair of slidably supported strips in said lower part, located on both sides of the input wave feed guide connected with said lower part, a pair of slidably supported strips in said upper part located on both sides of the output wave feed guide connected with said upper part, said strips being movable and adapted to be located inside and outside the to

Description

March 9, 1954 BQUIX 2,671,885
ROTARY JOINT WITH AXIAL RECESS FOR CENTIMETRIC RADARS Filed March 7, 1952 2 Sheets-Sheet 1 In uz tor M64 (Val, 60
M. BOUIX March 9, 1954 ROTARY JOINT WITH AXIAL RECESS FOR CENTIMETRIC RADARS 2 Sheets-Sheet 2 Filed March 7, 1952 INVENTOR Maurlce BOUIX W QL ATTORNEYS FiG.2.
Patented Mar. 9, 1954 UNITED STATES PATENT OFFICE ROTARY JOINT WITH AXIAL RECESS FOR CENTIMETR-IC RADARS 2 Claims. 1
The present invention relates to a rotary joint for eiiecting efficient transfer of high radio-frequency energy between a fixed transmitter and a rotating microwave antenna.
One of the objects of the present invention is to provide a ring-shaped coupler which leaves a free zone in the neighbourhood of its axis, so as to permit the superposition on the same axis of rotation, for example a mast of a vessel, of several rotary microwave antennas fed by diiferent transmitters.
Another object of the present invention is to provide an internally hollowed ring shaped coupler which may be used to couple high radio-frequency energy between an input, guide directed substantially along the axis of the coupler and an output guide directed substantially along a radius of said coupler.
If the ring-shaped coupler consisted merely of an annular hollow wall structure, energy which is fed to this coupler would travel in both clockwise and counter-clockwise directions which would set up standing waves within the coupler. According to the invention, standing waves are prevented by arranging strips movable in and out of the coupler which short-circuit the greater are of the coupler between the input and output guides and allow energy to travel only through the smaller arc of said coupler.
Other objects of the present invention will appear from the following detailed description taken together with the accompanying drawings in which:
Figure 1 is a perspective view of the rotary joint of the invention with parts removed for purposes of clarity;
Figure 2 is an axial section along section line a-a of Figure 3;
Figure 3 is a cross-sectional view along section line 12-12 of Figure 2 and including accessory mechanical organs;
Figure 4 is a schematic view of the system of closing and opening the clappers of the joint; and
Figure 5 is a view of a junction on a rectilinear guide electrically similar to the rotating joint junction, for explaining the principle of the invention.
In Figure 1, 5 denotes a vertical axis, for example a mast of a vessel. A stationary rectangular guide I is joined to the mast 5 by fastening clamps 24. This guide I is bent twice at right angles, and is connected to the small side of a guide l0 having a rectangular cross-section wound in torus shape. The large side of the guide l0is parallel to themast 5.
A rectangular guide 4 bent once at right angles, ends in the small side of the guide l0, opposite the one in which the guide I ends. The end of guide 4 opposite to that connected to guide I0 is perpendicular to the mast 5. To this end there can be connected microwave antenna of any desired type, not shown, the type being independent of the present invention.
The rectangular toroidal guide l0 comprises two parts, a lower one 2 which is stationary, and another, an upper one 3, which is rotatably actuated. The upper part 3 turns with respect to the lower part 2 with a slight play of a few hundredths of a millimeter, for example, for a wave 10 centimeters long.
Figure 5 shows a right angle connection between two rectilinear guides 21 and 28. Guide 2?, which delivers radio-frequency energy from a source not shown, ends in the small side of guide 28. This latter has in the arm 29 to the left of the junction zone a metal strip 30 parallel to its small sides which divides arm 29 into two guides 3| and 32, the cut-off frequency of which is greater than that of the wave with which the guide 2'! is fed. The distance D between the side 33 of the strip 30 and the orthogonal junction is close to the fourth of the guided wavelength in guide 28. The strip 30 behaves like a short-circuit plunger located inside the branch 29 of guide 28 and prevents the electromagnetic energy from propagating in said branch.
The fixed members 2 ofthe coupler ID are notched on both sides of the junction with the guide I and at a distance D from this junction computed on the large circle passing through the center of the rectangular section, by notches I3 and [4 providing passage for two short-circuiting strips 6 and I which are guided respectively by slideways II and 12.
The mobile member 3 of the guide 10 is notched on both sides of the junction with the guide 4 and at a distance D from this junction computed on the large circle passing through the center of the rectangular section, by notches l1 and 18 providing passage for two short-circuiting strips 8 and 9 which are guided respectively by slideways I5 and I6. These short-circuiting strips and slideways are integrally connected with the part 3 and rotate with it.
The short-circuiting strips 6, 1, 8 and 9 are metal strips of which the first two have their upper faces adjacent to the equatorial plan of the coupler l0 and the two last have their lower faces adjacent to the same plane. All these strips can occupy two positions, one off, completely outside of guide l0, and the other on,-
completely inside of guide III. In the latter position of the strips, the waveguide I is then divided into two partial guides the cut-off frequency of which being greater than that of the wave transmitted by said guide. This wave cannot pass over an on strip, while it normally passes over an "off strip.
Some difference of level is provided between the upper face of strips 6 and l and the lower face of strips 8 and 9, so that these can overlap during rotation of the mobile member 3.
Assume that the direction of rotation of the member 3 of the coupler be that of the arrow I9. In the position shown in Figure 1, the strips 1 and 8 are in the off position, and the strips 6 and 9 are in the on position. The radio-frequency energy passes from the guide I to the coupler 4 through the are 20 of the guide It).
When the guide 4 is almost diametrically opposite the guide I, the strips 1 and 8 pass from the ofi position to the on position, and the strips 6 and 9 pass from the on" position to the off position. The transmission of the electromagnetic power is then made by the are 2! of the coupler 19. The strips keep this latter position which they have assumed up to the moment when the mouth of guide 4 comes in front of the mouth of guide I, the strips 8 and 9 respectively overlapping the strips 6 and 1. At this moment, the strips 1 and 8 pass from the on position to the off" position, the strips 6 and 9 from the off" position to the on position and power is again transmitted through the are 20.
In the free zone between the coupler l9 and the mast 5, other guides, 22, 23 can pass, and be attached to the mast by fastening clamps 25, 2B and designed to feed other rotary couplers attached to the mast above the coupler 40. This aifords the possibility of feeding several superposed rotary antennas by independent, continuous or pulsatory radar.
With reference to Figures 2 and 3, 34 is a circular armature supporting the fixed member 2 of the rotary joint, attached to the mast by fixing or fastening members 35 and screws 52. This circular armature carries one of the races 36 of a ball bearing. Another circular armature 31, which supports the mobile part 3 of the rotary joint by the intermediary of adjustable fastening nuts 38 has the second race 39 of the ball bearing.
The armature 34 has a lateral platform 40 on which an electric motor 4| is mounted, on the shaft of which an endless screw 42 is attached. This endless screw drives, by means of a pinion, an internal toothed wheel rim 43 carried by the armature 31, which is for rotating the mobile member 3 of the coupler IOl Each short-circuiting strip has an extension rod 44 which constitutes the plunging core of an electromagnet 45. When the electromagnet 45 is not energised, the corresponding strip is in on position owing to the action of a counteracting spring 59. One of the ends of the Winding of each electromagnet 45 is grounded to the corresponding armature, and the other terminates in a brush. These brushes are shown by 46, 4'1, 43 and 49, depending on whether they are associated with strips 6, 1, Band 9.
The brushes 48 and 49 are in operative contact with semi-circular rings 58 and 59 mounted on the armature 34, insulated with respect to this armature and brought to a positive potential by a battery 5|, the negative pole of which is connected to the armature. The brushes 46 and 4.1
contact semi-circular rings 56 and 51 mounted on the armature 31, insulated with respect to this armature and brought to a positive potential with respect to the armature by the same battery 5|.
The rings 56, 51, 58, 59 are arranged as shown in Figure 4, in which can be seen the rotary joint I0, its junction with the guide I and the two strips 6 and 1, its junction with guide 4 and the two strips 3 and 9 and the brushes 46, 41, 48, 49 associated with the difierent strips. A strip is o when it is radially aligned with a semi-circular conducting ring. It follows clearly from Figure 4 that when the guides l and 4 arrive to be mouth to mouth when the upper assembly rotates in the direction of the arrow I9 of Fig. 1, the strips 6 and 9 come into the on position and the strips 1 and 8 into the off position, and that when the guides l and 4 are diametrically opposite each other, the strips 6 and 9 come into the foif position and the strips 1 and 8 into the on position.
Although the invention has been described with reference to a single preferred embodiment, it is understood that numerous modifications can be introduced therein, particularly with respect to the means of opening and closing short-circuiting strips, and be within the spirit and scope of the invention as defined in the appended claims.
What I claim is:
l. A rotary joint with an axial recess for centimetric radar installations comprising a torus shaped wave guide having a rectangular cross-section, the large side of which is parallel to the axis of the torus and the small side perpendicular to said axis, said guide being divided into upper and lower superposed parts by an equatorial plane perpendicular to its large side, the lower of said parts being stationary and the upper of said parts being rotatably mounted, an input wave feed guide adapted for connection to a high frequency energy source and the chamber of which is in communication with said lower part, an output wave feed guide adapted for connection to a microwave antenna and the chamber of which is in communication with said upper part, means to rotate said upper part, a pair of slidably supported strips in said lower part located on both sides of the input wave feed guide connected with said lower part, a pair of slidably supported strips in said upper part located on both sides of the output wave feed guide connected with said upper part, means for moving said strips in and out of the equatorial plane of the torus shaped wave guide in synchronism with the rotation of the upper part whereby the strips located in the greater arc of the torus shaped wave guide between the input and output guides are inside said latter guide and the strips located in the smaller arc of the torus shaped wave guide are outside said latter guide and whereby the strips located in the greater are divide the torus shaped wave guide in two guides which prevent the transfer of energy between the input and the output guides through the greater are.
2. A rotary joint with an axial recess for centimetrio radar installations comprising a torus shaped wave guide having a rectangular cross section the large side of which is parallel to the axis of the torus and the small side perpendicular to said axis, said guide being divided into upper and lower superposed parts by an equatorial plane perpendicular to its large side, the lower of said parts being stationary and the upper of said parts being rotatably mounted, an input wave feed guide adapted for connection to a high frequency energy source and the chamber of which is in communication with said lower part, an output wave feed guide adapted for connection to a microwave antenna and the chamber of which is in communication with the said upper part, means to rotate said upper part, a pair of slidably supported strips in said lower part, located on both sides of the input wave feed guide connected with said lower part, a pair of slidably supported strips in said upper part located on both sides of the output wave feed guide connected with said upper part, said strips being movable and adapted to be located inside and outside the torus shaped wave guide and permitting electromagnetic energy transmission to pass through said torus shaped wave guide when they are outside said guide and preventing electromagnetic energy transmission to pass through said torus shaped wave guide when they are inside said guide, extension rods secured to said strips, electromagnets having said rods as plunging cores, spring means normally biasing said strips to their inside position and means for actuating said electromagnets for moving said strips into their outside position in synchronism with the rotation of the upper part whereby the strips located in the greater are of the torus shaped wave guide between the input and output guides are inside said latter guide and the strips located in the smaller are are outside said latter guide.
MAURICE BOUIX.
References Cited in the file of this patent UNITED STATES PATENTS Name Date Breetz Apr. 29, 1952
US275411A 1951-03-15 1952-03-07 Rotary joint with axial recess for centimetric radars Expired - Lifetime US2671885A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1033991T 1951-03-15

Publications (1)

Publication Number Publication Date
US2671885A true US2671885A (en) 1954-03-09

Family

ID=9584813

Family Applications (1)

Application Number Title Priority Date Filing Date
US275411A Expired - Lifetime US2671885A (en) 1951-03-15 1952-03-07 Rotary joint with axial recess for centimetric radars

Country Status (3)

Country Link
US (1) US2671885A (en)
FR (1) FR1033991A (en)
GB (1) GB699891A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826742A (en) * 1955-05-31 1958-03-11 John S Hollis Waveguide ring switches
US2945193A (en) * 1954-02-02 1960-07-12 Texas Instruments Inc Rotary waveguide joint and switching structure
DE3209906A1 (en) * 1982-03-18 1984-02-02 ANT Nachrichtentechnik GmbH, 7150 Backnang TEMPERATURE TURN COUPLING
US20010045877A1 (en) * 2000-02-10 2001-11-29 Diamond Antenna And Microwave Corporation Compression journal
US10522887B2 (en) 2017-10-20 2019-12-31 Waymo Llc Communication system for a vehicle comprising a dual channel rotary joint coupled to a plurality of interface waveguides for coupling electromagnetic signals between plural communication chips
US11152675B2 (en) 2017-10-20 2021-10-19 Waymo Llc Communication system for LIDAR sensors used in a vehicle comprising a rotary joint with a bearing waveguide for coupling signals with communication chips

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358746A (en) * 1980-12-22 1982-11-09 Westinghouse Electric Corp. Rotary coupling joint
US4468671A (en) * 1981-06-10 1984-08-28 Polar Research, Inc. Antenna tower assembly and method of attaching antennas
RU2744799C1 (en) * 2020-09-10 2021-03-15 Акционерное общество "Научно-производственная фирма "Микран" Ultra-wideband coaxial rotating junction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595186A (en) * 1950-02-06 1952-04-29 Louis D Breetz Jogged wave guide ring type radio-frequency rotary joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595186A (en) * 1950-02-06 1952-04-29 Louis D Breetz Jogged wave guide ring type radio-frequency rotary joint

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945193A (en) * 1954-02-02 1960-07-12 Texas Instruments Inc Rotary waveguide joint and switching structure
US2826742A (en) * 1955-05-31 1958-03-11 John S Hollis Waveguide ring switches
DE3209906A1 (en) * 1982-03-18 1984-02-02 ANT Nachrichtentechnik GmbH, 7150 Backnang TEMPERATURE TURN COUPLING
US4533887A (en) * 1982-03-18 1985-08-06 Ant Nachrichtentechnik Gmbh Rotary waveguide coupling having arcuate shaped deflecting elements with 2-D blocking structures
US20010045877A1 (en) * 2000-02-10 2001-11-29 Diamond Antenna And Microwave Corporation Compression journal
US7180218B2 (en) * 2000-02-10 2007-02-20 Diamond Antenna & Microwave Corp. Compression journal
US10522887B2 (en) 2017-10-20 2019-12-31 Waymo Llc Communication system for a vehicle comprising a dual channel rotary joint coupled to a plurality of interface waveguides for coupling electromagnetic signals between plural communication chips
US11152675B2 (en) 2017-10-20 2021-10-19 Waymo Llc Communication system for LIDAR sensors used in a vehicle comprising a rotary joint with a bearing waveguide for coupling signals with communication chips
US11688917B2 (en) 2017-10-20 2023-06-27 Waymo Llc Radar system for use in a vehicle comprising a rotary joint where a non-rotational unit is fixed to the vehicle and a rotational unit includes antennas configured for use with radar signals

Also Published As

Publication number Publication date
FR1033991A (en) 1953-07-17
GB699891A (en) 1953-11-18

Similar Documents

Publication Publication Date Title
US2412867A (en) Search system for radio locators
US2671885A (en) Rotary joint with axial recess for centimetric radars
US2212230A (en) Airplane guiding beacon
US2480181A (en) Directive high-frequency antenna
US2623999A (en) Antenna system
US2452202A (en) Radio-frequency distributor apparatus
US2243523A (en) Method of radio communication
US2457562A (en) Antenna drive mechanism
US3348181A (en) Broadband rotary transformer
GB881489A (en) Antenna
US2457127A (en) Antenna system
FR1259139A (en) Scanning horn and reflector antenna
US2633533A (en) Scanning antenna
US2297466A (en) Frame aerial
US2438680A (en) Loop antenna apparatus
US2769144A (en) Radio frequency rotary switch
GB597251A (en) Improvements in or relating to electromagnetic waveguides
GB773297A (en) Suppression of vertically polarized radiation from an omni-directional range antenna system
US2498655A (en) Radio aerial
US3376576A (en) Antenna drive mechanism
GB632356A (en) Improvements in and relating to loop antenna apparatus
JPS562706A (en) Antenna rotating mechanism
US2480117A (en) Direction finder
JPS5683101A (en) Generator for circular polarized wave
GB1234778A (en) Improvements in or relating to surfaces for reflecting microwave energy