US2667466A - Water soluble phenol-formaldehyde-borax condensation product - Google Patents

Water soluble phenol-formaldehyde-borax condensation product Download PDF

Info

Publication number
US2667466A
US2667466A US282280A US28228052A US2667466A US 2667466 A US2667466 A US 2667466A US 282280 A US282280 A US 282280A US 28228052 A US28228052 A US 28228052A US 2667466 A US2667466 A US 2667466A
Authority
US
United States
Prior art keywords
formaldehyde
phenol
borax
water
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US282280A
Inventor
Daniel E Nagy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US127265A external-priority patent/US2701749A/en
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US282280A priority Critical patent/US2667466A/en
Application granted granted Critical
Publication of US2667466A publication Critical patent/US2667466A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C3/00Tanning; Compositions for tanning
    • C14C3/02Chemical tanning
    • C14C3/08Chemical tanning by organic agents
    • C14C3/18Chemical tanning by organic agents using polycondensation products or precursors thereof

Definitions

  • A. further object of the present invention is the production of light-colored full leather.
  • the liquor is fatliquored with. 4% of a sulfonated oil and finished in the usual manner. It is a firm, full; brown leather.
  • alkali especially sodium carbonate, potas-' sium carbonate, sodium bicarbonate and the like may be substituted for the sodium or potassium' hydroxide; the pH of the solution should be about 10. It is desirable to keep the quantity v of alkali to a minimum so that the final pH of densation of monohydric phenol, i. e;, phenol or m-cresol or corresponding poly compounds, with formaldehyde to form a'bout'15-30 C.
  • a water-soluble polymerizable condensation product obtained by condensing a phenol with formaldehyde in relative molar proportions of from about 1:1 to about 1:2 and with at least about 25% by weight of borax, based on the weight of phenol under alkaline conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)

Description

Patented Jan. 26, 1954 WATER SOLUBLE PHENOL- FORMALDE- HYDEPBORAX CONDENSATION PRODUCT Daniel E. Nagy, Stamford, Conn, assignor to American Cyanamid Company, New York, N. 2., a corporation of Maine N Drawing. Original application November 14 1949, Serial No. 127,265. Divided and this application April 14, 1952, Serial No. 282,280;
8" Claims. 1
This invention relates to water-soluble resin ous compositions and more, particularly, to new leather tanning agents and to processes for tanning skins and hides by means of these new agents.
This is a divisional application of my application Serial No., 127,265, filed November-14,- 1949.
Ordinary phenol-formaldehyde resins are'soluble in Water only at pH values above about 9 to 10. However, it is not, possible to use such high pH values in tanning'a skin because the skin becomes badly swollen and accordingly such phenolic resins have been applied only in solvent tannage, and then only experimentally.
In the past it has been customary to sulfonate ordinary phenol-formaldehyde resins and thus render them soluble in neutral and acid media. However, this sulfonation decreases in part the tanning action of the phenol resins and, since they have been rendered completely water soluble, they are to a greater or lesser extent capable of being extracted from leather particularly under severe conditions of use, such as obtains in the use of sole leather army shoes, etc.
It is an" object of the present invention to produce new water-soluble resinous compositions.
Anothe Object of the present invention is to provide new tanning agents for hides and/or skins.
It is another object of the present invention to provide processes for tanning skins and/or hides.
A. further object of the present invention is the production of light-colored full leather.
It is an object of the. presentv invention to provide a process for tanning depickled or bated skins.
Still another object of the present invention is the production of resinous tanning agents which are soluble at pH values above about 6.5.
It is a further object of the present invention to provide new tanning agents for hides and/or skins which may be used in conjunction with other tanning agents such as ligno-sulfonate,
vegetable tannins, mineral tanning agents, syn- I ning agent cannot be-extra'cted by'waterduring. use as are. ordinary tannins and the like;
Another object of th presentinvention is the provision of modified phenolic tanning, agents: which are soluble in water at DH values of from; 7 to 8.
It is an object of the-present-invention to prepare phenolic tanning agentswhich can-be a pplied to skins and/or hide; from. water solution.-
A further object of the present ir lyentionv is the treatment of skins and/or hides first with a water-soluble phenolic. resin tanningagent then with. salt and/or. acidor fix the resinin the skin. and/or hide in which stat it becomes impervious to extraction by Water under all co ,7 tions of use, even th -most severe.
It is another object of the present invention to treat skins and/or hides first with-a water-soluble borated phenolic resin tanning agent of the present inventionand thenwith a diiierent tanning agent which may be vegetable, mineralor synthetic.
It is yet another object of the present invention totreat leather tanned with. a vegetable-- mineral or synthetic tanning agent witha water.- soluble borated phenolic resinof the present invention.
The above and other. objects are attainedby condensing a. phenoll' with formaldehyde and borax under alkaline conditions and finally treating skins and/or hides or pre-tanned'l'eatherw'ith the borated phenol-formaldehyde product obtained.
The invention will be described in greater detail, in conjunctionwith the following specific; examples in which proportions are given inparts:
by weight. The examples are merel illustrative, and it is not intended that the scope of the in: vention be limitedto the details therein setforth.
Example 1 All of the above; components except th bora are mixed together heated at C. for'2.3- hours. The 'borax is then added a ning-g clear viscous solution hich is dilutable with Water is obtained; The concentrated syrup-has a pH of"3.0an d" a 10% solution of the syrup in:
water, a pH of7i9i The resin is dried at a lowtemperature to produce 174.2 parts of a colorless glassy water-soluble solid.
Example 2 391.5 parts (4.16 mol) of phenol 185 parts (2.29 mol) of formaldehyde, 37% 20 parts of hydrochloric acid, 10%
62.5 parts of sodium hydroxide, 36%
506 parts (6.25 mols) of formaldehyde, 37% 158 parts of borax The 185 parts of formaldehyde are added gradually during 35 minutes with stirring to the phenol acidified with the hydrochloric acid at 95 C. Heating is continued for hours. The mixture is then cooled to 50 C. and made alkaline by addition of the sodium hydroxide. The 506 parts of formaldehyde are then added, and the clear red solution obtained is heated for 4 hours at 64-65 C.
The course of the condensation is determined by the following qualitative test: A sample of about 0.7 cc. is withdrawn and mixed with a small amount of borax. This mixture is warmed, diluted with water, treated with solid carbon dioxide and warmed to a temperature of from 25-30 C. At the start of the condensation the borax dissolves without apparent reaction. After about the second hour of reaction the addition of borax to the sample effected a marked increase in viscosity. Similarly, at the beginning of the reaction the addition of carbon dioxide causes precipitation of a bulky solid while as the reaction proceeds, the precipitate forms more slowly and in smaller amount. The reaction is considered complete when the solution becomes only slightly cloudy on addition of solid carbon dioxide, and no precipitate is formed on warming, stirring or standing for 5 minutes.
When the reaction is complete the clear red solution, while still warm, is diluted with about 175 parts of water and the borax is then added. It dissolves readily to form a viscous, orangecolored solutionwhich is further diluted with about 100 parts of water, poured on trays and allowed to air-dry. The dried product is a light orange, brittle, glassy solid which dissolves slowly to give a clear, light red solution in water. The resin, which is soluble in water, is precipitated by dilute salt solutions. The yield of dried product is 718.4 parts.
Example 3 110 parts (1.0 mol) of resorcinol 162 parts (2.0 mols) of formaldehyde, 37%
77.6 parts (0.175 mol) of sodium hydroxide, 50.4 parts borax Example 4 110 parts (1.0 mol) of resorcinol 162 parts (2.0 mols) of formaldehyde, 37%
77.6 parts (0.175 mol) of sodium hydroxide, 10% 100 parts borax The procedure of Example 3 is followed. A water-soluble product, somewhat light in color than that of Example 3, is obtained.
4 Example 5 110 parts (1.0 mol) of resorcinol 162 parts (2.0 mols) of formaldehyde, 37% 77.6 parts (0.175 mol) of sodium hydroxide, 10% 100 parts borax The borax is added to a mixture of the sodium hydroxide and resorcinol and the formaldehyde is added quickly at 30-35 C. The solution is -gradually heated to 50 C. and then poured onto trays for air drying. A water-soluble, red-brown,
. glassy solid is obtained.
Example 6 476 parts of pickled lime split cowhide is depickled to a pH of 7 .2-7 .5 and washed with water until relatively salt free.
84 parts of the phenol-borax resin of Example 2 are dissolved in 500 parts of water by warming, and the cooled solution is, then added to the washed stock and tumbled for two days.
At the end of the first day salt is added in portions so that the solution eventually contains 2% salt. At the end of the second day acetic acid is added to lower the pH to about 5.0.
The well tanned leather, With a shrinkage temperature of 84 C., is washed in water and fatliquored with a mixture of 6% of a sulfonated oil and 2% of neatsfoot oil.
The dried leather is full, light brown, and exceedingly strong and flexible.
Similar results are obtained when an equivalent amount of bated stock is substituted for the pickled lime split cowhide.
Example 7 Pickled lime split cowhide is tanned exactly as in Example 6. After the skin has been acidified to pH 5.0 there is added by Weight of a calcium base sulfide liquor (50 B) obtained as a Waste product in the sulfite process for the manufacture of paper. The skin is drummed overnight in the liquor and hydrochloric acid is added gradually to lower the pH to about 4.0.
After 24 hours, when the lignin sulfonate has penetrated completely, the skin is washed and fatliquored as in Example 6.
The finished leather is more plump and firm than that of Example 6, and there is proportionally a much higher weight yield per pound of original hide.
Example 8 Pickled goatskins are depickled'to a pH of 7 and washed. The skins are drained and weighed. For each 100 lbs. of skins there is used 20% by weight, of the resin of Example 2 dissolved in 100 lbs. of water. This is drummed for 1.5 hours and during the next hour 3 lbs. of salt and 1 lb. of acetic acid are added in portions. The tannin material is now taken up completely as shown by the absence of a precipitate in the liquor.
The skins are then further acidified to apI-I of about 4 with acetic'and sulfuric acids, and;
assume finally washed and fatliquor'ed. with 4% of a sulfon'ated; oil. in. 100% water;
' The finished skin, which. is well tanned and possesses a smooth grain; is plump and a. light yellow tan color.
Example Pickled calfskins. are: weighted, depickled to av pH of '7 and washed. For each 100 lbs-. of skin there are added ll lbs. of the resin of Example 2 in 200' lbs. of water, and the skins are drummed for about 1 8 hours. 100 lbs. of 10% salt are added and after drumming an additional 3 hours 100 lbs. of 10% alum are added. There is no precipitate formed and. after drumming for 2 hours the pH is 4.2. Theskins are finally washed and fatliquored.
The leather which is light, almost white, in color is quite firm.
Example 11 Skins tanned with the borated phenol resin as in Example '7 are further tanned with 100 lbs. of. soda base sulfite Iignin (50 B) obtained as a. waste product in the white process for the manufacture of paper, and lactic acid is added to lower the pH to 3.5. After drumming for about 18 hours the skins are. washed and fatliquored The resulting leather is very plump and of a pleasing light tan shade.
Example 12 15 parts of the product of Example 4 are dissolved in 300 parts of water and 100' parts of calfskin depickled to a pH of 7.4 are tumbled in this solution for about 16 hours". The pH of the solution is lowered to about 4.0 by addition of acetic acid and tumbling is continued for another 3 hours. The shrinkage temperature is then 94 C.
The liquor is fatliquored with. 4% of a sulfonated oil and finished in the usual manner. It is a firm, full; brown leather.
Phenol or m-cresol may be condensed directly with formaldehyde under alkaline conditions in the preparation of my new resinous compositions; or condensation products, preferably under acid conditions, of two or more mols of phenol and m-cresol with 1 mol of an aldehyde or'a ketone such as, for example, formaldehyde, acetone; acetaldehyde, furfural, etc'., may be further condensed, under alkaline conditions; with formaldehyde; The products of such pro-condensations depending, of course, ontheconditions of the condensations may be pure compounds of the type of di(p-hydroxyphenyl) methane, di'(phydroxyphenyl) dimethylmethane, 1,1-di'(p-hydroxyphenyl) ethane, di(p' hydroxyphenyl) furyl methane, di(2-methyl-4-hydroxyphenyl) methane, l-(p hydroxyphenyli-l-(2 methyllhydroxyphenyl) ethane, etc.,. or they may be mixtures of these hydroxy compounds with the corresponding triand tetrahydroxy compounds. Dihydric'phenols as'resorcinol and catechol may also be reacted with formaldehyde under alkaline conditions'orfirstto form the corresponding bis compounds and finally under alkaline conditions. The expression a ph'enol""when used in the present specification and claims is intended to include all of the above-specified types of compounds.
Tanning properties of my new resinous compositions vary somewhat. Good tanning agents under normal conditions are obtained from phenol and m-cresol only if they are pro-condensed erunder acid conditions to:- form a his or like com pound or mixture oflcompounds- Variations in tanning procedure, however, make possible the use of condensation products of. phenol or m cresol with. formaldehyde and borax' under alkaline conditions as sole tanning. agents and, moreover; such alkaline-condensed resins markedly enhance the tannage obtained; when used with other tanningv agents such: assulfite lignin under normal conditions of. tanning.
Formaldehyde-yielding materials such as paraformaldehyde may be substitutedfor the formaldehyde of the examples.
Relative molar proportions of phenol, based. on the number of hydroxyary]: groups, to formaldehyde in the alkaline condensation will range from about 1:1 to about 1:2, the preferred molar ratio being about 1:1.5;
In general I prefer to first form an. alkaline condensation product of phenol and formaldehyde and then react the: condensation product withv borax. As is well known to anyone skilled in the art, the amount of alkali and the team erature of condensation will vary depending upon the reactivity of thephenol, and the exact conditions of the reaction form no part of the present invention. I generally use from about 0.1 to 0.2 mol of sodium or potassium hydroxide per mol of phenol, based on the number of hydroxyaryl groups, i. e., compounds of the type of di(p-hydroxyphenyl) methane contain two hydroxyaryl groups whereas the dihydric phenol resorcinol, for example, contains only one, but- I am not limited to these quantities. Particularly can I use more than 0.2 mol of the alkali per mol of phenol since a large excess does no: harm and indeed, if a very low reaction temperature is used, larger amounts of alkali may be required. Equivalent quantities of other alkalis such as, for example, sodium carbonate, potas-' sium carbonate, sodium bicarbonate and the like may be substituted for the sodium or potassium' hydroxide; the pH of the solution should be about 10. It is desirable to keep the quantity v of alkali to a minimum so that the final pH of densation of monohydric phenol, i. e;, phenol or m-cresol or corresponding poly compounds, with formaldehyde to form a'bout'15-30 C. for the similar condensation of resorcinolr In the former case the borax is added to and reacted with the condensation product at. the same temperature, i. e., 55-70" C., while in. the latter case; the reaction mixture is heated: toaboutv 25-50 C. when the borax. is added.
It is frequently possible, as in- Example 5, to condense the phenol, formaldehyde and borax under alkaline conditions in a single step, The optimum reaction temperature is then: from about 50-100 C.
The preceding reaction. temperatures are the optimum temperatures, not the only operative temperatures, and myinvention. is not limited to these ranges. In general I can prepare my new resinous compositions at from 0100 C.
Relatively largev amounts of: borax. are used. for reaction with phenol-formaldehyde condensation products in the preparation of the tanning agents of the present invention. I use from about 25 75% or more by weight of borax based on the weight of phenol. The borax is not added as a catalyst or merely in catalytic quantities; it actually reacts with the phenol-formaldehyde condensation product and forms a part of my final product. The borax in the preparation of the new resinous compositions of my invention may be replaced entirely or in part by boric acid or other salts of boric acid which are at least as soluble in water as borax such as sodium metaborate, potassium tetra-borate and the like.
The present invention contemplates for use as tanning agents those borax-resin complexes which are soluble in water at a pH above about 6.5. I have found that in a neutral solution, solubility of the phenol-formaldehyde-borax condensation products increases with the number of methylol groups present and, of course, decreases with increase in the degree of polymerization. My preferred resins are those which contain two or three phenol nuclei joined by methylene or corresponding groups. If the molecular weight of the resin is much higher than this, it will not be soluble in water.
The new resinous tanning agents of the present invention may be used alone or in conjunction with other tanning agents such as lignosulfonate, vegetable tannins, mineral tanning agents, synthetic tanning agents including formaldehyde, and the like. In the latter case, my new tanning agents may be used to after-tan leather already pre-tanned with another tanning agent or agents, or skins and/or hides may be first tanned with the new agents and then with a tanning agent of another type. Particularly advantageous results are obtained when the borated methylol phenols of the present invention are used for tanning in conjunction with ligno-sulfonate.
If my borated phenolic resins are used alone in the process of the present invention, I prefer to use 15-20% or more by weight of resin based on the pickled weight or white weight of hides or skins; if they are used in combination with other tanning agents, I prefer to apply from to by weight of resin; based on the pickled weight or white weight of the hides or skins. Generally, 1% to 50% of resin, on the same basis as above, may be applied in my process.
When initial tannage of skins and/or hides with my new resins is contemplated, substantially salt-free depickled or bated stock must be provided since the resins are precipitated by salt. They are also precipitated by acid but nevertheless may be used for after-tannage of, for example chrome leather, because only a surface tannage is involved.
It is an advantage of the present invention that the use of borax in the production of my borated phenol-formaldehyde condensation products markedly improves the color of the resins. Thus, the borated methylol phenol resins, when used as tanning agents, produce light colored leathers.
It is another advantage of the present invention that methylol phenol resins which are soluble only in strongly alkaline solution form borax complexes which are soluble at a pH as low as 7 and which are therefore valuable tanning agents.
A further advantage of the present invention lies inthe fact that my borated resins may be dried to water-soluble solids; Moreover, in the dry form, they are completely stable against polymerization upon storage for indefinite periods of time under normal storage conditions.
I claim:
1. A water-soluble polymerizable condensation product obtained by condensing a phenol with formaldehyde in relative molar proportions of from about 1:1 to about 1:2 and with at least about 25% by weight of borax, based on the weight of phenol under alkaline conditions.
2. A water-soluble polymerizable condensation product obtained by condensing a phenol with formaldehyde in relative molar proportions of from about 1:1 to about 1:2 under alkaline conditions and then treating the methylol phenol obtained with at least about 25% by weight of borax, based on the weight of phenol.
3. A water-soluble polymerizable condensation product as in claim 2 wherein the phenol is di- (p-hydroxyphenyl) dimethyhnethane.
4. A water-soluble polymerizable condensation product obtained by condensing phenol With formaldehyde in relative molar proportions of about 2:1 under acid conditions, continuing the condensation with additional formaldehyde under alkaline conditions, the relative molar proportions of phenol to formaldehyde in said alkaline condensation being from about 1:1 to about 1:2, and then treating the methylol phenol obtained with at least about 25% by weight of borax, based on the weight of phenol.
5. A water-soluble polymerizable condensation product obtained by condensing resorcinol simultaneously with formaldehyde in relative molar proportions of from about 1:1 to 1:2 and with at least about 25% by weight of borax, based on the weight of resorcinol, under alkaline conditions.
6. A process which comprises condensing a phenol with formaldehyde under alkaline conditions, and reacting the condensation product obtained with borax to obtain a water-soluble polymerizable condensation product in which the molar ratio of phenol to formaldehyde is from about 1:1 to about 1:2 and the borax content is at least about 25% by weight, based on the weight of phenol.
7. A process which comprises condensing phenol with formaldehyde in relative molar proportions of about 2:1 under acid conditions, continuing the condensation with additional formaldehyde under alkaline conditions, the relative molar proportions of phenol to formaldehyde in said alkaline condensation being from about 1:1 to 1:2, and then treating the methylol phenol obtained with at least about 25% by weight of borax, based on the weight of phenol, to obtain a water-soluble polymerizable condensation product.
8. A process which comprises condensing a phenol simultaneously with formaldehyde in relative molar proportions of from about 1:1 to 1:2 and with at least about 25% by weight of borax, based on the weight of phenol, under alkaline conditions.
DANIEL E. NAGY.
References Cited in the file of this patent UNITED STATES PATENTS Number

Claims (1)

1. A WATER-SOLUBLE POLYMERIZABLE CONDENSATION PRODUCT OBTAINED BY CONDENSING A PHENOL WITH FORMALDEHYDE IN RELATIVE MOLAR PROPORTIONS OF FROM ABOUT 1:1 TO ABOUT 1:2 AND WITH AT LEAST ABOUT 25% BY WEIGHT OF BORAX, BASED ON THE WEIGTH OF PHENOL UNDER ALKALINE CONDITIONS.
US282280A 1949-11-14 1952-04-14 Water soluble phenol-formaldehyde-borax condensation product Expired - Lifetime US2667466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US282280A US2667466A (en) 1949-11-14 1952-04-14 Water soluble phenol-formaldehyde-borax condensation product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US127265A US2701749A (en) 1949-11-14 1949-11-14 Process of tanning with borated methylol phenols
US282280A US2667466A (en) 1949-11-14 1952-04-14 Water soluble phenol-formaldehyde-borax condensation product

Publications (1)

Publication Number Publication Date
US2667466A true US2667466A (en) 1954-01-26

Family

ID=26825487

Family Applications (1)

Application Number Title Priority Date Filing Date
US282280A Expired - Lifetime US2667466A (en) 1949-11-14 1952-04-14 Water soluble phenol-formaldehyde-borax condensation product

Country Status (1)

Country Link
US (1) US2667466A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889241A (en) * 1954-12-13 1959-06-02 Reichhold Chemicals Inc Phenolic resin composition and means for controlling viscosity of same
US3464956A (en) * 1968-01-15 1969-09-02 Schenectady Chemical Ammonium biborate and ammonium pentaborate catalyzed and co - reacted phenol formaldehyde resins
US3487045A (en) * 1964-11-30 1969-12-30 Hooker Chemical Corp Aromatic polymers which are prepared by reacting an ortho phenolic novolak with boron compounds
US4480068A (en) * 1981-09-14 1984-10-30 Fiberglas Canada Inc. High temperature resistant binders
US4585837A (en) * 1983-03-29 1986-04-29 Hitco Resoles containing zirconium metal atoms
US4650840A (en) * 1983-03-29 1987-03-17 Hitco Tungsten containing resoles
US4785073A (en) * 1983-08-16 1988-11-15 Polymer Tectonics Limited Melamine-phenol-formaldehyde resole modified by glycols moulding composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512708A (en) * 1946-11-01 1950-06-27 Du Pont Resorcinol-aldehyde tanning product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512708A (en) * 1946-11-01 1950-06-27 Du Pont Resorcinol-aldehyde tanning product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889241A (en) * 1954-12-13 1959-06-02 Reichhold Chemicals Inc Phenolic resin composition and means for controlling viscosity of same
US3487045A (en) * 1964-11-30 1969-12-30 Hooker Chemical Corp Aromatic polymers which are prepared by reacting an ortho phenolic novolak with boron compounds
US3464956A (en) * 1968-01-15 1969-09-02 Schenectady Chemical Ammonium biborate and ammonium pentaborate catalyzed and co - reacted phenol formaldehyde resins
US4480068A (en) * 1981-09-14 1984-10-30 Fiberglas Canada Inc. High temperature resistant binders
US4585837A (en) * 1983-03-29 1986-04-29 Hitco Resoles containing zirconium metal atoms
US4650840A (en) * 1983-03-29 1987-03-17 Hitco Tungsten containing resoles
US4785073A (en) * 1983-08-16 1988-11-15 Polymer Tectonics Limited Melamine-phenol-formaldehyde resole modified by glycols moulding composition

Similar Documents

Publication Publication Date Title
CN111051375B (en) Method for preparing lignin-modified polyphenol products and use thereof for treating leather and pelts
US2667466A (en) Water soluble phenol-formaldehyde-borax condensation product
US2621164A (en) Preparation of sulfonated phenolic resins
US2191943A (en) Tanning material
US3065039A (en) Sulfo-methylated phenol-formaldehyde tanning agents
US2552129A (en) Tanning with a free aldehyde and a free polyhydric phenol mixture in a molecular ratio of at least 2 to 1
US2099717A (en) Process for the production of water-soluble condensation products
US2701749A (en) Process of tanning with borated methylol phenols
US2516283A (en) Resin impregnation of a dialdehyde tanned hide
KR101540134B1 (en) Method for producing leather
US3442859A (en) Condensates of sulfonated formaldehyde-mixed phenols condensates with formaldehyde and a phenol
US5264000A (en) Aqueous solutions of synthetic tanning agents
US2303209A (en) Leather tanning and finishing
US2122124A (en) Water-soluble condensation products and a process of producing same
US2716098A (en) Water soluble condensation products with a tanning action
US2677675A (en) Process of making light colored and light stable phenolic syntans
US3029212A (en) Synthetic tanning agent and process for preparing same
US3934975A (en) Leather treating process
US2676170A (en) Water-soluble derivatives of unsulfonated lignin
US4074968A (en) Retanning and fatliquoring agent
US3519378A (en) Process for the rapid tanning of medium-weight and heavy leather
US2282928A (en) Water-soluble condensation products
JP2004149797A (en) Condensate for re-tanning iron-tanned leather
US3340215A (en) Condensates of aminoplast-sulfonated phenolic compounds
US3480379A (en) Tanning of leather employing synthetic anionic tanning agents