US2665205A - Hot work steel alloy - Google Patents

Hot work steel alloy Download PDF

Info

Publication number
US2665205A
US2665205A US251243A US25124351A US2665205A US 2665205 A US2665205 A US 2665205A US 251243 A US251243 A US 251243A US 25124351 A US25124351 A US 25124351A US 2665205 A US2665205 A US 2665205A
Authority
US
United States
Prior art keywords
alloy
titanium
carbon
steel alloy
hot work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US251243A
Inventor
Leonard V Klaybor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allegheny Ludlum Steel Corp
Original Assignee
Allegheny Ludlum Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allegheny Ludlum Steel Corp filed Critical Allegheny Ludlum Steel Corp
Priority to US251243A priority Critical patent/US2665205A/en
Application granted granted Critical
Publication of US2665205A publication Critical patent/US2665205A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • Another object has been to develop a relatively inexpensive hot work alloy steel that will have a greatly increased abrasion resistance without a sacrifice of a good impact strength, toughness, heat checking and other required properties.
  • a further object has been to provide a titanium containing hot work steel alloy suitable for heat treatment and for use in hot dies.
  • the titanium bearing alloy A is slightly lower in hardness because it is on the low side of the carbon content for the titanium content involved.
  • An improved hot work die type of steel alloy which is tempered by heat treatment which contains about .85 to .95% carbon, about 5 to 5.5% chromium, about 3 to 3.25% titanium, about .90
  • the alloy being characterized by its high hot abrasion resistance with good impact strength in its tempered condition.
  • An improved hot work die type of steel alloy having a high hot abrasion resistance combined with a good impact strength whose alloying ingredients consist essentially of about .60 to 1.25% carbon, about 3 to 6% chromium, about 2 to 3.5% titanium, about .10 to 1.5% silicon, about .50 to 2% each of molybdenum and tungsten, up to about .50% manganese, up to about 1 vanadium, and in which the carbon is increased by .15 to 25% for each 1% additional titanium within the stated ranges of each, starting with .60% carbon and 2% titanium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Patented Jan. 5, 1954 f res PATENT QFFICE.
HOT ZWOHK STEEL ALLOY ieonardivi. Kh ber Dunkirk. Y". assignor ta. Allegheny-'Ludlum Steel CorporatiomBrackenridge;-Pa-:; a: corporation of..Pennsy1vania.
Ng nlaw ilgi A lilicationOctobcr13g1951;
S J'iaLNo. 2511243:
r claims;-
h s'fi v tion tel'at stp. animmnved network alloy steel and p arlnite hQt...w.Q.r1;. alloy hav n a. hiehwab asien. resistance. and a o mpact stren t A h t-w n alloit av ne. wide;- usaeen di s. eta. usedi-in 111.01 1. r in hot: pressin shot extrusion Q f steelssalmmnum; copper; brass and any. metaknormaliy worked. at: elevated tempera: tures. Heretofore; aitihasibeen customaryato em ploy a 5% chromium: steel having -a low maximum carbon-content'of under 150%; usually well under-50%" (+30to .4z0%j-)- for such -an applicat-i'om It has been necessary'to maintain alower carbon content 120.. plioyide it with increased toughness and'to increase the high temperature fatigue failure of itstworking surface (phenomenon commonly, referredto. as heat checking). However, such an alloy has a relatively poor abrasion resistance and for this reason, has not been entirely satisfactory.
In endeavoring to solve the problem thus presented, I determined that it must be done in such a manner as to not adversely alter other required physical properties or adversely affect the heat treatment of the alloys. I discovered that the problem could be solved by increasing the carbon content above the maximum previously permissible amount and adding titanium as an alloying element, both within critical and essential ranges.
It thus has been an object of my invention to provide a practical solution to the problem.
Another object has been to develop a relatively inexpensive hot work alloy steel that will have a greatly increased abrasion resistance without a sacrifice of a good impact strength, toughness, heat checking and other required properties.
A further object has been to provide a titanium containing hot work steel alloy suitable for heat treatment and for use in hot dies.
In carrying out my invention, I discovered that the advantages of a lower carbon content could be retained by employing titanium in proper amounts as an alloying and carbide forming element and that a resulting, greatly increased abrasion resistance with a good impact strength could be obtained in the alloy without adversely 2 affecting its other properties. The alloys of my invention have the following contents:
Qj=0.(i0 to 1.25 Cr=3.00 to 6.00%. Ti= 2.00 to 3.507 Si=0.10 to 1.50%. Mo=0.50 to 2.007 W=.0.50to 2.00% Mn=un to 0;50% V=up tol.00%
Remainder iron with, incidental; impurities.
In. these: alloys; heat. treatment and, impact strength do not deviate from .theestandardsfiqz chromium, titaniumefree, .3 5 carbonhotwork steel alloy. A.measurelofi'therincreasedvhot abrae siOn resistance wasgobtainedby; subjecting: same ples.:0fwmya11 ys;.to theactibn of: a: rotating; disc of; a;super;hight,temperaturewalloy at. .1700?- undelzza pre sure. of; 4.0. Dundee The heateddisc wa ro ated hrou h dis ance. (121120.080 .ree'n periph ral:wheeltranel; at; azsneedi i; 1.00 Re. R. against the alloy samples. The weight loss of the test samples A of my alloy were recorded. Comparison alloy steels B and C were also subjected to the same test, see Table II.
The data of Table II clearly show the marked improved effect of titanium and additional carbon. That is, these two critical elements in properly proportionate ranges give the alloy a hardness and abrasion resistance under conditions of hot usage and as illustrated by Table III, without adversely affecting other requisite physicals. I have determined that as a minimum, the carbon content should be increased by .15 to 25% for each 1% additional titanium starting with .60% carbon and 2% titanium.
In Table III, specimens used were 1 inch round by 2 inches long and were oil quenched from the indicated temperatures. All were tempered for two hours at the indicated temperatures.
TABLE III Analysis Alloy A (mine), see Table II.
Alloy D (comparison):
C=.38%, Cr=5.04%, Si=1.00%, Mo=1.87%.
W=1.60%, Mn=.38%, and V=.20%.
ALLOY A Harden AS Shep Hardness Rkhg 321:2 tempering 2 ing qucnchei herd temp hardfracture RC mmg 900 F. 1,000F. 1,100 F. 1,200" F.
ALLOY D The titanium bearing alloy A is slightly lower in hardness because it is on the low side of the carbon content for the titanium content involved.
4 der iron with incidental impurities; the carbon 4 and titanium being highly essential in the ranges set forth, and the alloy being characterized by its high hot abrasion resistance with a good impact strength.
2. An alloy as defined in claim 1, wherein the maximum vanadium content is about .50%.
3. An alloy as defined in claim 1, wherein starting from the minimum specified amounts of carbon and titanium, the carbon is increased by at least .15 to 25% for each 1% increase in amount of titanium.
4. An alloy as defined in claim 1 wherein, its above defined abrasion resistance is retained after it has been tempered for about two hours at a temperature within a range of 900 F. to 1200" F.
5. An improved hot work die type of steel alloy which is tempered by heat treatment which contains about .85 to .95% carbon, about 5 to 5.5% chromium, about 3 to 3.25% titanium, about .90
to 1.10% silicon, about 1.10 to 1.30% molybdenum,
about 1.10 to 1.40% tungsten, about .30 to .50% manganese, about .50% maximum vanadium, and the remainder iron with incidental impurities; the alloy being characterized by its high hot abrasion resistance with good impact strength in its tempered condition.
6. An improved hot work die type of steel alloy having a high hot abrasion resistance combined with a good impact strength whose alloying ingredients consist essentially of about .60 to 1.25% carbon, about 3 to 6% chromium, about 2 to 3.5% titanium, about .10 to 1.5% silicon, about .50 to 2% each of molybdenum and tungsten, up to about .50% manganese, up to about 1 vanadium, and in which the carbon is increased by .15 to 25% for each 1% additional titanium within the stated ranges of each, starting with .60% carbon and 2% titanium.
LEONARD V. KLAYBOR.
References Cited in the file of this patent UNITED STATES PATENTS Number

Claims (1)

1. AN IMPROVED HOT WORK DIE TYPE OF STEEL ALLOY WHICH IS TEMPERED BY HEAT TREATMENT WHICH CONTAINS ABOUT .60 TO 1.25% CARBON, ABOUT 3 TO 6% CHROMIUM, ABOUT 2 TO 3.5% TITANIUM, ABOUT .10 TO 1.5% SILICON, ABOUT .50 TO 2% EACH OF MOLYBDENUM AND TUNGSTEN, UP TO ABOUT .50% MANGANESE, UP TO ABOUT 1% VANADIUM, AND THE REMAINDER IRON WITH INCIDENTAL IMPURITIES; THE CARBON AND TITANIUM BEING HIGHLY ESSENTIAL IN THE RANGES SET FORTH, AND THE ALLOY BEING CHARACTERIZED BY ITS HIGH HOT ABRASION RESISTANCE WITH A GOOD IMPACT STRENGTH.
US251243A 1951-10-13 1951-10-13 Hot work steel alloy Expired - Lifetime US2665205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US251243A US2665205A (en) 1951-10-13 1951-10-13 Hot work steel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US251243A US2665205A (en) 1951-10-13 1951-10-13 Hot work steel alloy

Publications (1)

Publication Number Publication Date
US2665205A true US2665205A (en) 1954-01-05

Family

ID=22951088

Family Applications (1)

Application Number Title Priority Date Filing Date
US251243A Expired - Lifetime US2665205A (en) 1951-10-13 1951-10-13 Hot work steel alloy

Country Status (1)

Country Link
US (1) US2665205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295964A (en) * 1961-12-28 1967-01-03 Fujikoshi Kk Titanium-tantalum high-speed steel
US3367770A (en) * 1965-02-01 1968-02-06 Latrobe Steel Co Ferrous alloys and abrasion resistant articles thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2343069A (en) * 1942-02-27 1944-02-29 Carpenter Steel Co Steel alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2343069A (en) * 1942-02-27 1944-02-29 Carpenter Steel Co Steel alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295964A (en) * 1961-12-28 1967-01-03 Fujikoshi Kk Titanium-tantalum high-speed steel
US3367770A (en) * 1965-02-01 1968-02-06 Latrobe Steel Co Ferrous alloys and abrasion resistant articles thereof

Similar Documents

Publication Publication Date Title
US2715576A (en) Age hardening alloy steel of high hardenability and toughness
US3431101A (en) Steel for hot working die having alloying elements of silicon, chromium and aluminum
US2662010A (en) Cast tool steel
US2747989A (en) Ferritic alloys
US2693413A (en) Alloy steels
US2289449A (en) Die steel for hot working
US2665205A (en) Hot work steel alloy
US2996376A (en) Low alloy steel having high hardness at elevated temperatures
US3519499A (en) Heat treated forging die having a low alloy content
US2565264A (en) Hardenable alloy steels resistant to softening at elevated temperatures
US3167423A (en) High temperature wear resisting steels
US2639985A (en) Bearing and steel therefor
US3820981A (en) Hardenable alloy steel
US2586041A (en) Low-alloy, high-hardenability steel with high toughness at high hardness levels
US2253385A (en) Steel
US3027253A (en) Alloy steels
US2449806A (en) Cold hobbable steel
US3219442A (en) Alloy steels and articles thereof
US2250505A (en) Alloy steel
US2343956A (en) Deep hardening silicon titanium steel
US2104979A (en) Die block
US2395687A (en) Alloy steel
US2654683A (en) Alloy steel
US2234130A (en) Alloy steel
US2362046A (en) Graphitic steels