US2661908A - Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material - Google Patents

Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material Download PDF

Info

Publication number
US2661908A
US2661908A US160783A US16078350A US2661908A US 2661908 A US2661908 A US 2661908A US 160783 A US160783 A US 160783A US 16078350 A US16078350 A US 16078350A US 2661908 A US2661908 A US 2661908A
Authority
US
United States
Prior art keywords
mill
grinding
air
chamber
pocketed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US160783A
Inventor
Jean A Slegten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US160783A priority Critical patent/US2661908A/en
Application granted granted Critical
Publication of US2661908A publication Critical patent/US2661908A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/22Lining for containers

Definitions

  • the method may be practiced most advantageously in a mill of the tube type, which includes a cylindrical chamber rotating on a substantially horizontal axis and provided at one end with ain inlet for material to be treated and, at the other, with means for discharging the finished material.
  • a mill forpraoticing the method is of'novel construction and the invention includes the new mill.
  • the mill cylinder is divided into two'ma in chambers ⁇ the first of which is a crushing chamber-at the inlet end of thernill; 'lflie other chamber of the mill is a grinding chamber," or attrition milLand-it is provided with line! sections of' frusto-conical shape abutting each ⁇ other to form the grinding surface 'Yand'ialso' to provide a nieans for automatically c1assijfying"the grinding media.
  • the progression of-the fine particles can be changed and at the same time the average size and the fineness of the final ground product.
  • Fig. l is a vertical diagrammatic view, partly in section and with parts omitted, of a preferred form of apparatus for the practice of the new method
  • Fig. 2 is a longitudinal cross-section through the center line of the mill
  • Fig. 3 is a partial cross-section of the mill showing the classifying chambers of the tube mill
  • Fig. 4 is a View similar to Fig. 3 showing a modified form of the liner chambers
  • Fig. 5 is a longitudinal cross-sectional view of the tube mill liners on an enlarged scale.
  • a bin or hopper l controlled by a suitable valve 2 contains the raw be ground.
  • a material conveying tube 3 is connected at one end to the feeder and, at the other end, to an air admission valve 4 .positioned between the material discharge tube 3 and the tube mill material inlet 5.
  • the tube mill 6 is provided at its ends with hollow trunnions 1, 8, supported in bearings 9, l0, respectively, the passage through trunnion 1 forming the material inlet 5 and the passage H through trunnion 8 forming the material outlet.
  • the tube mill is divided into two main chambers l2, l3 and the initial crushing of the raw "material takes place in chamber 12.
  • the second main chamber I3 is the grinding chamber and it is provided with a grinding surface comprised of individual frusto-conical sections 19, each section abutting the adjacent section to produce a series ofindividual frusto-conical zones throughout the grinding chamber iii.
  • a grid g separates the crushing chamber from the grinding chamber and'maintains the crushing elements in the crushing chamber at all times, while permitting the raw material after a desired crushing action to be passed into the grinding chamber.
  • Each liner section I9 is made up of individual elements 20 which, as shown in Fig. 3, are of shell construction so that there is a pocket 2! having an opening 22 between adjacent elements around the inner periphery of the tube mill.
  • a fan 23 is provided to produce a current of air fiowmg through the mill 6 for the purpose of cooling the mill, and to classify and entrain, according to their individual size, the particles dropping from the pockets.
  • the fan is equipped with a suction line 24 connected to the outlet sieve 25, which receives the material discharged from the tube mill through outlet II and has a discharge spout 26, through which material removed from the air is discharged into a reoe1 ver 21 whence it is conveyed to any desired point for further processing.
  • the air leaves the sieve 25 through the suction line 24 some of the finely ground material is still entrained in the air stream and the air and material are passed through a dust collector 23, wherein the material is completely removed from the air.
  • ThlS material is conveyed from separator 28 through a discharge spout 29 to discharge spout 26, and the exhaust air from the separator 28 is vented through a vent stack 30 to the atmosphere.
  • the mill 6 is rotated by any convenient means,
  • the fan 23 is started as soon as the mill starts to rotate, and it maintains a current of air through the mill system.
  • the air enters the mill system through the air admission and the material inlet ll, flows through the two chambers l2 and I3, issues from the mill through the material outlet ll, passes through the sieve 25 and the dust collector 23, and exhausts from the mill system through the vent stack 38.
  • the material from hopper I passes throu h the discharge tube 3 and enters the mill throu h the material inlet 5. As the material enters the chamber I2, the crushing takes place.
  • the mater al is progressively reduced in size by the m xed grinding bodies, after which it enters the gr nding chamber 13 for the final phase of commmution.
  • the grinding bodies in the grinding chamber l3 are automatically, classified by the inherent classifying action of the frusto-conical liner sect ons, with the largest of the grinding bodies 1"- ing ad acent to the inlet of the grinding chamber and the bodies gradually decreasing in size so that the smallest bodies lie adjacent the ma terial outlet of the mill.
  • n eac zone of the grindin cha material is produced by the bre aking i fp of larger particles and the finest particles are re moved from the zone, in which they were produced, as soon after they are formed as posslble. This result is achieved as follows. As the particular pocket is rotating beneath the material charge in the mill, the ground mat rial enters and fills the pocket.
  • the ground material passes through the outlet ll into the sieve 25 and further into the receiver 2! whence it is conveyed elsewhere for further processing.
  • the current of air leaving the sieve 25 through the tube 24 carries with it a certain amount of fine material, which is separated from the air in the dust collector 28 and discharged through tube 29, while the air passes out through the vent stack 30.
  • FIG. 4 A modified form of liner section is shown in Fig. 4, the section being made up of individual elements 34 spaced to provide pockets 33 having openings 3
  • a mill for crushing and grinding material which comprises an elongated cylindrical member containing a crushing chamber and a grinding chamber adjacent each other and arranged for free flow of material from the crushing chamber into the grinding chamber, an inlet for admission of material into the crushing chamber, an outlet for material from the grinding chamber, means for rotating the cylindrical member, a series of frusto-conical liners in the grinding chamber, grinding bodies on the liners, the grinding bodies on the successive liners diminishing in size progressively toward the material outlet, means for causing a current of air to enter the crushing chamber through the inlet, flow through the two chambers, and exhaust through the outlet, and a plurality of pockets in each liner each having an opening through which ground material may enter the pocket, when the pocket is at the bottom of the grinding chamber, and may be discharged therefrom when the pocket is at an upper portion of the grinding chamber, the material discharged from each pocket entering the air stream, screening means extending across the openings into said pockets to restrict the size of ground material which may enter the pockets, whereby some sufficiently ground material is carried out of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

Dec. 8, 1953 J A. SLEGTEN 2,661,908
- AIR SWBPTTUBE MILL WITH POCKETED LINER STRUCTURE FOR A'B'FGHATIC CLASSIFICATION OF GRINDING BODIES AND GROUND MATERIAL Filed May 8, 1950 a Sheets-Sheet 1 IN V EN TOR.
HTTORNEVS.
Dec. 8. 1953 J. A. SLEGTEN 2,661,908
AIR SWEPT TUBE MILL WITH FOCKETED LINER STRUCTURE FOR AUTOMATIC CLASSIFICATION OF GRINDING BODIES AND GROUND MATERIAL 3 Sheets-Sheet 2 Filed May 8, 1950 R Q W m4 m a 5 m gm r y m L Y Q 1 I I I 7 V... a a a B Dec. 8, 1953 2,661,908
- J. A. SLEGTEN AIR .SWEPT TUBE MILL WITH POCKETED LINER STRUCTURE FOR AUTOMATIC CLASSIFICATION 'OF GRINDING BODIES AND GROUND MATERIAL I Filed May 8, 1950 5 Sheets-Sheet 5 IN V EN TOR.
IWTORNEY-S.
Patented Dec. 8, 1953 UNITED STATES 2 661, .AIR SWEPT TUBE MILL WITH POCKETED LINER." "STRUCTURE non 'AUIQM ZHC CLASSIFICATION" OF GRINDING opms AND GRO ND MA IAL- Y Jean A. Slegteh, Brussels; Belgium Application my 1.8, 1950, sera1;o; g,v
T i nv n n rel s o t e mm ut eh 9 materials occurring in a substantial range of par;- ticle size and is concerned more particularly with tra hin n nd n wh e meteitihl t .be reduced to the desired state of fineness is subjected to classifying as an incident togrinding. The method may be practiced most advantageously in a mill of the tube type, which includes a cylindrical chamber rotating on a substantially horizontal axis and provided at one end with ain inlet for material to be treated and, at the other, with means for discharging the finished material. A mill forpraoticing the method is of'novel construction and the invention includes the new mill.
Heretofore, various methods of crushing or grinding material of the type described have been employed, such as thatemployed in a conical ball niill wherein automatic classification according .to particle size is produced by the conical slope of the entire mill drum and the rotation thereof. .In this type of gri ding or crushing, the coarse material lies toward or adjacent the inlet of the mill, because of the slope of the mill walls, and the particles of material diminishin size toward the apexof the conical portion. .TIfhe material being ground is classified becauseof the sliding rotating movement of the particles within the conical drum, the heavier particles 1novi ng toward the base ofthe cone byagitation and the .force of gravity. The problem-of removingthe fines as soon as possible after they are forn' edis at e fi u heeehs t ar m ed Wi hi coa e rf aet jthr us ou he i din hone and ub tore q al e vt t ey arivehea th ape Qft ew Ifa ehrhehte air is passed through the interiorof thernill-f or the urp see remwihs t ma e ia in its fi sh ds n e at ev y law h ce teg h the hue w l he i kedh b th eu en rn a th .bas e of the cone, ,but the air will pick lip-the argest p h e t ee the fi e a th rd haree em or ap x of h -.mi ,;w er the eeu atiqn is, greatest. V e
.fI i accqrdin lylg mqne the urno e ef hi invent on to..;p.r, vid 7 mi ha :Wi eutqmet .-.ea y ela s y the ihd bod es -b h ehe h const c i f th gmi 'l; i r ds else ef ect automa ic a sificatio o h mater h th e Q b twee -,th m l e ocket an a current of air passing through the mill.
@I ne :th a para us o "t inv nt c m rise a en rally ri onta ly disposed eloh atedrey ndr ea ha e "ha n anrz n et atlonelehd .for.: he...materia1, to be ound. and
1 cl m; (char-45;)"
2 an outlet at the other-"end, through which the ground material cfan'be' discharged. "The mill cylinder is divided into two'ma in chambers} the first of which is a crushing chamber-at the inlet end of thernill; 'lflie other chamber of the mill is a grinding chamber," or attrition milLand-it is provided with line! sections of' frusto-conical shape abutting each {other to form the grinding surface 'Yand'ialso' to provide a nieans for automatically c1assijfying"the grinding media. l he surface of .ac'h'lsection exposedto the material being .groundis 'providedwith a series of openings .witha .poclietj beneatheach opening. A current of airis passed" throughthe millfor the purpose of classifying the material being ground and for the'fiirther purpose 'of'Idi scharging-part of the material of a desired fineness through the material outlet." Themateria' fienters through the inlet opening into thecrushingchamber of ,the mil l, where mixed media operate the crushing. As the"mate1jial flows into ;the*grind-i-ng chamber f the min containing the momma frusto-conical liner 1 sections; the final domr'niriution begins. "jBec'aujseof" the sloping s urfaces of the liners,.thegrindingliodies'will automatically be classified with the jlarg'erjbodies locat'ed in the initial grinding Zbl:1 (5 f 'th;e grinding chamber and the re alnd r of "ltheibodies' progressively decreasing fin sizeQt ward the discharge end the with the smallest bodjes lying'adacent the ma terial outlet. Similarly, fthebo'mbined action of .the liner pockets ahd{air stream" will classify the material being injd according-to particle size with the larger particles the initiahgrinding zone of the"; ll'and thejparticles i g-ressiviy decreasing in 7 ize' toward the-diScliarge end.
As the material' beingfground i'n' any" part r the r ndingfhamlirj'fine's willibe'pr'oduced as a result of t e 'riacturmg of the larger ipaiticles of-materialT Thseffihes wlill .enterinjto ,those pockets of the ihd'iyidual liner sections," which lie beneath the ;,nia'tei'iall '.Asthe"'rotation con} t me the fille hfoeke s he' upper part ofthe mill wherithe "renal contained mine pockets is dischargedfromlthe ipioc' hemete ihe s'es' a ,flowingthrougEthe grindmg chamber? f During {their iitajth particles undergo .a gravimetric separation, the larger fa11"with"a higher ,speedand rnor e or lessvertically while thetiniest lare deflected by the-mill sweep glair and entrained in d re :t",on .of Zthe outlet before they drep gntheg ind ,gmeiija; j'energtiic n e th elesa es eh efthe meh material to progressing quicker towards the smaller grinding media where they are ground more eificiently and so on until they reach the mill end, in the flow of material or entrained to the dust collector. The larger particles fall practically vertically and. remain under the action of the bigger steel media, until their specific surface is sufiiciently in creased to make them sensible to the axial air current, pulling them forward in such the greater steps as they are tinier.
By controlling the quantity or speed of cooling air, the progression of-the fine particles can be changed and at the same time the average size and the fineness of the final ground product.
From the use of liners according to the invention, results an important saving in power absorbed per barrel of ground material. The temperature rise is lower and also steel wear and maintenance. Grinding efficiency increases for two causes; the permanent elimination of fines cushioning the attritive action and the continuous assorting of medium and particle sizes for top grinding efiiciency. It has been proven that the relation between sizes of particles and media affects the efficiency in such range as from 1 to 5, keeping within conditions common in the industrial grinding practice.
In order that my invention may be clearly understood, it will be described with reference to the accompanying drawings, in which:
Fig. l is a vertical diagrammatic view, partly in section and with parts omitted, of a preferred form of apparatus for the practice of the new method;
Fig. 2 is a longitudinal cross-section through the center line of the mill;
Fig. 3 is a partial cross-section of the mill showing the classifying chambers of the tube mill;
Fig. 4 is a View similar to Fig. 3 showing a modified form of the liner chambers;
. Fig. 5 is a longitudinal cross-sectional view of the tube mill liners on an enlarged scale.
Referring to Fig. 1, a bin or hopper l controlled by a suitable valve 2 contains the raw be ground. A material conveying tube 3 is connected at one end to the feeder and, at the other end, to an air admission valve 4 .positioned between the material discharge tube 3 and the tube mill material inlet 5. The tube mill 6 is provided at its ends with hollow trunnions 1, 8, supported in bearings 9, l0, respectively, the passage through trunnion 1 forming the material inlet 5 and the passage H through trunnion 8 forming the material outlet.
The tube mill is divided into two main chambers l2, l3 and the initial crushing of the raw "material takes place in chamber 12. The second main chamber I3 is the grinding chamber and it is provided with a grinding surface comprised of individual frusto-conical sections 19, each section abutting the adjacent section to produce a series ofindividual frusto-conical zones throughout the grinding chamber iii. A grid g separates the crushing chamber from the grinding chamber and'maintains the crushing elements in the crushing chamber at all times, while permitting the raw material after a desired crushing action to be passed into the grinding chamber.
Each liner section I9 is made up of individual elements 20 which, as shown in Fig. 3, are of shell construction so that there is a pocket 2! having an opening 22 between adjacent elements around the inner periphery of the tube mill.
A fan 23 is provided to produce a current of air fiowmg through the mill 6 for the purpose of cooling the mill, and to classify and entrain, according to their individual size, the particles dropping from the pockets. The fan is equipped with a suction line 24 connected to the outlet sieve 25, which receives the material discharged from the tube mill through outlet II and has a discharge spout 26, through which material removed from the air is discharged into a reoe1 ver 21 whence it is conveyed to any desired point for further processing. As the air leaves the sieve 25 through the suction line 24, some of the finely ground material is still entrained in the air stream and the air and material are passed through a dust collector 23, wherein the material is completely removed from the air. ThlS material is conveyed from separator 28 through a discharge spout 29 to discharge spout 26, and the exhaust air from the separator 28 is vented through a vent stack 30 to the atmosphere.
The mill 6 is rotated by any convenient means,
such as a gear 35 attached to the mill casing and driven through a geared shaft 365 by any convenient conventional prime mover, not shown. In the operation of the apparatus, the fan 23 is started as soon as the mill starts to rotate, and it maintains a current of air through the mill system. The air enters the mill system through the air admission and the material inlet ll, flows through the two chambers l2 and I3, issues from the mill through the material outlet ll, passes through the sieve 25 and the dust collector 23, and exhausts from the mill system through the vent stack 38.
The material from hopper I passes throu h the discharge tube 3 and enters the mill throu h the material inlet 5. As the material enters the chamber I2, the crushing takes place. The mater al is progressively reduced in size by the m xed grinding bodies, after which it enters the gr nding chamber 13 for the final phase of commmution.
The grinding bodies in the grinding chamber l3 are automatically, classified by the inherent classifying action of the frusto-conical liner sect ons, with the largest of the grinding bodies 1"- ing ad acent to the inlet of the grinding chamber and the bodies gradually decreasing in size so that the smallest bodies lie adjacent the ma terial outlet of the mill.
An automatic classification accordin hole size of the material to be ground, gi ;duced by the combined action of the pockets 2| of the liner sections and the current of air flowmg; through the grinding chamber.
n eac zone of the grindin cha material is produced by the bre aking i fp of larger particles and the finest particles are re moved from the zone, in which they were produced, as soon after they are formed as posslble. This result is achieved as follows. As the particular pocket is rotating beneath the material charge in the mill, the ground mat rial enters and fills the pocket. When the pocket s elevated to the upper section of the mill the mater al in the pocket flows out of the pocket opening and falls toward the bottom of the mill through the current of air flowing h l'nllL- The material, that has been go n d t a sufi'icient fineness, is entrained in the air stream and carried towards the mill end with the air, and the heavier particles falling faster remain behind in the grinding zone in presence of relatively big grinding bodies more appropriate for further grinding of heavier particles.
The ground material passes through the outlet ll into the sieve 25 and further into the receiver 2! whence it is conveyed elsewhere for further processing. The current of air leaving the sieve 25 through the tube 24 carries with it a certain amount of fine material, which is separated from the air in the dust collector 28 and discharged through tube 29, while the air passes out through the vent stack 30.
A modified form of liner section is shown in Fig. 4, the section being made up of individual elements 34 spaced to provide pockets 33 having openings 3| of substantially the same width as the pockets. Within each pocket can be mounted a screen 32 overlying the pocket opening and provided with openings of the desired size to restrict the size of ground material which may enter the pockets and thereby avoid possible clogging of the openings by particles of larger sizes.
I claim:
A mill for crushing and grinding material, which comprises an elongated cylindrical member containing a crushing chamber and a grinding chamber adjacent each other and arranged for free flow of material from the crushing chamber into the grinding chamber, an inlet for admission of material into the crushing chamber, an outlet for material from the grinding chamber, means for rotating the cylindrical member, a series of frusto-conical liners in the grinding chamber, grinding bodies on the liners, the grinding bodies on the successive liners diminishing in size progressively toward the material outlet, means for causing a current of air to enter the crushing chamber through the inlet, flow through the two chambers, and exhaust through the outlet, and a plurality of pockets in each liner each having an opening through which ground material may enter the pocket, when the pocket is at the bottom of the grinding chamber, and may be discharged therefrom when the pocket is at an upper portion of the grinding chamber, the material discharged from each pocket entering the air stream, screening means extending across the openings into said pockets to restrict the size of ground material which may enter the pockets, whereby some sufficiently ground material is carried out of the chamber and insufficiently ground particles are advanced and are deposited on the JEAN A. SLEGTEN.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 689,347 Hundeshagen Dec. 17, 1901 953,092 Kennedy Mar. 29, 1910 1,369,061 Tetley Feb. 22, 1921 1,118,775 Hyde Nov. 24, 1924 1,541,114 Carman June 9, 1925 1,591,941 Newhouse 1 July 6, 1926 1,692,974 Barker Nov. 27, 1928 1,780,132 Jaedel Oct. 28, 1930 1,788,825 Danks Jan. 13, 1931 2,042,254 Godinez May 26, 1936 FOREIGN PATENTS Number Country Date 2,385 Great Britain of 1902
US160783A 1950-05-08 1950-05-08 Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material Expired - Lifetime US2661908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US160783A US2661908A (en) 1950-05-08 1950-05-08 Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US160783A US2661908A (en) 1950-05-08 1950-05-08 Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material

Publications (1)

Publication Number Publication Date
US2661908A true US2661908A (en) 1953-12-08

Family

ID=22578427

Family Applications (1)

Application Number Title Priority Date Filing Date
US160783A Expired - Lifetime US2661908A (en) 1950-05-08 1950-05-08 Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material

Country Status (1)

Country Link
US (1) US2661908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885155A (en) * 1955-06-22 1959-05-05 Smidth & Co As F L Grinding mills with classifying linings
US3630459A (en) * 1969-03-05 1971-12-28 Pierre Marie Arsene Slegten Lining for cylindrical mills
US3677479A (en) * 1969-07-31 1972-07-18 Pierre Arsene Slegten Automatic grading linings for cylindrical tube or similar mills
US4032075A (en) * 1976-08-16 1977-06-28 Tyer Sr Clarence C Multi-chambered scrubber having polygonal cross-section
US4243182A (en) * 1979-03-29 1981-01-06 Minneapolis Electric Steel Castings Company Liner assembly for ball mills

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US689347A (en) * 1901-08-06 1901-12-17 Fritz Hundeshagen Ball grinding-mill.
GB190202385A (en) * 1902-01-29 1902-10-30 Fritz Hundeshagen Improvements in or relating to Grinding Mills.
US953092A (en) * 1909-03-27 1910-03-29 Joseph E Kennedy Combined ball and tube mill.
US1118775A (en) * 1912-10-24 1914-11-24 John Hyde Pulverizer.
US1369061A (en) * 1919-07-10 1921-02-22 Tetley Charles Edwin Pulverizing or comminuting apparatus
US1541114A (en) * 1924-02-23 1925-06-09 Charles L Carman Ball or pebble mill
US1591941A (en) * 1921-06-09 1926-07-06 Allis Chalmers Mfg Co Comminuting mill
US1692974A (en) * 1926-09-01 1928-11-27 William M Barker Balanced ball mill
US1780132A (en) * 1928-04-23 1930-10-28 Maschb Anstalt Humboldt Tube mill
US1788825A (en) * 1929-09-05 1931-01-13 Alfred C Danks Pulverizer
US2042254A (en) * 1932-01-18 1936-05-26 Godinez Manuel Pulverizer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US689347A (en) * 1901-08-06 1901-12-17 Fritz Hundeshagen Ball grinding-mill.
GB190202385A (en) * 1902-01-29 1902-10-30 Fritz Hundeshagen Improvements in or relating to Grinding Mills.
US953092A (en) * 1909-03-27 1910-03-29 Joseph E Kennedy Combined ball and tube mill.
US1118775A (en) * 1912-10-24 1914-11-24 John Hyde Pulverizer.
US1369061A (en) * 1919-07-10 1921-02-22 Tetley Charles Edwin Pulverizing or comminuting apparatus
US1591941A (en) * 1921-06-09 1926-07-06 Allis Chalmers Mfg Co Comminuting mill
US1541114A (en) * 1924-02-23 1925-06-09 Charles L Carman Ball or pebble mill
US1692974A (en) * 1926-09-01 1928-11-27 William M Barker Balanced ball mill
US1780132A (en) * 1928-04-23 1930-10-28 Maschb Anstalt Humboldt Tube mill
US1788825A (en) * 1929-09-05 1931-01-13 Alfred C Danks Pulverizer
US2042254A (en) * 1932-01-18 1936-05-26 Godinez Manuel Pulverizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885155A (en) * 1955-06-22 1959-05-05 Smidth & Co As F L Grinding mills with classifying linings
US3630459A (en) * 1969-03-05 1971-12-28 Pierre Marie Arsene Slegten Lining for cylindrical mills
US3677479A (en) * 1969-07-31 1972-07-18 Pierre Arsene Slegten Automatic grading linings for cylindrical tube or similar mills
US4032075A (en) * 1976-08-16 1977-06-28 Tyer Sr Clarence C Multi-chambered scrubber having polygonal cross-section
US4243182A (en) * 1979-03-29 1981-01-06 Minneapolis Electric Steel Castings Company Liner assembly for ball mills

Similar Documents

Publication Publication Date Title
US2595117A (en) Method and apparatus for grinding
EA029949B1 (en) Drying chamber, drying unit, dryer of recycled abrasive and method of drying wet recycled abrasive
US5531388A (en) Air-swept mill
US2091772A (en) Gravity reducing apparatus and method
US3490702A (en) Method of accelerating production of portland cement and similar material
CN106669888A (en) Efficient roller pressing grinding station and technique thereof
US3712549A (en) Grinding raw materials in the manufacture of cement
US2661908A (en) Air swept tube mill with pocketed liner structure for automatic classification of grinding bodies and ground material
US2118078A (en) Drying method and apparatus
US2106869A (en) Drier for granular and like materials
CN107159374A (en) Flour mill
US3123551A (en) Method and apparatus for separating
US3524544A (en) Milling plant for sifting damp material
US1591941A (en) Comminuting mill
CN110124996A (en) Energy-saving air-flow powder concentrator
US1748920A (en) Process of and apparatus for comminuting material
US2941731A (en) Precision grinder
CN107159433A (en) Separation system is concentrated in magnetic ore deposit dry separation screening
US2144418A (en) Method and apparatus for sorting or classifying solids
US3224685A (en) Method and apparatus for comminuting materials
US3231204A (en) Beneficiation means and methods for autogenous grinding systems
JPH02293584A (en) Drying and grinding device for wet raw material
US688229A (en) Ball grinding-mill.
JPH07256137A (en) Crushing equipment
CN109046612B (en) Coarse powder pre-separation device for vertical mill