US2658051A - Mixture of polychloroprene, vinyl chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer - Google Patents
Mixture of polychloroprene, vinyl chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer Download PDFInfo
- Publication number
- US2658051A US2658051A US166972A US16697250A US2658051A US 2658051 A US2658051 A US 2658051A US 166972 A US166972 A US 166972A US 16697250 A US16697250 A US 16697250A US 2658051 A US2658051 A US 2658051A
- Authority
- US
- United States
- Prior art keywords
- acrylonitrile
- vinyl chloride
- copolymer
- polychloroprene
- acrylonitrile copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001577 copolymer Polymers 0.000 title claims description 35
- 229920001084 poly(chloroprene) Polymers 0.000 title claims description 31
- 239000000203 mixture Substances 0.000 title description 18
- 229920000459 Nitrile rubber Polymers 0.000 title description 3
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 title description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 20
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 20
- 229920003002 synthetic resin Polymers 0.000 claims description 15
- 239000000057 synthetic resin Substances 0.000 claims description 15
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 10
- 239000010408 film Substances 0.000 description 39
- 229920005989 resin Polymers 0.000 description 27
- 239000011347 resin Substances 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 23
- 239000002904 solvent Substances 0.000 description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 229920013646 Hycar Polymers 0.000 description 12
- 229920001617 Vinyon Polymers 0.000 description 12
- 230000001376 precipitating effect Effects 0.000 description 9
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 8
- 239000011877 solvent mixture Substances 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- FDCJDKXCCYFOCV-UHFFFAOYSA-N 1-hexadecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCC FDCJDKXCCYFOCV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100230551 Danio rerio ba1l gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101000828334 Methanobrevibacter smithii Insertion element ISM1 uncharacterized 48.3 kDa protein Proteins 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- 229920001986 Vinylidene chloride-vinyl chloride copolymer Polymers 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- -1 for example Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- WZGQRPGQTOSEMN-UHFFFAOYSA-N n-hexadecylacetamide Chemical compound CCCCCCCCCCCCCCCCNC(C)=O WZGQRPGQTOSEMN-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L11/00—Compositions of homopolymers or copolymers of chloroprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/02—Copolymers with acrylonitrile
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/931—Blend of stated incompatibility
Definitions
- This invention which is ,a division of copending application Ser. No. 7222082, filed January '14, 1947 "now U. '8. Patent No. 2,547,605, relates to resinous compositions and formed structures produced therefrom. More particularly, it relates to a new and "improved synthetic resin composition and formed structures produced therefrom.
- any of the aforementioned synthetic resins does not possess the necessary properties of flexibility, high resistance to tear, high elongation, capacity to return after elongation, high tensile strength, high resistance to moisture vapor penetration and'to penetration by gases, as are required for the packagingof foodstuffs.
- An object of this invention is to make a plurality of resins, which are normally incompatible in desired "proportions, compatible.
- Another object of this invention is to provide "a resinous composition containing aplurality of resins normally incompatiblerm the desiredproportions and 'a blending agent which Will make suchresins compatible.
- An additional object of this invention is to provide formed structures formed of normally incompatible resins but which are compatible :in the's'tructure.
- a further-object of this invention is to provide resinous formed structures having improved physical'properties.
- a specific-object of this invention is to provide films formed of resinous compositions having physical properties which render them suitable for us as a packaging material.
- the blending agent in general, .a synthetic resin as will hereinafter the more iullyqexplained.
- the synthetic :resin components and the blending agent are dissolved in a solvent :01 solvent mixture Whereby a homogeneous solution is obtained.
- solvent covers a single solvent or a solvent mixture. No precise sequence for dissolving the resins and blending agent in the solvent .is required. "lfhe resin components-and blendin a ent can beacldcd separately or simultaneously to the solvent.
- the desired solution has been prepared, it is ,p,rocessed depending on the desired formed structure.
- the resinous composition is formed into the desired formed structure andthe solvent evaporated therefrom.
- the resinouscomposition is extruded or cast into a precipitating bath, in which the resins are insoluble and with which the solvent is miscible, and thereafterthe precipitated resinous article dried.
- EXAMPLE 1 15 parts Neoprene CG, 15 parts Hycar OR-15, and 30 parts Vinyon CN were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. The resin solution was cast in thin films onto glass plates and the solvent evaporated in air at 50 C. The dried films were stripped from the plates and consisted of 25% Neoprene CG, 25% Hycar OR-15 and 50% Vinyon CN.
- Neoprene CG 6 parts Hycar OR,-l5, and 27 parts Vinyon CN were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 45% Neoprene CG, 10% Hycar OR-15 and 45% Vinyon CN.
- Neoprene CG 28.5 parts
- Vinyon CN 28.5 parts
- Hycar OR-15 3 parts
- Films were prepared from this resin solution by the method set forth in Example 1.
- the dried films consisted of 47.5% Neoprene CG, 47.5% Vinyon CN and Hycar OBI-15.
- Neoprene CG 21 parts Neoprene CG, 36 parts Vinyon CN, and 3 parts Hycar OR-15 were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 35% Neoprene CG, 60% Vinyon CN and 5% Hycar ORFIS.
- Hycar OR-15 6 parts were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 20% Neoprene CG, 70% Vinyon CN and 10% Hycar OR-15.
- EXAMPLE 6 36 parts Neoprene CG, 12 parts Vinyon CN, and 12 parts l-Iycar OR,15 pere dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 60% Neoprene CG, Vinyon CN and 20% Hycar OR-15.
- Tear strength -Thwing-Albert Research Type Tearing Tester. An initiated tear through a 1 inch length of film is used. Tear strength is recorded in grams per M inch film thickness.
- Oxygen transmission -Determined by method and apparatus described in Paper Trade Journal 118 No. 10, 32 (1944). Transmission recorded as cubic centimeters of gas passing through an area of 100 square inches of film in 24 hours.
- the components can be added either separately or simultaneously to the selected solvent.
- the mass is preferably agitated until solution is complete.
- the solution can also be faciltiated and hastened by the application of heat.
- the solution can be extruded and the solvent evaporated therefrom, or the solution can be extruded into a bath which is a precipitating agent for the resins and preferably also is miscible with the solvent of the composition.
- any volatile solvent in which all of the resins are soluble can be used.
- any solvent in which all the resins are soluble, and which preferably also is miscible with the precipitating bath can be used.
- such solvent is volatile so that, upon drying of the article, the
- the solution is extruded into a precipitating bath
- the precipitating bath is also one which in admixture with the solvent will form a mixture which is a nonsolvent for the resin.
- water is preferred because of its economy.
- the total resin concentration in the solution is not restricted to those set forth in the examples.
- the total resin can vary with tion is extruded into a precipitating bath, a solution viscosity of 10 to 25 seconds by the falling ball method is desired (this represents the time required for a .”'st'eel ba1l to fall vertical- 1y through 8- of the resin solution.
- a solids content' of approximatelyt'o is required to give such absorbcosity.
- the various latices can be mixed and thereafter coagulat'ed' and subsequentlyheated and/or milled.
- The'films producedby this invention are transparent and can be unvulcanized or vulcanized, as desired.
- the composition cancontain any filler, reinforcing. pigment. age: resistorsaccelerators, and vulcanizing ingredients which are ordinarily used in vulcanizing rubber or synthetic. rubber.
- the film after or duringdrying, can be vulcanized in the known manner.
- the vul'canizing agents one or all ofthe vulcanizable constitutents can be vulcanized to itself' or to each other. vulcanization of a specific constituent depends on the" concentration of such ingredient and the use of thevulcanizing agent which will vulcanizeonly; such ingredient.
- anti-blocking materials such as paraffin, stearamide, natural waxes, synthetic waxes, stearic acid, cetyl acetamide, ethylene bis palmityl amide, dicetyl ether and their homologues, may be incorporated to improve the surface properties.
- polychloroprene and vinyl chloride-acrylonitrile copolymer containing 40% acrylonitrile are made compatible by a blending agent which consists of butadiene-(45%) acrylonitrile copolymer.
- the blending agent is not restricted to such butadiene-acrylonitrile copolymer.
- 1,3 butadiene-acrylonitrile copolymer containing from 25% to 45% acrylonitrile can be used as the blending agent and it can be used in amounts of from 5% to 25% by weight of the total resins.
- the relative proportions of the polychloro- ;prene and the vinyl chloride-acrylonitrile copolymer can vary within limits.
- the composition can contain 25% to polychloroprene and 70% to 25% vinyl chloride-acrylonitrile copolymer.
- solvents are disclosed in Examples 1-5 inclusive, but it is to be understood that the invention is not restricted thereto. Any solvent, as hereinbefore described, can be used.
- other illustrative solvents for solutions to be processed by the evaporative method are tetrahydrofuran, dioxane, isophorone, higher ketones such as methyl isobutyl ketone, cyclohexanone, etc., a mixture containing 62% acetone and 38% dioxane, and preferably a mixture containing 85% to 75% acetone and 15% to 25% tetrahydrofuran.
- Methyl ethyl ketone can be substituted for acetone in a somewhat higher proportion than acetone.
- the above-mentioned solvents can be used in wet extrusion processes wherein water constitutes the precipitating bath.
- solu- S tions also can be used for the preparation ofself-'- sustaining continuous film in the form of con-'- tinuous seamless tubing.
- the solutions hereinbefore described can be used in the production of other shaped structures, suchas filaments,-yarns,fibers, caps, bands,- etc.
- the solutions can be employed as a coating composition for the coating of various base materials, such as paper, fabric, metal foil, regenerated cellulose, polyvinyl alcohol, nylon, zein, ethyl cellulose, cellulose acetate, etc. Still fur-'- ther, the solutions. can be used as a sealing cementfor gasproofseals of resinous sheet materials, as acement for sealing films of polyvinylidene chloride and its copolymers, as a gasketcement', etc.
- Self-sustaining film in the form of continuous sheeting or seamless tubing produced from the components of synthetic resins, herein described, are. characterized by high resistance to moisture vapor penetration and to penetration by. gases. Because of these roperties, a filmof the synthetic resins hereinbefore described is admirably suited foruse in wrapping and packaging of' any product which is desired tobe protected.
- afilm of; the. synthetic resins hereinbefore' described is transparent, thermoplastic; heat-sealable; resillent, has a. high tensile. strength, has a fair amount of elongation, is printable, containsno substance which will afiect the odor and taste of the product wrapped therein or will migrate from the film into the product wrapped therein, resists exudation of fatty substances, and is highly resistant to puncture, all of which properties render the material particularly suitable for packaging or wrapping of foodstuifs.
- Formed structures consisting essentially of 25%-60% polychloroprene, '70%-25% of a copolymer of 60% vinyl chloride and 40% acrylonitrile and 5%-25% of a synthetic resin blending agent consisting of a rubbery copolymer of 75%-55% of 1,3 butadiene and 25%-45% acrylonitrile whereby said polychloroprene and vinyl chloride-acrylonitrile copolymer being normally incompatible are made compatible.
- Self-sustaining transparent film consisting essentially of 25%-60% polychloroprene, 70% 25% of a copolymer of 60% vinyl chloride and 40% acrylonitrile and 5%25% of a synthetic resin blending agent consisting of a rubbery copolymer of 75%-45% of 1,3 butadiene and 25%-45% acrylonitrile whereby said polychloroprene and vinyl chloride-acrylonitrile copolymer being normally incompatible are made compatible.
- Self-sustaining transparent film consisting essentially of polychloroprene, 50% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 25% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
- Self-sustaining transparent film consisting essentially of 45 %-4'7.5% polychloroprene, 45 47.5% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 10%-5% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
- Self-sustaining transparent film consisting essentially of polychloroprene, 60% of a copolymer of 60% vinyl chloride and acrylonitrile, and 5% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
- Self-sustaining transparent film consisting essentially of 20% polychloroprene, 70% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 10% of a blending agent consisting of a rubbery copolymer of of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
- Self-sustainingtransparent film consisting essentially of polychloroprene, 20% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 20% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
Patented Nov. 3, 1953 MIXTURE OF POLYCHLGROPRENE, CHL'GR'I DE-AORYLONITRIDE C ORQLYMER,
BUT-ADIENE ACRYLQNIT-RILE 10.0-
POLYMER RalphJ. Signer, Chicago, andKeith F. Beal, Park Forest, "111., assignors to The Visking Corporation, Chicago, 111., a corporation of Virginia No Drawing. Original application January 51.4,
1941, Serial N0. 122,082. Divided and this applicationJunefi, .1950, Serial No. 166,972
8 Claims. 1
This invention, which is ,a division of copending application Ser. No. 7222082, filed January '14, 1947 "now U. '8. Patent No. 2,547,605, relates to resinous compositions and formed structures produced therefrom. More particularly, it relates to a new and "improved synthetic resin composition and formed structures produced therefrom.
Many synthetic resins, such as, for example, vinylidene chloride-acrylonitrile copolymer, vinylidene chloride-vinyl chloride copolymer, polycliloroprene, l;3 butadiene-acrylonitrile copoly- 'mer, vinyl chloride-vinyl acetate copolymer, vinyl chlorid'e-eacrylonitrile copolymer, polyvinylidene chloride, etc. are currently and commercially available. A film produced mm any of the aforementioned synthetic resins does not possess the necessary properties of flexibility, high resistance to tear, high elongation, capacity to return after elongation, high tensile strength, high resistance to moisture vapor penetration and'to penetration by gases, as are required for the packagingof foodstuffs. Attempts were made to improve the physical properties of such films by the incorporation of aliquid plasticizer in the composition from which the films are produced. 'Howeven'films containing a liquid plasticizer are unsatisfactory :for the reason that such liquid plasticizers migrate from the resin or disappear by evaporation, leaving :the resin embrittled, and frequently contaminate the contents of thepackage especially if the contents of the package is a-foodstufi.
In the course of research to improve the ,properties of films produced from synthetic resins mentioned, attempts "were made to prepare "films of resinous compositions containing a plurality 'of synthetic resins. However, when attempts were made to form "a resinous composition of p'olychloroprene with vinylidene chloride-acrylonitrile copolymer, "it was found that such resins were incompatible or incompatible in proportions "which "are necessary to give the desired results.
An object of this invention is to make a plurality of resins, which are normally incompatible in desired "proportions, compatible.
Another object of this invention is to provide "a resinous composition containing aplurality of resins normally incompatiblerm the desiredproportions and 'a blending agent which Will make suchresins compatible.
An additional object of this invention is to provide formed structures formed of normally incompatible resins but which are compatible :in the's'tructure.
A further-object of this invention is to provide resinous formed structures having improved physical'properties.
2 A specific-object of this invention is to provide films formed of resinous compositions having physical properties which render them suitable for us as a packaging material.
Other :and additional objects will become la ;Darent hereinafter.
The above objects are accomplished, in genal, by n rp r tin in a r sinous c mposit on, containing ,a plurality .of synthetic resins nroportions at which such resins are norma ly .incompatible but which are necessary to obtain the desired properties, a blending agent whereby a homogeneous resinous composition is -.obtained from which the desired ,formed structure is prepared and in which structure thessynthetic resins are compatible.
The blending agent, in general, .a synthetic resin as will hereinafter the more iullyqexplained.
:Usually, the synthetic :resin components and the blending agent are dissolved in a solvent :01 solvent mixture Wherebya homogeneous solution is obtained. Herein the term solvent covers a single solvent or a solvent mixture. No precise sequence for dissolving the resins and blending agent in the solvent .is required. "lfhe resin components-and blendin a ent can beacldcd separately or simultaneously to the solvent. After the desired solution ,has been prepared, it is ,p,rocessed depending on the desired formed structure. In one embodiment of theinvention, the resinous composition is formed into the desired formed structure andthe solvent evaporated therefrom. Inanother embodimentthe resinouscomposition is extruded or cast into a precipitating bath, in which the resins are insoluble and with which the solvent is miscible, and thereafterthe precipitated resinous article dried. V
The nature of the invention will become more apparent by reference to the examples hereinafter set 'forth, wherein the proportions are by weight. It-is to be understoodthat the examples are merely illustrative embodiments of the invention and that the scope of the invention is not restricted thereto. For convenience, the specific synthetic resins and specific blending agents of the examples are designatediby their respective trade names, the identity of which -is.s.et forth in the following table:
TABLE I Trade-name I Medea-11d soldby- "ggg figg Neoprene OG 1 1.01. du Pont de Nemours & chloroprene.
. :.0- I Hycar 012-15- ,B. r. Goodrich o0. 355 55 33 Vlnyon ON... Oarbide -,& Carbon Chemical: {60%;vinyl chloride.
Corp. 40% acrylonitrile.
EXAMPLE 1 15 parts Neoprene CG, 15 parts Hycar OR-15, and 30 parts Vinyon CN were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. The resin solution was cast in thin films onto glass plates and the solvent evaporated in air at 50 C. The dried films were stripped from the plates and consisted of 25% Neoprene CG, 25% Hycar OR-15 and 50% Vinyon CN.
EXAMPLE 2 27 parts Neoprene CG, 6 parts Hycar OR,-l5, and 27 parts Vinyon CN were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 45% Neoprene CG, 10% Hycar OR-15 and 45% Vinyon CN.
EXAMPLE 3 28.5 parts Neoprene CG, 28.5 parts Vinyon CN, and 3 parts Hycar OR-15 were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 47.5% Neoprene CG, 47.5% Vinyon CN and Hycar OBI-15.
EXAMPLE 4 21 parts Neoprene CG, 36 parts Vinyon CN, and 3 parts Hycar OR-15 were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 35% Neoprene CG, 60% Vinyon CN and 5% Hycar ORFIS.
EXAMPLE? 5 12 parts Neoprene CG, 42 parts Vinyon CN,
and 6 parts Hycar OR-15 were dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 20% Neoprene CG, 70% Vinyon CN and 10% Hycar OR-15.
EXAMPLE 6 36 parts Neoprene CG, 12 parts Vinyon CN, and 12 parts l-Iycar OR,15 pere dissolved in a solvent mixture composed of 174 parts acetone and 228 parts dioxane. Films were prepared from this resin solution by the method set forth in Example 1. The dried films consisted of 60% Neoprene CG, Vinyon CN and 20% Hycar OR-15.
The physical properties of films of several of the foregoing examples are given in the following Table II:
TABLE II Physical properties of film Tear Mois' Example Tensile Elonstrength Film ture Oxygen strength, gation, rams thickvapor translbs. per per; 7 (miss) tragsrlnissq. in. con to s m s on 1 3, 148 77 16 1.44 7 22 6.0 2 2, 892 71 8 1. 60 4. 60 27. 5 3 2, 698 443 618 l. 02 5. 02 50. 8 4 l, 376 556 329 2. 02 l. 42. l 5 4, 497 53 9 1. 60 3. 04 6.
1 Moisture vapor transmissiongrams water per 24 hours per 100 4 Testing methods used in determiniiig values for Table II Tensile strength-Scott Inclined Plane Tensile Strength Tester. A sample 1 inch long by inch wide is used. Tensile strength as used in Table II is given in pounds per square inch based on original cross-section area of the sample.
EZongation.-Determined on same machine and sample as tensile strength.
Tear strength.-Thwing-Albert Research Type Tearing Tester. An initiated tear through a 1 inch length of film is used. Tear strength is recorded in grams per M inch film thickness.
Moisture vapor transmission-Determined by General Foods Method as described in Modern Packaging, November 1942. Transmission given in grams of water passing through an area of 100 square inches of film in 24 hours.
Oxygen transmission.-Determined by method and apparatus described in Paper Trade Journal 118 No. 10, 32 (1944). Transmission recorded as cubic centimeters of gas passing through an area of 100 square inches of film in 24 hours.
No special method of preparing the solution of the synthetic resins and blending agent is necessary. The components can be added either separately or simultaneously to the selected solvent. The mass is preferably agitated until solution is complete. The solution can also be faciltiated and hastened by the application of heat.
As shown by the examples, the solution can be extruded and the solvent evaporated therefrom, or the solution can be extruded into a bath which is a precipitating agent for the resins and preferably also is miscible with the solvent of the composition.
The solvents which can be employed in the production of shaped articles from the solution are not restricted to those of the examples. When, for example, an article is to be prepared by the process wherein the solvent is evaporated, any volatile solvent in which all of the resins are soluble can be used. When the article is to be prepared by a method wherein the solution is extruded into a precipitating bath, any solvent in which all the resins are soluble, and which preferably also is miscible with the precipitating bath, can be used. Generally, such solvent is volatile so that, upon drying of the article, the
residual solvent will be evaporated.
In the embodiment of the invention wherein the solution is extruded into a precipitating bath, the latter is a liquid medium, which precipitates the resin from the solution. The precipitating bath is also one which in admixture with the solvent will form a mixture which is a nonsolvent for the resin. Though many liquid substances and solutions can be used as the precipitating bath, water is preferred because of its economy.
The total resin concentration in the solution is not restricted to those set forth in the examples. In general, when the solution is to be processed by a procedure wherein the solvent is evaporated from the shaped article, the total resin (including blending agent) can vary with tion is extruded into a precipitating bath, a solution viscosity of 10 to 25 seconds by the falling ball method is desired (this represents the time required for a ."'st'eel ba1l to fall vertical- 1y through 8- of the resin solution. A solids content' of approximatelyt'o is required to give such aviscosity.
Instead ofblending through the use of solvents, the various latices can be mixed and thereafter coagulat'ed' and subsequentlyheated and/or milled. I
The'films producedby this invention are transparent and can be unvulcanized or vulcanized, as desired. In general, when a vulcanized film is desired, the composition cancontain any filler, reinforcing. pigment. age: resistorsaccelerators, and vulcanizing ingredients which are ordinarily used in vulcanizing rubber or synthetic. rubber. When such a compositions used, the film, after or duringdrying, can be vulcanized in the known manner. By the appropriate selection. or the vul'canizing agents, one or all ofthe vulcanizable constitutents can be vulcanized to itself' or to each other. vulcanization of a specific constituent depends on the" concentration of such ingredient and the use of thevulcanizing agent which will vulcanizeonly; such ingredient.
Various other. substances may be included in the formula, such as softening'agent's, plasticizers, etc., although: in general these may' not be desirable.
Furthermore, anti-blocking materials, such as paraffin, stearamide, natural waxes, synthetic waxes, stearic acid, cetyl acetamide, ethylene bis palmityl amide, dicetyl ether and their homologues, may be incorporated to improve the surface properties.
As is disclosed in Examples 1-5 inclusive, polychloroprene and vinyl chloride-acrylonitrile copolymer containing 40% acrylonitrile are made compatible by a blending agent which consists of butadiene-(45%) acrylonitrile copolymer.
The blending agent is not restricted to such butadiene-acrylonitrile copolymer. In general, 1,3 butadiene-acrylonitrile copolymer containing from 25% to 45% acrylonitrile can be used as the blending agent and it can be used in amounts of from 5% to 25% by weight of the total resins.
The relative proportions of the polychloro- ;prene and the vinyl chloride-acrylonitrile copolymer can vary within limits. In general, the composition can contain 25% to polychloroprene and 70% to 25% vinyl chloride-acrylonitrile copolymer.
Various solvents are disclosed in Examples 1-5 inclusive, but it is to be understood that the invention is not restricted thereto. Any solvent, as hereinbefore described, can be used. In addition to those set forth in the examples, other illustrative solvents for solutions to be processed by the evaporative method are tetrahydrofuran, dioxane, isophorone, higher ketones such as methyl isobutyl ketone, cyclohexanone, etc., a mixture containing 62% acetone and 38% dioxane, and preferably a mixture containing 85% to 75% acetone and 15% to 25% tetrahydrofuran. Methyl ethyl ketone can be substituted for acetone in a somewhat higher proportion than acetone.
The above-mentioned solvents can be used in wet extrusion processes wherein water constitutes the precipitating bath.
Though the invention has been previously described particularly in connection with the production of film, it is to be understood that the invention is not restricted thereto. The solu- S tions also can be used for the preparation ofself-'- sustaining continuous film in the form of con-'- tinuous seamless tubing. Likewise, the solutions hereinbefore described can be used in the production of other shaped structures, suchas filaments,-yarns,fibers, caps, bands,- etc. Additionally, the solutions can be employed as a coating composition for the coating of various base materials, such as paper, fabric, metal foil, regenerated cellulose, polyvinyl alcohol, nylon, zein, ethyl cellulose, cellulose acetate, etc. Still fur-'- ther, the solutions. can be used as a sealing cementfor gasproofseals of resinous sheet materials, as acement for sealing films of polyvinylidene chloride and its copolymers, as a gasketcement', etc.
Self-sustaining film in the form of continuous sheeting or seamless: tubing produced from the components of synthetic resins, herein described, are. characterized by high resistance to moisture vapor penetration and to penetration by. gases. Because of these roperties, a filmof the synthetic resins hereinbefore described is admirably suited foruse in wrapping and packaging of' any product which is desired tobe protected.
Inaddition to the foregoing properties, afilm of; the. synthetic resins hereinbefore' described is transparent, thermoplastic; heat-sealable; resillent, has a. high tensile. strength, has a fair amount of elongation, is printable, containsno substance which will afiect the odor and taste of the product wrapped therein or will migrate from the film into the product wrapped therein, resists exudation of fatty substances, and is highly resistant to puncture, all of which properties render the material particularly suitable for packaging or wrapping of foodstuifs.
Herein and in the claims the proportions are by weight unless otherwise specified.
In the claims, the term consisting essentially of is intended to cover the named ingredients with or without the modifying ingredients herein disclosed.
Since it is obvious that various changes and modifications may be made in the above description without departing from the nature or spirit thereof, this invention is not restricted thereto except as set forth in the appended claims.
We claim:
1. Formed structures consisting essentially of 25%-60% polychloroprene, '70%-25% of a copolymer of 60% vinyl chloride and 40% acrylonitrile and 5%-25% of a synthetic resin blending agent consisting of a rubbery copolymer of 75%-55% of 1,3 butadiene and 25%-45% acrylonitrile whereby said polychloroprene and vinyl chloride-acrylonitrile copolymer being normally incompatible are made compatible.
2. Formed structures as set forth in claim 1 wherein the blending agent consists of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile.
3. Self-sustaining transparent film consisting essentially of 25%-60% polychloroprene, 70% 25% of a copolymer of 60% vinyl chloride and 40% acrylonitrile and 5%25% of a synthetic resin blending agent consisting of a rubbery copolymer of 75%-45% of 1,3 butadiene and 25%-45% acrylonitrile whereby said polychloroprene and vinyl chloride-acrylonitrile copolymer being normally incompatible are made compatible.
4. Self-sustaining transparent film consisting essentially of polychloroprene, 50% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 25% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
5. Self-sustaining transparent film consisting essentially of 45 %-4'7.5% polychloroprene, 45 47.5% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 10%-5% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
6. Self-sustaining transparent film consisting essentially of polychloroprene, 60% of a copolymer of 60% vinyl chloride and acrylonitrile, and 5% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
'7. Self-sustaining transparent film consisting essentially of 20% polychloroprene, 70% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 10% of a blending agent consisting of a rubbery copolymer of of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
8; Self-sustainingtransparent film consisting essentially of polychloroprene, 20% of a copolymer of 60% vinyl chloride and 40% acrylonitrile, and 20% of a blending agent consisting of a rubbery copolymer of 55% of 1,3 butadiene and 45% acrylonitrile to make said polychloroprene and vinyl chloride-acrylonitrile copolymer compatible.
RALPH J. SIGNER. KEITH F. BEAL.
References Cited in the file of this patent UNITED STATES PATENTS OTHER REFERENCES Garvey et al., Ind. and Eng. Cem., 36 March 1944, pp. 209-211.
Claims (1)
1. FORMED STRUCTURES CONSISTING ESSENTIALLY OF 25%-60% POLYCHOLORPRENE, 70%-25% OF A COPOLYMER OF 60% VINYL CHLORIDE AND 40% ACRYLONITRILE AND 5%-25% OF A SYNTHETIC RESIN BLENDING AGENT CONSISTING OF A RUBBERY COPOLYMER OF 75%-55% OF 1,3 BUTADIENE AND 25%-45% ACRYLONITRILE WHEREBY SAID POLYCHLOROPRENE AND VINYL CHLORIDE-ACRYLONITRILE COPOLYMER BEING NORMALLY INCOMPATIBLE ARE MADE COMPATIBLE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US166972A US2658051A (en) | 1947-01-14 | 1950-06-08 | Mixture of polychloroprene, vinyl chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US722082A US2547605A (en) | 1947-01-14 | 1947-01-14 | Mixture of polychloroprene, vinylidene chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer |
US166972A US2658051A (en) | 1947-01-14 | 1950-06-08 | Mixture of polychloroprene, vinyl chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer |
Publications (1)
Publication Number | Publication Date |
---|---|
US2658051A true US2658051A (en) | 1953-11-03 |
Family
ID=26862731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US166972A Expired - Lifetime US2658051A (en) | 1947-01-14 | 1950-06-08 | Mixture of polychloroprene, vinyl chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer |
Country Status (1)
Country | Link |
---|---|
US (1) | US2658051A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2755271A (en) * | 1952-11-19 | 1956-07-17 | Us Rubber Co | Tough rigid composition of neoprene and vinyl chloride polymer |
US2981650A (en) * | 1955-02-25 | 1961-04-25 | Degussa | Adhesives, cements and the like |
US4080350A (en) * | 1975-12-05 | 1978-03-21 | Coal Industry (Patents) Limited | Damp proof compositions |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2247154A (en) * | 1938-04-25 | 1941-06-24 | Neville Co | Resin |
US2319959A (en) * | 1941-02-19 | 1943-05-25 | Minnesota Mining & Mfg | Adhesive |
US2330353A (en) * | 1940-06-20 | 1943-09-28 | Goodrich Co B F | Mixture of polymerized materials |
GB577860A (en) * | 1941-08-29 | 1946-06-04 | Standard Oil Dev Co | An improved manufacture of electrical insulating compositions |
US2445727A (en) * | 1944-08-25 | 1948-07-20 | Firestone Tire & Rubber Co | Moistureproof film |
US2459874A (en) * | 1947-03-14 | 1949-01-25 | Du Pont | Coating composition and sheets coated therewith |
US2552904A (en) * | 1946-06-11 | 1951-05-15 | Standard Oil Dev Co | Vinyl resin plasticized with liquid copolymer of diolefin and nitrile |
-
1950
- 1950-06-08 US US166972A patent/US2658051A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2247154A (en) * | 1938-04-25 | 1941-06-24 | Neville Co | Resin |
US2330353A (en) * | 1940-06-20 | 1943-09-28 | Goodrich Co B F | Mixture of polymerized materials |
US2319959A (en) * | 1941-02-19 | 1943-05-25 | Minnesota Mining & Mfg | Adhesive |
GB577860A (en) * | 1941-08-29 | 1946-06-04 | Standard Oil Dev Co | An improved manufacture of electrical insulating compositions |
US2445727A (en) * | 1944-08-25 | 1948-07-20 | Firestone Tire & Rubber Co | Moistureproof film |
US2552904A (en) * | 1946-06-11 | 1951-05-15 | Standard Oil Dev Co | Vinyl resin plasticized with liquid copolymer of diolefin and nitrile |
US2459874A (en) * | 1947-03-14 | 1949-01-25 | Du Pont | Coating composition and sheets coated therewith |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2755271A (en) * | 1952-11-19 | 1956-07-17 | Us Rubber Co | Tough rigid composition of neoprene and vinyl chloride polymer |
US2981650A (en) * | 1955-02-25 | 1961-04-25 | Degussa | Adhesives, cements and the like |
US4080350A (en) * | 1975-12-05 | 1978-03-21 | Coal Industry (Patents) Limited | Damp proof compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
McHugh et al. | Sorbitol-vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation | |
US4119604A (en) | Polyvinyl alcohol compositions for use in the preparation of water-soluble films | |
US4155971A (en) | Method of making water-soluble films from polyvinyl alcohol compositions | |
US4206101A (en) | Melt extrudable cold water-soluble films | |
US2715075A (en) | Process for treating polyethylene structures and articles resulting therefrom | |
Morgan | Structure and moisture permeability of film-forming polymers | |
US3329509A (en) | Food wrapping membrane | |
KR0179983B1 (en) | Natural rubber latex film with improved tear resistance | |
US4267145A (en) | Process for preparing cold water-soluble films from PVA by melt extrusion | |
US2658052A (en) | Mixture of polyvinylidene chloride, vinyl chloride polymer, and butadiene-acrylonitrile copolymer | |
US4215169A (en) | Melt-extrudable cold water soluble films | |
US2456454A (en) | Butadiene-acrylonitrile copolymer mixed with vinylidene chlorideacrylonitrile copolymer | |
US2658050A (en) | Mixture of polychloroprene, vinyl chloride polymer, and butadieneacrylonitrile copolymer | |
US2547605A (en) | Mixture of polychloroprene, vinylidene chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer | |
US2658051A (en) | Mixture of polychloroprene, vinyl chloride-acrylonitrile copolymer, and butadiene-acrylonitrile copolymer | |
US2658053A (en) | Mixture of polychloroprene, vinyl chloride-vinylidene chloride copolymer, and butadiene-acrylonitrile copolymer | |
US2402605A (en) | Moistureproof wrapper for packaging cheese and the like | |
US4110500A (en) | Packaged articles | |
US3468974A (en) | Molding compositions containing nylon and rubber from scrap tire cord material | |
US3355313A (en) | Method of rendering thermoplastic material anti-fogging and resultant article | |
US2791326A (en) | Packaging tacky butadiene-styrene rubber in film of compatible styrene-isobutylene copolymer | |
US2633456A (en) | Plastic film | |
US2819985A (en) | Regenerated cellulose packaging materials and process | |
US1925879A (en) | Rubber product and method of making the same | |
US2607747A (en) | Method of making cork composition having a rubber binder which includes coagulating a latex in the presence of cork particles and molding the resulting mass |