US2617033A - Frame antenna - Google Patents
Frame antenna Download PDFInfo
- Publication number
- US2617033A US2617033A US2774A US277448A US2617033A US 2617033 A US2617033 A US 2617033A US 2774 A US2774 A US 2774A US 277448 A US277448 A US 277448A US 2617033 A US2617033 A US 2617033A
- Authority
- US
- United States
- Prior art keywords
- coil
- short
- frame
- aerial
- loops
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical group C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
Definitions
- this invention relates to a frame aerial for transmitting and/or receiving purposes and consists in that, in order to increase the radiation resistance of the frame aerial, one or more shortcircuit turns are provided which are inductively coupled with the frame aerial coil and extend outwards from the periphery of the coil.
- the short-circuit turns jointly constitute an annularsurface surrounding the coil body, and the short-circuit turns may embrace ring sectors adjoining each other.
- the frame-aerial according to the invention is particularly suitable for the transmission of wide frequency bands with horizontal polarisation as is often neces sary, for instance in television, multiplex telephany and radio navigation.
- Fig. 1 is a plan view of a frame-aerial comprising a single short-circuit turn and Fig. 2 is the experimentally determined polar radiation diagram.
- Figs. 3 and 4 are a plan View and a sectional view respectively of a frame-aerial comprising a plurality of sector-shaped short-circuit turns,
- Fig. 5 being the corresponding radiation diagram.
- Fig. 6 illustrates, by way of example, one form of a frame aerial according to the invention comprising particularly formed short-circuit turns
- Fig. 7 is a sectional detail view of a particular form of a frame-aerial coil Fig. 8 illustrating another executional example.
- the reference numeral I designates a frame-aerial coil which consists of a single short-circuit turn and is connected to a transmission lead extending in accordance with the axis of the coil,
- the coil I is surrounded by an annular metal plate 3 which is located in the coil plane and exhibits a radially directed interruption 4.
- the said plate may be imagined to be replaced by one short-circuit turn extending in accordance with the periphery of the plate.
- a current occurring in the frame coil induces on the short-circuit turn a current proportional thereto which, provided that the electrical length of the short-circuit turn is smaller than half the operating wavelength, is equally directed throughout the outer periphery of the short-circuit turn.
- the circuit current thus produced comprises. however, a larger efiective surface than the coil I.
- the external diameter of the short-circuit ring 3 was chosen to be ,4; of the operating wavelength (approximately 68 cms.) with a diameter of the coil I of approximately of the wavelength.
- Figsp3 and 4 show a modified form of construction comprising eight sector-shaped short-circuit turns 6, whereas Fig. shows the corresponding radiation diagram.
- the substantially circular radiation diagram proves that in this event the current along the outer periphery of the short-circuit sectors is everywhere equally directed. Currents occurring in neighbouring sector edges are oppositely directed, even if current loops and nodes occur along these edges, and do not contribute to the radiation. Consequently, the current in coil I is fundamentally urged towards the outer periphery of the system by the short-circuit turns.
- the peripheral length of this turn is a measure of the frequency-dependency of the system; in the present case, however, it is not the length of the outer periphery of the system but the size of the short-circuit turns which is a measure of the frequency-dependency of the system.
- the short-circuit turns behave as impedance transformers, which may be v utilised, for example for attaining a very high input impedance of coil I; however, this involves an outstanding frequency-dependency of the system.
- the said electric lengths of the short-circuit turns should be avoided, but it is also possible to reduce the frequency-dependency by giving successive short-circuit turns electric lengths which diverge on different sides from one fourth of the operating wavelength (for example by 5%). This may, for example, be achieved either by a suitable choice of the radial lengths of the sectors 6 or of the opening angles of the sectors or by combination of these two measures.
- Fig. 6 1s a sectional view of one form of a frame-aerial according to the invention, in which the surface occupied by the short-circuit turns 6' is conical. Operation and effect of the shortcircuit turns are not affected by such a shape,,--;
- a satisfactory operation of the system requires a very close coupling between the short-circuit turns 6 and the coupling coil 1; for this purpose neighboring edges of the surface of the framecoil and the annular surface occupied by the short-circuit turns may be constructed to overlap one another.
- Fig. 7 one form of the frame-aerial suitable for this purpose is shown in a sectional de--- tail view of Fig. 3.
- the turn of the coil l exhibiting a U-shaped section 1 includes the inner edge 8 of the short-circuit sectors 6.
- the sectors at the primarily current-conveying areas may be coated, for instance by cataphoresis, with a thin metal layer of high conductivity.
- short-circuit turns consisting of not too thin metal plates (for example of some few mms.) have proved to be suitable.
- the sectors 6 and the coil 1 may be mounted on a plate of insulating material.
- the mechanical supporting means are not shown in the drawing.
- the conductive parts of the aerial system according to the invention may consist of metal coatings applied, for example, by chemical agency, on to insulating material.
- the sectors may be supported at the centre by metal parts which may be interconnected, if desired.
- a frame aerial structure comprising a centrally disposed open-circuited coil, and a plurality of short-circuited loops inductively coupled to said coil and circumferentially arranged thereabout, the loops extending outwardly from the periphery from the coil and being shaped to define adjoining and electrically separated sectors in the area encircling said coil.
- a high-frequency frame aerial structure comprising a centrally disposed open-circuited coil, and a plurality of short-circuited loops inductively coupled to said coil and circumferentially arranged thereabout, the loops extending outwardly from the periphery from the coil and being shaped to define adjoining electrically separated sectors in an annular surface surrounding said coil.
- a high-frequency frame aerial structure comprising a centrally disposed open-circuited single-turn coil, and a plurality of short-circuited loops inductively coupled to said coil and circumferentially arranged thereabout, the loops extending outwardly from the periphery from the coil and being shaped to define adjoining electrically separated sectors in an annular surface surrounding said coil.
- said single-turn coil has a U-shaped cross section to define a circular channel, the edges of said loops adjacent said coil being received within said channel to effect inductive coupling between saidloops and said coil.
- a frame aerial structure comprising a centrally disposed open-circuited coil, and a plurality of short-circuited loops inductively coupled to said coil and circumferentially arranged thereabout, the loops extending outwardly from the periphery of said coil and being shaped to define adjoining sectors in a conical surface surrounding said coil.
- a frame aerial structure comprising a centrally disposed open-circuited single-turn coil, and a plurality of short-circuited loops constituted by metallic plates inductively coupled to said coil and circumferentially arranged thereabout, the loops extending outwardly from the periphery of said coil and being shaped to define adjoining sectors in a conical surface surrounding said coil, adjacent edges of said loops being disposed in overlapping relation.
- a frame aerial structure comprising a centrally disposed open-circuited coil, a first series of short-circuited loops inductively coupled to said coil and circumferentially arranged thereabout, the loops in said first series extending outwardly from the periphery of said'coil and being shaped to define adjoining sectors in an annular surface surrounding said coil, and a second series of short-circuited loops circumferentially arranged about said first series of loops and inductively coupled thereto, the loops in said second series extending outwardly and being shaped to define adjoining sectors in an an- 6 nular surface surrounding the annular surface occupied by said first series.
Landscapes
- Formation Of Insulating Films (AREA)
- Transformers For Measuring Instruments (AREA)
- Details Of Aerials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL656887X | 1947-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2617033A true US2617033A (en) | 1952-11-04 |
Family
ID=19795258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US2774A Expired - Lifetime US2617033A (en) | 1947-01-25 | 1948-01-16 | Frame antenna |
Country Status (6)
Country | Link |
---|---|
US (1) | US2617033A (en, 2012) |
BE (1) | BE479859A (en, 2012) |
DE (1) | DE807100C (en, 2012) |
FR (1) | FR960134A (en, 2012) |
GB (1) | GB656887A (en, 2012) |
NL (1) | NL72283C (en, 2012) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2770800A (en) * | 1951-06-02 | 1956-11-13 | Itt | Antennas |
US4458248A (en) * | 1982-04-26 | 1984-07-03 | Haramco Research, Inc. | Parametric antenna |
US5142861A (en) * | 1991-04-26 | 1992-09-01 | Schlicher Rex L | Nonlinear electromagnetic propulsion system and method |
WO2007084510A1 (en) * | 2006-01-18 | 2007-07-26 | Impinj, Inc. | Discontinuous-loop rfid reader antenna and methods |
USD570337S1 (en) | 2006-08-25 | 2008-06-03 | Impinj, Inc. | Broken-loop RFID reader antenna for near field and far field UHF RFID tags |
USD574370S1 (en) * | 2008-02-14 | 2008-08-05 | Impinj, Inc. | Broken-loop RFID reader antenna for near field and far field UHF RFID tags |
USD591734S1 (en) * | 2008-09-22 | 2009-05-05 | Nissei Limited | Television or communication antenna element comprising a high frequency wave coupler |
USD630196S1 (en) * | 2010-08-04 | 2011-01-04 | Tagsys Sas | Antenna |
USD666179S1 (en) * | 2011-08-01 | 2012-08-28 | Avery Dennison Corporation | RFID inlay |
USD713392S1 (en) * | 2011-10-28 | 2014-09-16 | World Products, Inc. | Circular tri-level antenna |
USD743400S1 (en) * | 2010-06-11 | 2015-11-17 | Ricoh Company, Ltd. | Information storage device |
USD852172S1 (en) * | 2017-07-11 | 2019-06-25 | Shenzhen BITECA Electron Co., Ltd. | HDTV antenna |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8919283D0 (en) * | 1989-08-24 | 1989-10-04 | Phase Track Limited | Active loop antenna |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE388072C (de) * | 1923-02-02 | 1924-01-09 | Siemens & Halske Akt Ges | Ringfoermige Antenne |
FR620848A (fr) * | 1926-08-27 | 1927-04-29 | Cadre récepteur pour radio-télégraphie et radio-téléphonie | |
US2166750A (en) * | 1936-02-15 | 1939-07-18 | Rca Corp | Antenna |
GB519350A (en) * | 1937-12-06 | 1940-03-21 | Standard Telephones Cables Ltd | Directional radio antenna arrays |
US2256472A (en) * | 1939-10-20 | 1941-09-23 | Abram A Cory | Radio direction finder deviation correction device |
US2284131A (en) * | 1940-03-23 | 1942-05-26 | Hazeltine Corp | Antenna system for modulatedcarrier signal receivers |
CH233309A (de) * | 1937-12-06 | 1944-07-15 | Bell Telephone Mfg | Richtantennenanlage. |
US2405123A (en) * | 1943-08-07 | 1946-08-06 | Gen Electric | Antenna system |
US2457127A (en) * | 1945-06-27 | 1948-12-28 | Standard Telephones Cables Ltd | Antenna system |
US2480117A (en) * | 1945-06-27 | 1949-08-30 | Standard Telephones Cables Ltd | Direction finder |
-
0
- NL NL72283D patent/NL72283C/xx active
- FR FR960134D patent/FR960134A/fr not_active Expired
- BE BE479859D patent/BE479859A/xx unknown
-
1948
- 1948-01-16 US US2774A patent/US2617033A/en not_active Expired - Lifetime
- 1948-01-22 GB GB1944/48A patent/GB656887A/en not_active Expired
- 1948-11-05 DE DEP20717D patent/DE807100C/de not_active Expired
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE388072C (de) * | 1923-02-02 | 1924-01-09 | Siemens & Halske Akt Ges | Ringfoermige Antenne |
FR620848A (fr) * | 1926-08-27 | 1927-04-29 | Cadre récepteur pour radio-télégraphie et radio-téléphonie | |
US2166750A (en) * | 1936-02-15 | 1939-07-18 | Rca Corp | Antenna |
GB519350A (en) * | 1937-12-06 | 1940-03-21 | Standard Telephones Cables Ltd | Directional radio antenna arrays |
CH233309A (de) * | 1937-12-06 | 1944-07-15 | Bell Telephone Mfg | Richtantennenanlage. |
US2256472A (en) * | 1939-10-20 | 1941-09-23 | Abram A Cory | Radio direction finder deviation correction device |
US2284131A (en) * | 1940-03-23 | 1942-05-26 | Hazeltine Corp | Antenna system for modulatedcarrier signal receivers |
US2405123A (en) * | 1943-08-07 | 1946-08-06 | Gen Electric | Antenna system |
US2457127A (en) * | 1945-06-27 | 1948-12-28 | Standard Telephones Cables Ltd | Antenna system |
US2480117A (en) * | 1945-06-27 | 1949-08-30 | Standard Telephones Cables Ltd | Direction finder |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2770800A (en) * | 1951-06-02 | 1956-11-13 | Itt | Antennas |
US4458248A (en) * | 1982-04-26 | 1984-07-03 | Haramco Research, Inc. | Parametric antenna |
US5142861A (en) * | 1991-04-26 | 1992-09-01 | Schlicher Rex L | Nonlinear electromagnetic propulsion system and method |
WO2007084510A1 (en) * | 2006-01-18 | 2007-07-26 | Impinj, Inc. | Discontinuous-loop rfid reader antenna and methods |
US20080048867A1 (en) * | 2006-01-18 | 2008-02-28 | Oliver Ronald A | Discontinuous-Loop RFID Reader Antenna And Methods |
USD570337S1 (en) | 2006-08-25 | 2008-06-03 | Impinj, Inc. | Broken-loop RFID reader antenna for near field and far field UHF RFID tags |
USD574369S1 (en) * | 2006-08-25 | 2008-08-05 | Impinj, Inc. | Broken-loop RFID reader antenna for near field and far field UHF RFID tags |
USD574370S1 (en) * | 2008-02-14 | 2008-08-05 | Impinj, Inc. | Broken-loop RFID reader antenna for near field and far field UHF RFID tags |
USD591734S1 (en) * | 2008-09-22 | 2009-05-05 | Nissei Limited | Television or communication antenna element comprising a high frequency wave coupler |
USD743400S1 (en) * | 2010-06-11 | 2015-11-17 | Ricoh Company, Ltd. | Information storage device |
US20180253028A1 (en) | 2010-06-11 | 2018-09-06 | Yasufumi Takahashi | Apparatus and method for preventing an information storage device from falling from a removable device |
US11768448B2 (en) | 2010-06-11 | 2023-09-26 | Ricoh Company, Ltd. | Information storage system including a plurality of terminals |
US11429036B2 (en) | 2010-06-11 | 2022-08-30 | Ricoh Company, Ltd. | Information storage system including a plurality of terminals |
US9256158B2 (en) | 2010-06-11 | 2016-02-09 | Ricoh Company, Limited | Apparatus and method for preventing an information storage device from falling from a removable device |
USD757161S1 (en) | 2010-06-11 | 2016-05-24 | Ricoh Company, Ltd. | Toner container |
USD758482S1 (en) | 2010-06-11 | 2016-06-07 | Ricoh Company, Ltd. | Toner bottle |
US9599927B2 (en) | 2010-06-11 | 2017-03-21 | Ricoh Company, Ltd. | Apparatus and method for preventing an information storage device from falling from a removable device |
US9989887B2 (en) | 2010-06-11 | 2018-06-05 | Ricoh Company, Ltd. | Apparatus and method for preventing an information storage device from falling from a removable device |
US11275327B2 (en) | 2010-06-11 | 2022-03-15 | Ricoh Company, Ltd. | Information storage system including a plurality of terminals |
US11188007B2 (en) | 2010-06-11 | 2021-11-30 | Ricoh Company, Ltd. | Developer container which discharges toner from a lower side and includes a box section |
US10725398B2 (en) | 2010-06-11 | 2020-07-28 | Ricoh Company, Ltd. | Developer container having a cap with three portions of different diameters |
US10754275B2 (en) | 2010-06-11 | 2020-08-25 | Ricoh Company, Ltd. | Apparatus and method for preventing an information storage device from falling from a removable device |
USD630196S1 (en) * | 2010-08-04 | 2011-01-04 | Tagsys Sas | Antenna |
USD666179S1 (en) * | 2011-08-01 | 2012-08-28 | Avery Dennison Corporation | RFID inlay |
USD713392S1 (en) * | 2011-10-28 | 2014-09-16 | World Products, Inc. | Circular tri-level antenna |
USD852172S1 (en) * | 2017-07-11 | 2019-06-25 | Shenzhen BITECA Electron Co., Ltd. | HDTV antenna |
Also Published As
Publication number | Publication date |
---|---|
FR960134A (en, 2012) | 1950-04-13 |
BE479859A (en, 2012) | |
GB656887A (en) | 1951-09-05 |
NL72283C (en, 2012) | |
DE807100C (de) | 1951-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2617033A (en) | Frame antenna | |
US2508084A (en) | Antenna | |
US3167729A (en) | Microwave filter insertable within outer wall of coaxial line | |
US2231602A (en) | Multiplex high frequency signaling | |
US2656839A (en) | Electrotherapeutic oscillator | |
US2321521A (en) | Frequency band filter | |
US2234234A (en) | Aerial or aerial system | |
US3151328A (en) | Open ring antenna | |
US3999185A (en) | Plural antennas on common support with feed line isolation | |
US2477635A (en) | High-frequency switch | |
US20050253768A1 (en) | Ultra-wideband V-UHF antenna | |
US3039099A (en) | Linearly polarized spiral antenna system | |
US2338441A (en) | Ultra high frequency cable | |
US2535686A (en) | High-frequency coil arrangement | |
US2168860A (en) | Variable-length antenna | |
US3855561A (en) | High frequency coil having an adjustable ferrite pot core | |
US2153205A (en) | Tuning arrangement | |
US2507225A (en) | Wide band antenna structure | |
US2192321A (en) | Wireless receiving arrangement with frame antenna | |
US2283617A (en) | Antenna | |
US3074064A (en) | Self-supporting dipole antenna with balanced-to-unbalanced transformer | |
US2296356A (en) | Antenna and coupling means therefor | |
US3453634A (en) | Loopstick antennas | |
US2532263A (en) | High-frequency coupling transformer | |
US3121850A (en) | Coaxial line having helical slots for providing a rotational field capable of being coupled to |