US2616396A - Unidirectional fluid pressure mechanism - Google Patents

Unidirectional fluid pressure mechanism Download PDF

Info

Publication number
US2616396A
US2616396A US163407A US16340750A US2616396A US 2616396 A US2616396 A US 2616396A US 163407 A US163407 A US 163407A US 16340750 A US16340750 A US 16340750A US 2616396 A US2616396 A US 2616396A
Authority
US
United States
Prior art keywords
housing
sleeve
fluid pressure
pressure mechanism
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US163407A
Inventor
Ralph E Seidle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMERICAN TRUCK AND BODY COMPAN
AMERICAN TRUCK AND BODY COMPANY Inc
Original Assignee
AMERICAN TRUCK AND BODY COMPAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMERICAN TRUCK AND BODY COMPAN filed Critical AMERICAN TRUCK AND BODY COMPAN
Priority to US163407A priority Critical patent/US2616396A/en
Application granted granted Critical
Publication of US2616396A publication Critical patent/US2616396A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1466Hollow piston sliding over a stationary rod inside the cylinder

Definitions

  • 'lhis invention relates to fluid pressure mechanisms and more particularly to a unidirectional uid pressure mechanism.
  • the primary object of the invention is te provide an improved fluid pressure mechanism capable of exerting large effort in one direction.
  • Another object of the invention is to provide fluid pressure mechanism in which the mechanisrn contracts as a unit under load, enabling Ait to exert large effort within relatively small conlines.
  • Another object or they invention is to provide a fluid pressure meclnniisrnr wherein the uid chamber is separated from the housing cylinder, whereby effort is exerted by variation in the volume of the chamber without change in the dimensions of the cylinder.
  • object of the invention is to provide a fluid pressure mechanism wherein the over-all length of the mechanism is decreased or increased by reaction of a. hollow sliding piston against a xed ram which it encircles, whereby there is obtained a compact mechanism of high efliciency.
  • Figure 1 is. a longitudinal sectional view of a preferred embodiment of the iluid pressure mech'- anism of the present invention
  • Figure 2 is a cross-sectional View, taken along the lines 2-2 of Figure 1;
  • Figure 3 is a cross-sectional view, taken along 'the lines 3 3 of Figure l.
  • the improved uid pressure mechanism of lthe present invention while capable of exerting effort in either pull or push, has been show-n for purposes of illustration, as a pulling mechanism.
  • the mechanism is comprised of a cylinder, jacket or housing i, which may be open at one orits inner end 2i.
  • a cylinder, jacket or housing i which may be open at one orits inner end 2i.
  • al sleeve or hollow piston 3 Within this cylinder is slidably or reciprocably mounted al sleeve or hollow piston 3, closed at both ends, the outer end d of which normally' extends through the open end 2 of the housing, and the opposite end 5 of which is normally spaced inf' wardly of the closed end 6 of the housing, this spacing being determined by the maximum stroke desired of the mechanism.
  • the sleeve is ⁇ slidably connected to the housing by a pin or key l, extending transverselythrough the housing and riding or sliding in opposed slots 8 formed in the longitudinal or axial wall 9 of the sleeve, the slots extending axially o r longitudinally of the sleeve and permitting displacement of the sleeve relative to the key l, in accordance with the aforementioned maximum stroke of the mechanism.
  • the third major component of the mechanism is a ram, reaction member or block l l which slidably engages and is axially movable relative to the sleeve 3.
  • the ram When the cylinder unit is assembled, as in Figure 1, the ram is xed in position axially of the housing I by the key 'll such that the sleeve 3 is slidable therebetween.
  • the ram slidably engages the sleeve 3 through a head I2 which oonfronts the inner, closed end 5 of the sleeve and is normally spaced axially therefrom suihciently to permit fluid to be injected into the axially expansible chamber, cavity or recess i3 therebetween through the nipple l0.
  • the t between the head and the wall 9 of the sleeve is made iluidtight by a gasket I4 attached to the end of the head by suitable means such as the illustrated washer-encircled bolt I5.
  • the end portion of the ram opposite its head is formed as a restricted neck or throat IB encircled by a return spring Il, the spring acting between the confronting or outer end 4 of the sleeve and the base of the head I2.
  • the opposite end of the mechanism may, in turn, be anchored or connected to a support or other member (not shown) by a clevis or other connecting means 20, the illustrated clevis being fixed to the closed end 6 of the housingby welding or other suitable means.
  • the ram Il is inserted in the sleeve 3 through its outer end d, which is then left open for that purpose.
  • the rod i8 the butt of which here is seated in and closes the outer end 4 of the sleeve, may either be welded in place or removably attached, depending on whether subsequent disassembly of the unit is desired.
  • the sleeve is then readily inserted through the open end of the housing and locked there by the pin 1.
  • the fluid pressure mechanism is only capable of exerting unidirectional force toward or away from the support to which the housing is anchored, and will thus normally be used as a pulling or tensioning mechanism, it is also possible for the mechanism to act within itself to grip an object between the open end 2 of the housing and the adjustable nut i9 carried by the stem.
  • Fluid pressure mechanism comprising a housing, a member within and spaced from said housing. a piston interposed between and slidable relative to said housing and member, and means extending transversely through said piston intermediate ends thereof for xing said housing and member against relative movement, said piston being moved axially relative to said housing and member on iniection of fluid intermediate said piston and member.
  • Fluid pressure mechanism comprising a housing movably attachable to a support, a reaction member within and fixed axially of said housing, a hollow piston intermediate and slid-.
  • said piston forming with said member a uid chamber separate from said housing and being moved axially relative to said housing and member on injection of fluid into said chamber, and means movable with said piston for admitting fluid into said chamber.
  • Fluid pressure mechanism comprising a housing, a reaction member within and spaced from said housing, a hollow piston intermediate and slidable relative to said housing and member, said piston forming with said member an expansible fluid chamber and having an axial slot beyond limits of said chamber, means extending transversely through said slot for fixing said member to said housing, and means, acting between said piston and member for normally contracting said chamber, said piston being moved axially relative to said housing and member by injection of fluid into said chamber.
  • Fluid pressure mechanism comprising a housing, means carried adjacent an end of said housing for movably attaching said housing to a support, a closed-end sleeve slidably mounted in said housing, load-connecting means carried by said sleeve and projecting from an opposite end of said housing, a reaction member enclosed by said sleeve and forming therewith an axially expansible chamber separate from said housing, means for medly connecting said reaction member and slida-bly connecting said sleeve to said housing, said sleeve being moved axially in one direction relative to said housing and member by injection of fluid into said chamber, and resilient means normally urging said sleeve in the opposite direction.
  • Fluid pressure mechanism comprising a housing connectable to a support, a closed-ended sleeve slidably mounted in said housing, loadconnecting means carried by said sleeve and projecting beyond said housing away from said support, a reaction member enclosed by said sleeve and forming therewith an axially expansible chamber separate from said housing, and yieldable means reacting between said sleeve and member and normally contracting said chamber, said sleeve being moved axially relative to said housing and member by injection of uid into said chamber for varying the spacing between said support and a load.
  • Fluid pressure mechanism comprising a housing, means carried axially of said housing for movably attaching an end thereof to a support, a closed-ended sleeve slidably mounted in said housing, load-connecting means carried by said sleeve and projecting axially beyond said housing away from said support-connecting means, a reaction member enclosed by said sleeve and forming therewith an axially expansible chamber separate from said housing, means extending transversely through said sleeve intermediate ends thereof for fixing said member and limiting movement of said sleeve axially of said housing, and yieldable means reacting between said sleeve and member and normally contracting said chamber, said sleeve being moved axially against said yieldable means relative to said housing and member by injection of nuid into said chamber.
  • Fluid pressure mechanism comprising a housing, means carried by an end of said housing for movably attaching said housing to a support, a sleeve slidably mounted in said housing and having a closed end, load-connecting means carried by said sleeve and projecting axially of said housing beyond. an opposite end thereof.

Description

Nov. 4, 1952 R, E, 5E|DLE 2,616,396
l UNIDIRECTIONAL FLUID PRESSURE MECHANISM Filed May 22, 1950 INVENTR" BY HIS' ATTORNEY Patented Nov. 4, 1952 UNITED STATES PATENT OFFICE UNIDIRECTIONAL FLUID PRESSURE MECHANISM 7 Claims. 1
'lhis invention relates to fluid pressure mechanisms and more particularly to a unidirectional uid pressure mechanism.
The primary object of the invention is te provide an improved fluid pressure mechanism capable of exerting large effort in one direction.
Another object of the invention is to provide fluid pressure mechanism in which the mechanisrn contracts as a unit under load, enabling Ait to exert large effort within relatively small conlines.
Another object or they invention is to provide a fluid pressure meclnniisrnr wherein the uid chamber is separated from the housing cylinder, whereby effort is exerted by variation in the volume of the chamber without change in the dimensions of the cylinder.
in additional object of the invention is to provide a fluid pressure mechanism wherein the over-all length of the mechanism is decreased or increased by reaction of a. hollow sliding piston against a xed ram which it encircles, whereby there is obtained a compact mechanism of high efliciency.
Other objects and advantages of the invention will appear` hereinafter in the detailed description, be particularly pointed out in the appended claims and illustrated in the accompanying drawings, in which:
Figure 1 is. a longitudinal sectional view of a preferred embodiment of the iluid pressure mech'- anism of the present invention;
Figure 2 is a cross-sectional View, taken along the lines 2-2 of Figure 1; and
Figure 3 is a cross-sectional view, taken along 'the lines 3 3 of Figure l.
Referring now in detail to the drawings in which like reference characters designate like parts, the improved uid pressure mechanism of lthe present invention, while capable of exerting effort in either pull or push, has been show-n for purposes of illustration, as a pulling mechanism. In its illustrated embodiment, the mechanism is comprised of a cylinder, jacket or housing i, which may be open at one orits inner end 2i. Within this cylinder is slidably or reciprocably mounted al sleeve or hollow piston 3, closed at both ends, the outer end d of which normally' extends through the open end 2 of the housing, and the opposite end 5 of which is normally spaced inf' wardly of the closed end 6 of the housing, this spacing being determined by the maximum stroke desired of the mechanism. The sleeve is` slidably connected to the housing by a pin or key l, extending transverselythrough the housing and riding or sliding in opposed slots 8 formed in the longitudinal or axial wall 9 of the sleeve, the slots extending axially o r longitudinally of the sleeve and permitting displacement of the sleeve relative to the key l, in accordance with the aforementioned maximum stroke of the mechanism. Extending through the wall of the sleeve adjacent its outer end confronting the closed end 6 of the housing, is a threaded nipple lil connected through a hose or other conduit (not shown)l to a suitable source of fluid pressure, usually hydraulic.
The third major component of the mechanism is a ram, reaction member or block l l which slidably engages and is axially movable relative to the sleeve 3. When the cylinder unit is assembled, as in Figure 1, the ram is xed in position axially of the housing I by the key 'll such that the sleeve 3 is slidable therebetween. The ram slidably engages the sleeve 3 through a head I2 which oonfronts the inner, closed end 5 of the sleeve and is normally spaced axially therefrom suihciently to permit fluid to be injected into the axially expansible chamber, cavity or recess i3 therebetween through the nipple l0. The t between the head and the wall 9 of the sleeve is made iluidtight by a gasket I4 attached to the end of the head by suitable means such as the illustrated washer-encircled bolt I5. The end portion of the ram opposite its head is formed as a restricted neck or throat IB encircled by a return spring Il, the spring acting between the confronting or outer end 4 of the sleeve and the base of the head I2.
With the above construction, the introduction of fluid into the chamber I3 between the ram and the sleeve will cause the adjacent end of the sleeve to move away from the head of the ram toward the closed end of the housing against the yieldable or resilient force of the return spring ll, this movement continuing on continued application of fluid pressure, with corresponding increase inthe volumev or axial dimension of the fluid chamber, until the sleeve has reached the end of its stroke. On release of the fluid pressure, the return spring I1, compressed substan- 3 tially solid during this stroke, returns the sleeve to its normal or initial position, in process forcing the fluid from the cavity through the nipple l0.
To utilize the force, obtained by the uid pressure unit above described, for pull, there is welded or otherwise rigidly connected to the outer end 4 of the sleeve a threaded rod I8 carrying a nut or other means I9 by which the eective stroke of the sleeve may readily be adjusted. The opposite end of the mechanism may, in turn, be anchored or connected to a support or other member (not shown) by a clevis or other connecting means 20, the illustrated clevis being fixed to the closed end 6 of the housingby welding or other suitable means.
In utilizing the mechanism for push, the end connections would, of course, be reversed, the rod I8 then being connectedto the inner end 5 of the sleeve and projecting through the adjacent end of the housing, and the oppQsite end of the housing being anchored to a suitable support. While obtainable with the illustrated housing, this modication to adapt the mechanism for pushing would usually be accomplished either by a reversal of the open and closed ends of the housing or by closing both ends, at least one removably.
In assembling the mechanism, the ram Il is inserted in the sleeve 3 through its outer end d, which is then left open for that purpose. After the ram and return spring are in place, the rod i8, the butt of which here is seated in and closes the outer end 4 of the sleeve, may either be welded in place or removably attached, depending on whether subsequent disassembly of the unit is desired. The sleeve is then readily inserted through the open end of the housing and locked there by the pin 1.
While the fluid pressure mechanism, as a whole, is only capable of exerting unidirectional force toward or away from the support to which the housing is anchored, and will thus normally be used as a pulling or tensioning mechanism, it is also possible for the mechanism to act within itself to grip an object between the open end 2 of the housing and the adjustable nut i9 carried by the stem.
From the above detailed description it will be apparent that there has been provided an improved uid pressure mechanism which is adapted to exert unidirectional forces and may readily be applied as a clamping or like mechanism wherever large forces are required within relatively small connes. It should be understood that the described and disclosed embodiments are merely exemplary of the invention and that all modifications are intended to be included which do not depart either from the spirit of the invention or the scope of the appended claims.
Having described my invention, I claim:
l. Fluid pressure mechanism comprising a housing, a member within and spaced from said housing. a piston interposed between and slidable relative to said housing and member, and means extending transversely through said piston intermediate ends thereof for xing said housing and member against relative movement, said piston being moved axially relative to said housing and member on iniection of fluid intermediate said piston and member.
2. Fluid pressure mechanism comprising a housing movably attachable to a support, a reaction member within and fixed axially of said housing, a hollow piston intermediate and slid-.
able relative to said housing and member, said piston forming with said member a uid chamber separate from said housing and being moved axially relative to said housing and member on injection of fluid into said chamber, and means movable with said piston for admitting fluid into said chamber.
3. Fluid pressure mechanism comprising a housing, a reaction member within and spaced from said housing, a hollow piston intermediate and slidable relative to said housing and member, said piston forming with said member an expansible fluid chamber and having an axial slot beyond limits of said chamber, means extending transversely through said slot for fixing said member to said housing, and means, acting between said piston and member for normally contracting said chamber, said piston being moved axially relative to said housing and member by injection of fluid into said chamber.
4. Fluid pressure mechanism comprising a housing, means carried adjacent an end of said housing for movably attaching said housing to a support, a closed-end sleeve slidably mounted in said housing, load-connecting means carried by said sleeve and projecting from an opposite end of said housing, a reaction member enclosed by said sleeve and forming therewith an axially expansible chamber separate from said housing, means for medly connecting said reaction member and slida-bly connecting said sleeve to said housing, said sleeve being moved axially in one direction relative to said housing and member by injection of fluid into said chamber, and resilient means normally urging said sleeve in the opposite direction.
5. Fluid pressure mechanism comprising a housing connectable to a support, a closed-ended sleeve slidably mounted in said housing, loadconnecting means carried by said sleeve and projecting beyond said housing away from said support, a reaction member enclosed by said sleeve and forming therewith an axially expansible chamber separate from said housing, and yieldable means reacting between said sleeve and member and normally contracting said chamber, said sleeve being moved axially relative to said housing and member by injection of uid into said chamber for varying the spacing between said support and a load.
6. Fluid pressure mechanism comprising a housing, means carried axially of said housing for movably attaching an end thereof to a support, a closed-ended sleeve slidably mounted in said housing, load-connecting means carried by said sleeve and projecting axially beyond said housing away from said support-connecting means, a reaction member enclosed by said sleeve and forming therewith an axially expansible chamber separate from said housing, means extending transversely through said sleeve intermediate ends thereof for fixing said member and limiting movement of said sleeve axially of said housing, and yieldable means reacting between said sleeve and member and normally contracting said chamber, said sleeve being moved axially against said yieldable means relative to said housing and member by injection of nuid into said chamber.y
7. Fluid pressure mechanism comprising a housing, means carried by an end of said housing for movably attaching said housing to a support, a sleeve slidably mounted in said housing and having a closed end, load-connecting means carried by said sleeve and projecting axially of said housing beyond. an opposite end thereof. a re- 6 REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 581,321 Haldeman May 4, 1897 1,548,559 Simpson Aug. 4, 1925 1,751,276 Karibo et al Mar. 18, 1930 1,751,277 Karibo et al. Mar. 18, 1930
US163407A 1950-05-22 1950-05-22 Unidirectional fluid pressure mechanism Expired - Lifetime US2616396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US163407A US2616396A (en) 1950-05-22 1950-05-22 Unidirectional fluid pressure mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US163407A US2616396A (en) 1950-05-22 1950-05-22 Unidirectional fluid pressure mechanism

Publications (1)

Publication Number Publication Date
US2616396A true US2616396A (en) 1952-11-04

Family

ID=22589894

Family Applications (1)

Application Number Title Priority Date Filing Date
US163407A Expired - Lifetime US2616396A (en) 1950-05-22 1950-05-22 Unidirectional fluid pressure mechanism

Country Status (1)

Country Link
US (1) US2616396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2704295A (en) * 1952-07-11 1955-03-15 Allied Chem & Dye Corp Aromatic hydrocarbon sulfonation
US2726641A (en) * 1953-06-29 1955-12-13 Arne A Hepola Actuator for pressure responsive automatically actuated safety brake

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581821A (en) * 1897-05-04 Door-operating mechanism
US1548559A (en) * 1925-03-13 1925-08-04 Mechanical Devices Company Fluid-pressure jack
US1751276A (en) * 1920-10-09 1930-03-18 Transp Ation Devices Corp Power mechanism for controlling the reverse gears of locomotives
US1751277A (en) * 1922-06-22 1930-03-18 Transp Ation Devices Corp Power-reverse-gear mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581821A (en) * 1897-05-04 Door-operating mechanism
US1751276A (en) * 1920-10-09 1930-03-18 Transp Ation Devices Corp Power mechanism for controlling the reverse gears of locomotives
US1751277A (en) * 1922-06-22 1930-03-18 Transp Ation Devices Corp Power-reverse-gear mechanism
US1548559A (en) * 1925-03-13 1925-08-04 Mechanical Devices Company Fluid-pressure jack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2704295A (en) * 1952-07-11 1955-03-15 Allied Chem & Dye Corp Aromatic hydrocarbon sulfonation
US2726641A (en) * 1953-06-29 1955-12-13 Arne A Hepola Actuator for pressure responsive automatically actuated safety brake

Similar Documents

Publication Publication Date Title
US3507028A (en) Hydraulic tube puller
US4007798A (en) Hydraulic jar
US2616396A (en) Unidirectional fluid pressure mechanism
US2475040A (en) Ram
RU2126336C1 (en) Hydraulic master cylinder
US2688884A (en) Device for elastically transferring forces
ES259520U (en) Hydraulic telescopic shock absorber, in particular for motor vehicles
GB1097343A (en) Improvements in or relating to a hydraulically operated controlled stroke gun head
GB1232829A (en)
KR880007219A (en) Cushion for slide of press machine, shared pressure booster drive system
GB1323082A (en) Telescopic adjustable hydraulic stays
US2875732A (en) Ram for presses and the like
USRE25334E (en) Piston cylinder apparatus
US2430100A (en) Ram assemblage
FI872189A (en) TRYCKMEDIUMPAOVERKAD CYLINDER -KOLVKOMBINATION.
US2841117A (en) Pressure fluid servomotor
US4114378A (en) Rod and piston connection for hydraulic devices
EP0287242A3 (en) Hydraulic device
SE8101054L (en) DEVICE MUTUAL DEVICE FOR THE PISTON WITH THE PISTON WITH THE ASSEMBLY Piston rod AND MORE COMPONENTS IN A HYDRAULIC CYLINDER
ATE146729T1 (en) TRAILER PIN COUPLING
US3218052A (en) Hydraulic cushion metering pin arrangement
US3534621A (en) Linear actuator with locking means
DE3763328D1 (en) ASSEMBLY AND DISASSEMBLY DEVICE FOR A BRAKE ACTUATING UNIT.
US2945353A (en) Hydraulic cylinder unit
JPS602525B2 (en) Hydraulic cylinder for lock