US2610695A - Supporting means for acoustical absorbers - Google Patents

Supporting means for acoustical absorbers Download PDF

Info

Publication number
US2610695A
US2610695A US12081A US1208148A US2610695A US 2610695 A US2610695 A US 2610695A US 12081 A US12081 A US 12081A US 1208148 A US1208148 A US 1208148A US 2610695 A US2610695 A US 2610695A
Authority
US
United States
Prior art keywords
wall
open side
porous
sound absorbing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12081A
Inventor
Grue Olav Ebbesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2610695A publication Critical patent/US2610695A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8209Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices

Definitions

  • the present invention relates to the acousti treatment of rooms for the purpose of damping noise.
  • the invention relates to sound absorbing units, adapted to be carried near a surface of a room so as to form a sound absorbing system, designed to be used instead of the conventional acoustic tiles or wallboards.
  • Figures 3 and 4 are sections in two different embodiments of sound absorbers
  • FIGS 5 and 6 show the suspension arrangement in two different embodiments
  • Figure 7 is a modification of Figures 1 and 2.
  • the units shown in Figures 1 and 2 consist of containers having a surface a, in which are provided apertures, either in form of perforations b, Figure 1, or slots 0, Figure 2. These views are side views and show only the outer shape of the units, illustrating two different patterns of the apertures in the surface of the units. apertures, as will be explained in the following, form passages to the interior of the units and the exemplified two aperture patterns are somewhat conventional.
  • The'containers may consist of porous mate-- rial which in itselfis sound absorbing and in These that case the perforations or slots do not need to pass through the walls to the interior, such as indicated in Figure 3, which shows a vertical section through a sound absorber of the type described in side view above.
  • the unit is formed by a casing having a wall 8 which encloses a hollow chamber t.
  • apertures b1 distributed all over the surface, similar to the embodiments described above.
  • the wall s itself consists of porous sound absorbing. material, such asmade for instance of wood pulp.
  • the apertures do not penetrate the wall to the interior chambert but terminate blind in the porous material at a distance from the exterior surface (11.
  • a sector of this wall will be found corree sponding to a very common type of acoustic tile having been in public use for many years.
  • each aperture defines the neck of a small Helmholtz resonator the bodyof which consists of the space left behind the surface, bounded sidewardly by the bodies of the" neighbor resonators defined by the neighbor apertures and in the conventional wall tile type bounded at the bottom by the surface of the room which mostly coincides with the: rear sur-- -As shown in Figure 2, however, the chamber defined by the wall s has an extension :whi'ch' is large compared with the radial extension of the layer of porous material, or in other words, the wall structure of the casing has opposite parts of the wall which are spaced several times the thickness of the wall structure itself. This is a very important specific feature of the invention which distinguishes the unit from any prior disclosed absorb
  • the wall forms a converging or tapered casing structure.
  • the wall has an edge u surrounding an open side of the chamber 1?.
  • the structure shown in Figure 3 is closed at the end opposite the open side and, also as shown, this closed end of the structure is spaced from the open side several times the thickness of the wall itself; thus, in the unit there will be in at least three perpendicular directionsa considerable space behind the wall compared with that which will be found behind conventional wallbcards.
  • the container may be formed as'a conical or pyramidal bowl and in such case the requirement of having portions of the wall spaced several times the thickness of'the wall is fulfilled at any axial section which gives .the absorber unit the advantage of increased efiiciency for sound waves coming from any direction.
  • the containers may also be made of an outer shell 2: of rigid material which in itself is not sound absorbing, as shown in Figure 4, and through the walls of which the aperture 12 ex tends to the interior of the shell which then contains the porous sound absorbing material d, which in this embodiment is disposed on the interior surface of a rigid shell in form of a substantial uniform layer, leaving behind a chamber t as in Figure 3.
  • the structure shown in Figure 4 is converging and has at its widest end an edge it which surrounds an open side of the casing.
  • a section of the wall in this embodiment will be found conventional by those skilled in the art, representing another very common form of acoustic tile which has been in public use for many years. Also in the case of Figure 4.
  • the embodiment of Figure 4 only differs from that shown in Figure 3 by the way the acoustic material, namely the porous sound absorbing material, is held in position. While in Figure 3 the sound absorbing material is self-supporting, this does not need to be the case in the embodiment shown in Figure 4, because here the rigid outer shell itself serves this purpose. In both cases the perforations or apertures have as their most important object to make the porous'material accessible to the sound waves which strike-the outer surface of the unit. From this it will be understood that neither the construction of the wall per se, nor the'mateshould-be substantially the same in at least'two' directions at right angles to each other.
  • the units may have a circular or polygonal cross section.
  • a converging or tapered form has the advantage of enabling an easy piling in a small space in view of packaging and shipment.
  • Th units are suspended in the way more specifically disclosed in Figures 3, i, 5 and 6.
  • the casing structure has opposite the open side surrounded by the edge u an aperture or a hole :i through which extends one end of an elongated fastening element ,1, such as for instance a string adapted to hold the unit in the position shown with its edge u abutting against the surface e, to which purpose the fastening element f is connecteol at its other end to a point above the bottom of the unit, such as for instance a hook g on the surface e, as shown.
  • the end of the fastening element which extends through the aperture 9' is secured to an element is which for instance may be disc-shaped, arranged outside the casing and extends across the aperture 7', engaging the structure at its exterior.
  • tension means for instance a spring it, may be associated with the fastening element 1, to urge the edge u of the unit into abutment with the surface e.
  • the embodiment shown in Figure 6 only differs from those shown in Figures 3, 4 and 5 therein that the spring it is omitted and by another shape of the member is which is here formed like a plug having an inclined surface Z, so as to adjust itself automatically in a central position in the aperture 1.", when pushed upwardly along the strin 1 which extends-down through a central hole m in the plug.
  • the plug has a cylindrical groove 12 in which the excessive end-of the string can be wound up.
  • the shape of the units can be varied within the scope of the invention so that the containers may be barrel formed, as indicated in Fig. 7 in side view, which differs from the other embodiments thereby that the unit is freely suspended from the ceiling.
  • the unit may be composed of two oppositely arranged units of any of the constructions described above.
  • bowl-form of the containers as shown in the drawings may be varied within the scope of the invention-so that any bowl form may be used.
  • the units have special advantages in factory buildings where it will also be an advantage that they can be arranged under the ceiling in rows between the windows in cases where glass -ceiling is arranged.
  • a wall structurev forming a hollow casing having an open side and surrounding an open sided chamber and having an exterior surface, a layer of sound absorbing material disposed within said chamber andad-.
  • wall structure jacent the wall structure and being porous for allowing the passage of sound waves and simultaneously damping the sound waves passingl therethrough, said wall structure having passages for sound waves to penetrate through said surface and into said porous layer, and bein so constructed and arranged that opposite wall portions in at least two perpendicular directions.
  • fastening means including a resilient tensioning element extending through said chamber from said open side, said element being shorter than said casing when in rest position, and means connected to said fastening means and coacting with a portion of said structure disposed opposite said open side for mounting said casing resiliently with said edge against the surface of an object.
  • a wall structure forming a hollow casing having an open side and surrounding an open sided chamber and having an exterior surface, a layer of sound absorbing material disposed within said chamber and adjacent the wall structure and being porous for allowing the passage of sound waves and simultaneously damping the sound waves passing therethrough, said wall structure having passages for sound waves to penetrate through said surface and into said porous layer, and being so constructed and arranged that opposite wall portions in at least two perpendicular directions within a plane substantially parallel with said open side are spaced from each other across said chamber for a distance equalling at least a multiple of the thickness of said porous layer, an
  • fastening means extending substantially centrally through said chamber from said open side and including tensioning means, said tensioning means being shorter than said casing when in rest position, and means connected to said fastening means and coacting with a portion of said structure disposed opposite said open side for mounting said casing resiliently with said edge against the surface of an object.

Description

w an
Sept. 16, 1952 o. E. GRUE 2,610,695
SUPPORTING MEANS FOR ACOUSTICAL ABSORBERS Filed Feb. 28. 1.948
INVENTOR: old VX2305, Grue,
i atented Sept. 16,1952
SUPPORTING MEANS FOR ACOUSTICAL ABSORBERS Olav Ebbesen Grue, Copenhagen, Denmark Application February" 28, 1948, SerialNo. 12,081 In Denmark August 27, 1946 2 Claims. (01. 181-33) r The present invention relates to the acousti treatment of rooms for the purpose of damping noise.
,More specifically, the invention relates to sound absorbing units, adapted to be carried near a surface of a room so as to form a sound absorbing system, designed to be used instead of the conventional acoustic tiles or wallboards.
Previous attempts to design sound absorbing units for this-purpose have failed in so far as it has only been proposed either merely to suspend structures of the same type as the traditional wall-boards freely under the ceiling or to attach to the ceiling hollow structures tuned to a certain frequency in the lower frequency range. It is therefore one object of my invention to provide a sound absorber unit which is selfsupporting, has absorbing qualities within a wide frequency range and which is easy to mount. Another object of the invention is to provide a sound absorber unit which, being mounted at a room surface, will give higher absorption than the normal fiat acoustic constructions so as to obtain an improved utilization of the material but without requiring excessive room space in direction perpendicular to the room surface.
I Further objects of my invention are to provide a sound absorber unit and suspension means therefor which are simple and rigid in construction, uncomplicated and inexpensive in production and especially designed for easy packaging and shipment. More specific features by the sound absorbing unit according to the invention will appear from the following specification in connection with the drawings, in which Figures 1 and 2 are twodifferent embodiments of the sound absorbing units in side View,
, Figures 3 and 4 are sections in two different embodiments of sound absorbers,
Figures 5 and 6 show the suspension arrangement in two different embodiments, and
Figure 7 is a modification of Figures 1 and 2.
The units shown in Figures 1 and 2 consist of containers having a surface a, in which are provided apertures, either in form of perforations b, Figure 1, or slots 0, Figure 2. These views are side views and show only the outer shape of the units, illustrating two different patterns of the apertures in the surface of the units. apertures, as will be explained in the following, form passages to the interior of the units and the exemplified two aperture patterns are somewhat conventional.
. The'containers may consist of porous mate-- rial which in itselfis sound absorbing and in These that case the perforations or slots do not need to pass through the walls to the interior, such as indicated in Figure 3, which shows a vertical section through a sound absorber of the type described in side view above. In this embodiment the unit is formed by a casing having a wall 8 which encloses a hollow chamber t. In the exterior surface of the casing, here marked m, are provided apertures b1, distributed all over the surface, similar to the embodiments described above. The wall s itself consists of porous sound absorbing. material, such asmade for instance of wood pulp. The apertures do not penetrate the wall to the interior chambert but terminate blind in the porous material at a distance from the exterior surface (11. By those skilled in the art, a sector of this wall will be found corree sponding to a very common type of acoustic tile having been in public use for many years.
Hence it follows that everything which concerns the wall itself, such as design of material, percentage area of apertures, etc, is well known and can be taken from many a textbook on accuse tics. It will be understood that the size and number of apertures must be sufficient to pro-I vide substantially freepassage of sound waves from the surroundin air through the front sur-. face into the porous material, and that the porous material must have such a porosity asto allow passage of the sound waves and simultaneously. having a considerable .damping effect on the. sound waves passingtherethrough- As mentioned before, the wall may consist. of porous materiaLfor instance of wood pulp, and any conventional materialof the kind normally usedfor wall tiles maybe used, namely material in which wood fibres or the like are held to-' gether by some adhesive which does not influence the porosity. According to the theory of this type of acoustic tile, each aperture defines the neck of a small Helmholtz resonator the bodyof which consists of the space left behind the surface, bounded sidewardly by the bodies of the" neighbor resonators defined by the neighbor apertures and in the conventional wall tile type bounded at the bottom by the surface of the room which mostly coincides with the: rear sur-- -As shown in Figure 2, however, the chamber defined by the wall s has an extension :whi'ch' is large compared with the radial extension of the layer of porous material, or in other words, the wall structure of the casing has opposite parts of the wall which are spaced several times the thickness of the wall structure itself. This is a very important specific feature of the invention which distinguishes the unit from any prior disclosed absorber unit. This requirement must be fulfilled at least at two perpendicular points.
As shown, the wall forms a converging or tapered casing structure. At the widest end of the structure the wall has an edge u surrounding an open side of the chamber 1?. The structure shown in Figure 3 is closed at the end opposite the open side and, also as shown, this closed end of the structure is spaced from the open side several times the thickness of the wall itself; thus, in the unit there will be in at least three perpendicular directionsa considerable space behind the wall compared with that which will be found behind conventional wallbcards. In the tapered embodiment the container may be formed as'a conical or pyramidal bowl and in such case the requirement of having portions of the wall spaced several times the thickness of'the wall is fulfilled at any axial section which gives .the absorber unit the advantage of increased efiiciency for sound waves coming from any direction.
The containers may also be made of an outer shell 2: of rigid material which in itself is not sound absorbing, as shown in Figure 4, and through the walls of which the aperture 12 ex tends to the interior of the shell which then contains the porous sound absorbing material d, which in this embodiment is disposed on the interior surface of a rigid shell in form of a substantial uniform layer, leaving behind a chamber t as in Figure 3. Also the structure shown in Figure 4 is converging and has at its widest end an edge it which surrounds an open side of the casing. As in the case of Figure 3, also a section of the wall in this embodiment will be found conventional by those skilled in the art, representing another very common form of acoustic tile which has been in public use for many years. Also in the case of Figure 4. there are, at least at two perpendicular points in a plane parallelwith the open side, opposite portions of the wall spaced several times the thickness of the wall. This includes here the outer shell as well as the porous material, and opposite the open side aportion of the wall, the vertical bottom part as well as the adjacent lower portion of the converging walls, which is spaced from the open side several times the thickness of the wall;
With respect to the conventional construction of the wall itself, the embodiment of Figure 4 only differs from that shown in Figure 3 by the way the acoustic material, namely the porous sound absorbing material, is held in position. While in Figure 3 the sound absorbing material is self-supporting, this does not need to be the case in the embodiment shown in Figure 4, because here the rigid outer shell itself serves this purpose. In both cases the perforations or apertures have as their most important object to make the porous'material accessible to the sound waves which strike-the outer surface of the unit. From this it will be understood that neither the construction of the wall per se, nor the'mateshould-be substantially the same in at least'two' directions at right angles to each other. Preferably the units may have a circular or polygonal cross section. A converging or tapered form has the advantage of enabling an easy piling in a small space in view of packaging and shipment.
Th units are suspended in the way more specifically disclosed in Figures 3, i, 5 and 6. The casing structure has opposite the open side surrounded by the edge u an aperture or a hole :i through which extends one end of an elongated fastening element ,1, such as for instance a string adapted to hold the unit in the position shown with its edge u abutting against the surface e, to which purpose the fastening element f is connecteol at its other end to a point above the bottom of the unit, such as for instance a hook g on the surface e, as shown. The end of the fastening element which extends through the aperture 9' is secured to an element is which for instance may be disc-shaped, arranged outside the casing and extends across the aperture 7', engaging the structure at its exterior. I
As further shown in Figure 5, tension means, for instance a spring it, may be associated with the fastening element 1, to urge the edge u of the unit into abutment with the surface e.
The embodiment shown in Figure 6 only differs from those shown in Figures 3, 4 and 5 therein that the spring it is omitted and by another shape of the member is which is here formed like a plug having an inclined surface Z, so as to adjust itself automatically in a central position in the aperture 1.", when pushed upwardly along the strin 1 which extends-down through a central hole m in the plug. To enable fastening of the extending end of the string, the plug has a cylindrical groove 12 in which the excessive end-of the string can be wound up.
It will be understood that the shape of the units can be varied within the scope of the invention so that the containers may be barrel formed, as indicated in Fig. 7 in side view, which differs from the other embodiments thereby that the unit is freely suspended from the ceiling.
It will be understood that in the case of Figure '7 the unit may be composed of two oppositely arranged units of any of the constructions described above.
It will also be understood that the bowl-form of the containers as shown in the drawings may be varied within the scope of the invention-so that any bowl form may be used.
The units have special advantages in factory buildings where it will also be an advantage that they can be arranged under the ceiling in rows between the windows in cases where glass -ceiling is arranged.
Having thus described the invention, what i claim is:
1. In a sound absorbing unit, a wall structurev forming a hollow casing having an open side and surrounding an open sided chamber and having an exterior surface, a layer of sound absorbing material disposed within said chamber andad-.
jacent the wall structure and being porous for allowing the passage of sound waves and simultaneously damping the sound waves passingl therethrough, said wall structure having passages for sound waves to penetrate through said surface and into said porous layer, and bein so constructed and arranged that opposite wall portions in at least two perpendicular directions.
within a plane substantially parallel with said open side are spaced from each other acrosssaid,
chamber for a distance equalling at least a multiple of the thickness of said porous layer, an edge on said wall structure confining said open side, fastening means including a resilient tensioning element extending through said chamber from said open side, said element being shorter than said casing when in rest position, and means connected to said fastening means and coacting with a portion of said structure disposed opposite said open side for mounting said casing resiliently with said edge against the surface of an object.
2. In a sound absorbing unit, a wall structure forming a hollow casing having an open side and surrounding an open sided chamber and having an exterior surface, a layer of sound absorbing material disposed within said chamber and adjacent the wall structure and being porous for allowing the passage of sound waves and simultaneously damping the sound waves passing therethrough, said wall structure having passages for sound waves to penetrate through said surface and into said porous layer, and being so constructed and arranged that opposite wall portions in at least two perpendicular directions within a plane substantially parallel with said open side are spaced from each other across said chamber for a distance equalling at least a multiple of the thickness of said porous layer, an
edge on said wall structure confining said open side, fastening means extending substantially centrally through said chamber from said open side and including tensioning means, said tensioning means being shorter than said casing when in rest position, and means connected to said fastening means and coacting with a portion of said structure disposed opposite said open side for mounting said casing resiliently with said edge against the surface of an object.
OLAV E'BBESEN GRUE.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,160,638 Bedell May 30, 1939 2,488,555 Pare Nov. 22, 1949 2,502,016 Olson Mar. 28, 1950 2,502,017 Beers Mar. 28, 1950 2,502,019 Olson Mar. 28, 1950 2,502,020 Olson Mar, 28, 1950 FOREIGN PATENTS Number Country Date 721,802 Germany July 22, 1942
US12081A 1946-08-27 1948-02-28 Supporting means for acoustical absorbers Expired - Lifetime US2610695A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK2610695X 1946-08-27

Publications (1)

Publication Number Publication Date
US2610695A true US2610695A (en) 1952-09-16

Family

ID=8158572

Family Applications (1)

Application Number Title Priority Date Filing Date
US12081A Expired - Lifetime US2610695A (en) 1946-08-27 1948-02-28 Supporting means for acoustical absorbers

Country Status (1)

Country Link
US (1) US2610695A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712816A (en) * 1952-09-08 1955-07-12 Jr Albert G Bodine Replaceable acoustic absorber for internal combustion engine detonation suppression
US2715449A (en) * 1949-12-12 1955-08-16 Carl W Lemmerman Combined lighting and sound absorbing fixture
US2724454A (en) * 1952-06-17 1955-11-22 Westinghouse Electric Corp Sound deadener for vibratory bodies
US2830330A (en) * 1953-06-25 1958-04-15 Heath Wilfrid Paul Means for acoustical correction and noise absorption
US2844983A (en) * 1953-05-21 1958-07-29 Wurlitzer Co Reed box for electronic organ
DE970239C (en) * 1952-10-21 1958-08-28 Siemens Ag Sound-absorbing arrangement with wedge-shaped or conical sound-absorbing bodies
US2865195A (en) * 1953-10-15 1958-12-23 Johns Manville Wall construction
US2882989A (en) * 1955-11-16 1959-04-21 Bruel Per Vilhelm Sound absorber
US3604531A (en) * 1970-07-23 1971-09-14 Korfund Dynamics Corp Noise and vibration-attenuating hanger
US20060260870A1 (en) * 2005-03-23 2006-11-23 Nagata Kosakusho Co., Ltd. Sound absorber and sound absorbing device
EP2333181A1 (en) * 2009-12-04 2011-06-15 Phoneon GmbH Spatial acoustic optimisation
US20120152650A1 (en) * 2009-02-06 2012-06-21 Loughborough University Attenuators, arrangements of attenuators, acoustic barriers and methods for constructing acoustic barriers
US20150170631A1 (en) * 2013-12-17 2015-06-18 AdBm Technologies LLC. Underwater Noise Reduction System Using Open-Ended Resonator Assembly and Deployment Apparatus
US9607600B2 (en) 2009-02-06 2017-03-28 Sonobex Limited Attenuators, arrangements of attenuators, acoustic barriers and methods for constructing acoustic barriers
RU2645383C1 (en) * 2017-06-14 2018-02-21 Олег Савельевич Кочетов Acoustic cab
US11812221B2 (en) 2020-01-21 2023-11-07 Adbm Corp. System and method for simultaneously attenuating high-frequency sounds and amplifying low-frequency sounds produced by underwater acoustic pressure source

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2160638A (en) * 1937-08-19 1939-05-30 Bell Telephone Labor Inc Sound-absorbing unit
DE721802C (en) * 1936-02-13 1942-07-22 Telefunken Gmbh Device for soundproofing rooms
US2488555A (en) * 1944-01-27 1949-11-22 Rca Corp Diffraction type sound absorber with fibrous walls
US2502016A (en) * 1943-11-30 1950-03-28 Rca Corp Diffraction type sound absorber
US2502017A (en) * 1943-12-27 1950-03-28 Rca Corp Suspension means for acoustical absorbers
US2502019A (en) * 1945-01-26 1950-03-28 Rca Corp Diffraction type sound absorber with complementary fitting portions
US2502020A (en) * 1945-01-26 1950-03-28 Rca Corp Diffraction type sound absorber with fiber glass walls

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE721802C (en) * 1936-02-13 1942-07-22 Telefunken Gmbh Device for soundproofing rooms
US2160638A (en) * 1937-08-19 1939-05-30 Bell Telephone Labor Inc Sound-absorbing unit
US2502016A (en) * 1943-11-30 1950-03-28 Rca Corp Diffraction type sound absorber
US2502017A (en) * 1943-12-27 1950-03-28 Rca Corp Suspension means for acoustical absorbers
US2488555A (en) * 1944-01-27 1949-11-22 Rca Corp Diffraction type sound absorber with fibrous walls
US2502019A (en) * 1945-01-26 1950-03-28 Rca Corp Diffraction type sound absorber with complementary fitting portions
US2502020A (en) * 1945-01-26 1950-03-28 Rca Corp Diffraction type sound absorber with fiber glass walls

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715449A (en) * 1949-12-12 1955-08-16 Carl W Lemmerman Combined lighting and sound absorbing fixture
US2724454A (en) * 1952-06-17 1955-11-22 Westinghouse Electric Corp Sound deadener for vibratory bodies
US2712816A (en) * 1952-09-08 1955-07-12 Jr Albert G Bodine Replaceable acoustic absorber for internal combustion engine detonation suppression
DE970239C (en) * 1952-10-21 1958-08-28 Siemens Ag Sound-absorbing arrangement with wedge-shaped or conical sound-absorbing bodies
US2844983A (en) * 1953-05-21 1958-07-29 Wurlitzer Co Reed box for electronic organ
US2830330A (en) * 1953-06-25 1958-04-15 Heath Wilfrid Paul Means for acoustical correction and noise absorption
US2865195A (en) * 1953-10-15 1958-12-23 Johns Manville Wall construction
US2882989A (en) * 1955-11-16 1959-04-21 Bruel Per Vilhelm Sound absorber
US3604531A (en) * 1970-07-23 1971-09-14 Korfund Dynamics Corp Noise and vibration-attenuating hanger
US20060260870A1 (en) * 2005-03-23 2006-11-23 Nagata Kosakusho Co., Ltd. Sound absorber and sound absorbing device
US20120152650A1 (en) * 2009-02-06 2012-06-21 Loughborough University Attenuators, arrangements of attenuators, acoustic barriers and methods for constructing acoustic barriers
US8789652B2 (en) * 2009-02-06 2014-07-29 Sonobex Limited Attenuators, arrangements of attenuators, acoustic barriers and methods for constructing acoustic barriers
US9607600B2 (en) 2009-02-06 2017-03-28 Sonobex Limited Attenuators, arrangements of attenuators, acoustic barriers and methods for constructing acoustic barriers
EP2333181A1 (en) * 2009-12-04 2011-06-15 Phoneon GmbH Spatial acoustic optimisation
US20150170631A1 (en) * 2013-12-17 2015-06-18 AdBm Technologies LLC. Underwater Noise Reduction System Using Open-Ended Resonator Assembly and Deployment Apparatus
US9410403B2 (en) * 2013-12-17 2016-08-09 Adbm Corp. Underwater noise reduction system using open-ended resonator assembly and deployment apparatus
RU2645383C1 (en) * 2017-06-14 2018-02-21 Олег Савельевич Кочетов Acoustic cab
US11812221B2 (en) 2020-01-21 2023-11-07 Adbm Corp. System and method for simultaneously attenuating high-frequency sounds and amplifying low-frequency sounds produced by underwater acoustic pressure source

Similar Documents

Publication Publication Date Title
US2610695A (en) Supporting means for acoustical absorbers
US2840179A (en) Sound-absorbing panels
US2502016A (en) Diffraction type sound absorber
US2410413A (en) Acoustic tile
US1554179A (en) Sound-absorbing material for walls and ceilings
US3597891A (en) Interior absorptive panel
US3866001A (en) Structural block with septum
US2975853A (en) Sound absorbent translucent building block
US4842097A (en) Sound absorbing structure
US3180448A (en) Laminated acoustic panel with sound absorbing cavities
NO164268B (en) SOUND-ABSORBING BUILDING ELEMENT.
US2671522A (en) Sound-absorbing panel
US2362859A (en) Acoustical building element
US2652126A (en) Sound-absorbing structure
JP6762129B2 (en) Sound absorber
US2014749A (en) Acoustic tile
US2057071A (en) Sound insulation and material therefor
US2502017A (en) Suspension means for acoustical absorbers
US1913249A (en) Ceiling for sound correction
JP2021149106A5 (en)
JPH09221721A (en) Sound insulating device for road side and tunnel
US2502019A (en) Diffraction type sound absorber with complementary fitting portions
US2706530A (en) Functional sound absorber and method of absorbing sound
JP6663659B2 (en) Size setting method of through hole of perforated sound absorbing board that constitutes sound absorbing structure
US2081953A (en) Sound damping structure