US2595634A - Pressurized alkali-metal tube - Google Patents

Pressurized alkali-metal tube Download PDF

Info

Publication number
US2595634A
US2595634A US215579A US21557951A US2595634A US 2595634 A US2595634 A US 2595634A US 215579 A US215579 A US 215579A US 21557951 A US21557951 A US 21557951A US 2595634 A US2595634 A US 2595634A
Authority
US
United States
Prior art keywords
cathode
metal
anode
vapor
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US215579A
Other languages
English (en)
Inventor
John L Boyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE509902D priority Critical patent/BE509902A/xx
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US215579A priority patent/US2595634A/en
Priority to FR1057082D priority patent/FR1057082A/fr
Application granted granted Critical
Publication of US2595634A publication Critical patent/US2595634A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/50Thermionic-cathode tubes
    • H01J17/52Thermionic-cathode tubes with one cathode and one anode
    • H01J17/54Thermionic-cathode tubes with one cathode and one anode having one or more control electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/20Selection of substances for gas fillings; Specified operating pressures or temperatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/28Cooling arrangements

Definitions

  • My invention relates to vapor-electric devices or tubes, and particularly to a low-arcdrop hot-cathode arc-discharge device using a vaporizable discharge-metal selected from the alkali-metal group consisting of cesium, rubidium and potassium.
  • the present invention is an improvement over the vapor-electric devices which are described and claimed in an application of August P. Colaiaco and myself, Serial No. 144,354, filed February 15, 1950.
  • the breakdown-voltage of an evacuated or low-pressure gap-device is a function of the pd product, where p is the pressure and d the distance between electrodes. At extremely low values of this product, the breakdown-voltage is very high, up .into the thousands of volts, but as this product increases the breakdown-voltage rapidly falls until it reaches a minimum breakdown-voltage, after which any further increase in the pd product will cause the breakdown-Voltage to rise again, slowly at first, and later on more rapidly.
  • the minimum breakdown-voltage is of the order of some200 to 500 volts, depending upon the gaseous medium in the space separating the electrodes, and the pressure-distance value pd at which this minimum breakdown-voltage occurs is also variable, depending upon the gaseous material.
  • the pressure p, in the pd product will be the vapor-pressure of the metal at the coolest internal temperature of the tube, during the operation of the device, ,or the condensation-temperature of the dischargemetal.
  • the curve which plots the vapor-pressure of different metals, as a function of temperature is a characteristic curve ofthe metal, which differs according to the metal.
  • Mypresent invention in brief, involves, as its outstanding 'feature, the provision of a blastof alkali-metal vapor which acts as a diffusion pump 'or ejector 'for causing a greater vaporpressure in the space'in which the heated cath ode-surface-islocated, while using a lower vaporpressure in the region surrounding the anode, soas to make it' possible for the anode to hold a relatively high negative voltage, without breakdown, during the nonconducting periods of .theftube.
  • my invention consists-in the systems, combinations, structures, parts, and methods of design andoperation, hereinafter described, and illustrated in .the accompanying drawing, the single figure of which is a .somewhat diagrammatic simplified cross-sectional view of an exemplary-form of tube-structure embodying my present invention, with a diagrammatic representation of-an illustrative grid-control circuit which might be used.
  • my vapor-electric device has an evacuated container or enclosuremeans I including a metal anode-portion 2 at the top, and a metal cathode-portion 3 at the bottom.
  • the enclosure-means I will include an intermediate tubular side-wall portion 4 which carries a massive perforated metal barrier-grid 5 in good thermal and electrical contact therewith, said barrier-grid being disposed between the active portions of the anode and the cathode, respectively, as described and claimed in an applicationof .Robert J. Ballard :and myself, Serial No. 205,899, filed.January 13, 1951.
  • the enclosureemeans 1 includes insulating seals between the severalmetal parts, such as the anodeto;grid,seal 6 between the anode and grid portions 2 and 4, :and the grid-to-cathode seal 1 betweenthe grid and cathode portions 4 and '3.
  • the 'bottom'end-wall of the cathodeend ⁇ 3 of the-enclosure-means I is provided with a tubular re-entrant cathode-portion 8, which is provided with a hermetically closed inner end 9, which is spaced below the barrier or grid 5.
  • the tube contains a quantity of a vaporizable discharge-metal which is shown in the form of a pool or reservoir l l of an alkali-metal which is chosen from the group comprising cesium,
  • this pool or reservoir other heater-lead l may be connected to the closure-plate [3, which may be connected to the inner end of the heater 1? by means of a vertical rod I8.
  • the cathode As is common in the hot-cathode type of alkalimetal rectifier, the cathode is provided with a finned portion, for increasing the amount of active cathode-surface, which is concentrated in a relatively small space.
  • the cathode-fins are shown in the form of a large number of vertical radially extending cathode-fins 2B.
  • the cathode-fins 2:: must be in good thermal and electrical relation to the heated cathode-tube 8.
  • I in order to provide a chimney through which alkalimetal vapors can be supplied to the top end of the re-entrant cathode-tube 8, I preferably supply a second tubular hot-cathode member 2
  • the cathode-fins 2B are secured to the outer surface of the cathode-tube 2
  • the portion of the alkali-metal pool which surrounds the re-entrant cathode-tube 8 is heated to a vaporizing temperature by this tube, and in order to cause this vapor to rise upwardly in the space between the two cathode-tubes 8 and 2
  • a metal washer 24 secured to the bottom end of the cathode-tube 2
  • the heat from the re-entrant' cathode-tube 8 causes a high vapor-pressure which produces a blast of alkali-metal vapor which passes up to the top of the re-entrant tube 8, and at this point the direction of vapor-flow is changed, as by means of a dome-shaped metal cap 28, which is held spaced closely above the top edge of the cathode-tube 2!, as by means of one or more supporting-wires 29, so as .to provide a narrow annular space 36 through which the vapor-blast is directed downwardly at a high velocity, toward the cathode-fins 20, thus serving as a difiusionpump, or ejector for drawing the internal vapor, within the rectifier, down away from the upper region, in which the anode 2 and the grid 5 are located.
  • cooling-air or other coolingfluid
  • arrows 33 which are intended to illustrate any suitable means, either a natural chimney-draft, or blower-means (not shown), for causing an upward movement of cooling-air surrounding the rectifier.
  • this cooling-air is confined by a chimney-like enclosure 34 which surrounds the lower portion of the vertical cylindrical-wall portion 35 of the cathode-part 3 of the tube-enclosure, in closely spaced relation thereto, so as to cool the same.
  • the chimney 34 also extends upwardly beyond the top of the enclosure l, preferably being provided with an insulating tubular chimney section 35', to insulate the bottom chimney-portion 34 from the top chimney-portion 3B, which is shown in the form of a metal spinning.
  • the anode-portion 2 which is located at the top of the enclosure l, is preferably provided with a re-entrant metal anode-portion 42, having a closed bottom end 43 which constitutes the active anode-surface of the rectifier.
  • a massive upstanding copper pillar 44 Centrally secured to the active anode-plate 43 is a massive upstanding copper pillar 44 which has good thermal and electrical connection thereto, and an anodelead cable 44 is secured in the top of this copper pillar 44.
  • the copper pillar 44 carries a plurality of radially extending fins 45, which are in good thermal contact with the pillar 44, and which may also be in good thermal contact with the re-entrant anode-portion 42-43.
  • These fins 45 are illustrated as being provided with deep slots 46, extending down from their tops; and the metal spinning 36 of the air-directing chimney is provided with a bent-down portion 41 which enters down into these slots 46 and causes the cooling-air to circulate downwardly into the re-entrant anode-portion 42, and thence upwardly out of the device.
  • the cooling-air passes the lower cylindrical cathode-portion 35 first, it makes this portion the coolest point in the device, so that the alkali-metal vapor is condensed on the inner wall of this lower cylindrical cathode-member 35, from which point the condensed material returns to the cathode pool H.
  • the anode 42-43 is also cooled, but since the cooling-air is heated in passing over the cathode outer-wall surface 35, the anode 42-43 is not cooled to quite as low a temperature as the cathode wall-surface 35. It will be understood that any cooling-means, which serves the general purpose above outlined, will be satisfactory.
  • Any suitable grid-circuit means may be used.
  • a common form of grid-control is shown, whereby the grid 5 is connected to the cathode-lead 48 of the device, through a negative-bias means 49, an alternating-current grid-voltage source 50, and a grid-resistance R, so as to cause the grid 5 to permit the firing of the tube at a desired point in the positive voltage-Wave which is applied to the anode 42-43.
  • a strong blast of alkali-metal vapor is supplied from the alkalimetal pool or reservoir II to the diifuser-gap 3B, for producing a downwardly directed vapor-blast which causes a greater vapor-pressure in the space occupied by the cathode-fins 20 than in the space near the anode end of the device.
  • the upper halves of the cathode-fins 25 may be surrounded by a cylindrical heat-insulating shield 52, for preventing too much cooling of the vapor on the top part of the cathodefins 20.
  • the resulting high-pressure region around the cathodefins increases the maximum-current rating of the tube many times, for any given electronemitting cathode-surface area, thus enabling a given size of tube to carry much more current, or making it possible to make a tube of a given current-rating much smaller than heretofore.
  • the low vapor-pressure p in the region around the anode 43 and the grid 5 enables the tube to maintain a high breakdownvoltage for preventing backfiring during the nonconducting periods of the tube, when a high negative voltage is applied to the anode 42.
  • a vapor-electric device having an evacuated enclosure-means including a metal anode-portion of the enclosure-means at one end of the device, a metal cathode-portion oi the enclosure-means at the other end of the device, and an insulating sealing-means between said anode and cathode portions, said metal cathode-portion including i a metal tubular cathode-member and metal cathode-fins carried by said metal tubular cathodemember in good thermal and electrical relation thereto, said cathode-fins extending into the spac within the device to increase the effective cathode surface-area in the device, a quantity of a vaporizable discharge-metal within the device, said vaporizable discharge-metal being selected from the group comprising cesium, rubidium and potassium, means for heating said tubular cathode-member and said quantity of vaporizable discharge-metal, means for providing a vapor-duct from said quantity of vapor
  • a vapor-electric device having an evacuated enclosure-means including a metal anode-portion of the enclosure-means at the top of the device, a metal cathode-portion of the enclosuremeans at the bottom of the device, and an insulating sealing-means between said anode and cathode portions, said metal cathode-portion including a metal tubular cathode-member and metal cathode-fins carried by said metal tubular cathode-member in good thermal and electrical relation thereto, said cathode-fins extending into the space within the device to increase the efiective cathode surface-area in the device, a quantity of a vaporizable discharge-metal disposed at the bottom of the evacuated enclosure-means, said vaporizable discharge-metal being selected from the group comprising cesium, rubidium and potassium, means for heating said tubular cathode-member and said quantity of vaporizable discharge-metal, means for providing a vapor-
  • a vapor-electric device having an evacuated enclosure-means including a metal anode-portion of the enclosure-means at one end of the device, a metal cathode-portion of the enclosuremeans at the other end of the device, and an insulating sealing-means between said anode and cathode portions, the end-wall of said cathodeportion of the enclosure-means including a metal tubular re-entrant cathode-portion having a closed inner end which is spaced from the anodeportion of the device, cathode-fins disposed outside of said re-entrant cathode-portion in good thermal and electrical relation thereto, a quantity of a vaporizable discharge-metal within the device, said vaporizable discharge-metal being selected from the group comprising cesium, rubidium and potassium, means for heating said reentrant cathode-portion and said quantity of vaporizable discharge-metal, means for providing a vapor-duct from said quantity of vapor
  • a vapor-electric device having an evacuated enclosure-means including a metal anodeportion of the enclosure-means at the top of the device, a metal cathode-portion of the enclosuremeans at the bottom of the device, and an insulating sealing-means between said anode and cathode portions, the end-wall of said cathodeportion of the enclosure-means including a metal tubular re-entrant cathode-portion having a closed inner end which is spaced from the anodeportion of the device, means for heating the inside of said re-entrant cathode-portion, cathode-fins disposed in good thermal and electrical conducting-relation to said re-entrant cathode-portion, a quantity of a vaporizable discharge-metal disposed near the junction of said re-entrant portion with the end-wall of the cathode-portion of the enclosure-means whereby said dischargemetal is vaporized by the heat of said re-entrant portion, said discharge
  • a vapor-electric device having an evacuated enclosure-means including a metal anodeportion of the enclosure-means at the top of the device, a metal cathode-portion of the enclosuremeans at the bottom of the device, and an insu lating sealing-means between said anode and cathode portions, the end-wall of said cathodeportion of the enclosure-means including a metal tubular re-entrant cathode-portion having a closed inner end which is spaced from the anodeportion of the device, means for heating the inside of said re-entrant cathode-portion, a hot-cathode element having a tubular hot-cathode member surrounding said re-entrant cathode-portion in heat-exchanging relation thereto, the outside of said tubular hot-cathode member carrying cathode-fins in good thermal and electrical contact therewith, a quantity of a vaporizable dischargemetal disposed near the junction of said reentrant portion with the

Landscapes

  • Lasers (AREA)
US215579A 1951-03-14 1951-03-14 Pressurized alkali-metal tube Expired - Lifetime US2595634A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BE509902D BE509902A (en(2012)) 1951-03-14
US215579A US2595634A (en) 1951-03-14 1951-03-14 Pressurized alkali-metal tube
FR1057082D FR1057082A (fr) 1951-03-14 1952-03-14 Tubes à décharges électriques dans une vapeur, à métal alcalin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US215579A US2595634A (en) 1951-03-14 1951-03-14 Pressurized alkali-metal tube

Publications (1)

Publication Number Publication Date
US2595634A true US2595634A (en) 1952-05-06

Family

ID=22803534

Family Applications (1)

Application Number Title Priority Date Filing Date
US215579A Expired - Lifetime US2595634A (en) 1951-03-14 1951-03-14 Pressurized alkali-metal tube

Country Status (3)

Country Link
US (1) US2595634A (en(2012))
BE (1) BE509902A (en(2012))
FR (1) FR1057082A (en(2012))

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460024A (en) * 1964-07-16 1969-08-05 Csf Gas-filled discharge tube and electrical energy generators using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460024A (en) * 1964-07-16 1969-08-05 Csf Gas-filled discharge tube and electrical energy generators using the same

Also Published As

Publication number Publication date
BE509902A (en(2012))
FR1057082A (fr) 1954-03-04

Similar Documents

Publication Publication Date Title
US2595634A (en) Pressurized alkali-metal tube
US3067279A (en) Cooling means for conducting parts
US2292081A (en) Electric discharge device
US1920649A (en) High amperage rectifier
US1924319A (en) Cathode structure for thermionic devices
US2438179A (en) Vapor filled electronic device
US2663811A (en) Vapor-electric device
US2217185A (en) Gaseous discharge device
US2679611A (en) Vapor-arc device
US2217436A (en) Cathode for electron tubes
US1923335A (en) Thermionic vapor discharge device
US2078642A (en) Electric discharge device heater
US2172221A (en) Vapor-electric device
US2214596A (en) Vapor electric device
US2419128A (en) Mercury vapor tube
US3280897A (en) Cooling of electronic tubes
US2650319A (en) Grid-controlled ignitor for ignitrons
US1894593A (en) Cooling device for anodes in metal vapor rectifiers
US2144496A (en) High voltage ignitron
US1967513A (en) Electronic discharge tube
US2512373A (en) Vapor electric device
US1895858A (en) Vapor electric device
US2173023A (en) Mercury-cathode rectifier
US2512299A (en) Vapor electric device
US1929122A (en) Vapor space current device