US2590111A - Fuel oil control system - Google Patents

Fuel oil control system Download PDF

Info

Publication number
US2590111A
US2590111A US70773A US7077349A US2590111A US 2590111 A US2590111 A US 2590111A US 70773 A US70773 A US 70773A US 7077349 A US7077349 A US 7077349A US 2590111 A US2590111 A US 2590111A
Authority
US
United States
Prior art keywords
oil
fuel
atomizer
temperature
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US70773A
Inventor
Calvin D Maccracken
Charles W Wood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JET HEET Inc
Original Assignee
JET HEET Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JET HEET Inc filed Critical JET HEET Inc
Priority to US70773A priority Critical patent/US2590111A/en
Priority to US195202A priority patent/US2590112A/en
Application granted granted Critical
Publication of US2590111A publication Critical patent/US2590111A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/147Valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7737Thermal responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7782With manual or external control for line valve

Definitions

  • fuel oil as hereinafter used is intended to include any liquid fuel.
  • Mechanical atomizers of the return-flow type are characterized by a central whirling chamber to which the fuel-oil is supplied, at substantially constant pressure, through tangential passages, thereby imparting whirling motion to the oil in said chamber some of which is discharged in a spray through a small orifice and some of which leaves the whirling chamber through an orifice or orifices communicating with a pipe through which the oil returns to the supply source.
  • the quantity of fuel-oil emitted from an atomizer of that type in the form of a spray may be controlled by regulating the flow of oil through the return pipe by providing therein a valve which is manually or otherwise operated.
  • the viscosity of the oil is substantially constant, and the quantity of oil supplied from the atomizer in the form of a spray for combustion purposes will not vary substantially if the pressure in the return pipe is held constant.
  • the temperature of the fuel-oil in the supply tank may vary considerably, particularly when the tank is located out-ofdoors; and we have found that such variations in the temperature of the oil which is supplied to the atomizer may cause considerable variation in the quantity of oil supplied as a spray for combustion purposes by theatomizer. Such variations are due to changes in the viscosity of the fuel-oil which has a lower viscosity at high temperatures than at low temperatures.
  • the temperature of the fuel-oil may be about 20 F., but, if the temperature of the oil in the tank is F., the temperature of the oil in the atomizer may be about F.
  • Fig. 1 is a diagrammatic representation of fuel-oil control system embodying the invention
  • Fig. 2 is a sectional elevation of the novel pressure regulator employed in that system
  • Fig. 3 is a sectional elevation, on an enlarged scale, showing the construction of the temperature responsive element of the pressure regulator.
  • a mechanical fuel-oil atomizer 4 of the return-flow type is shown as supplied with fuel-oil from an oil tank 6 at a substantially constant pressure by an oil pump 8; and the return-flow outlet of the atomizer t is connected through a pressure regulator III (of the type illustrated in Fig. 2 and hereinafter described) to the oil tank 6.
  • the pressure regulator l0 through which flows the oil returning from the atomizer 4, is characterized by the fact that it contains an element responding to the temperature of the oil and functioning to increase and decrease the throttling effect of the regulator on the oil flowing through it, with the rise and fall of the temperature of the oil.
  • the pressure regulator III after the pressure regulator III has been set so as to exert a throttling efiect on the returning oil such that the atomizer will spray fuel-oil at the desired rate, the pressure regulator will continue to function in response to varying temperatures of the oil so that the throttling effect of the regulator will maintain substantially constant the quantity of oil sprayed by the atomizer.
  • the regulator has a casing made in two parts l2 and I4 having cooperating flanges which are bolted together by the bolts 15.
  • a flexible circular diaphragm iii, of Neoprene or any other suitable material is thus mounted within the casing and serves as a movable valve member.
  • the casing part M is provided with a chamber l8 having an oil-flow opening 20 and surrounded by a circular lip 22 which cooperates with the diaphragm l6 and serves as a valve seat.
  • the casing part I4 is also provided with a circular trough 23 located outside of and concentric with said lip 22; and this trough is provided with an oil-flow opening 24.
  • a backing member consisting of a circular plate 26 having a hub 21 provided with a central hole through which is threaded a bolt 28 having a nut 30 cooperating therewith and with the hub 2! of the plate 26. It will be obvious from the drawing that the plate 26 forming part of the backing member cooperates with the upper side of the diaphragm l6, and that said plate 26 extends outwardly to the neighborhood of the lip 22 and preferably to approximately the outer edge of said lip.
  • the plate 26 confines the upward flexing of the diaphragm IE to that portion of the latter which is between the outer edge of the plate 26 and the casing flanges between which the edge of the diaphragm I6 is clamped.
  • the space shown between the diaphragm l6 and the lip 22, and the flexing of the diaphragm i6 are both exaggerated, in order to aid in understanding that in the functioning of the regulator the oil flows from the chamber l8 over the lip 22 into the trough 23.
  • diaphragm I6 Since diaphragm I6 is fastened to plate 26 only at the center, nothing holds the diaphragm off its seat 22 except the pressure of the oil flowing between the seat and the adjacent portion of the diaphragm, and when there is no pressure or the slightest negative pressure the diaphragm immediately seals against its seat. Since there is only a thin film of oil separating them, practically no oil is displaced when such sealing occurs.
  • a coiled spring 32 Located within the casing section I2 is a coiled spring 32 which at its lower end cooperates with the plate 26 of the backing member and at its upper end with 'a disc 34 engaged by a screw 36 threaded through a hole in the top of the casing member [2. It will be understood that the screw 36 may be adjusted so as to cause the spring 32 to exert any desired pressure upon the backing member which cooperates with the diaphragm [6.
  • a temperature responsive means which is illustrated on an enlarged scale in Fig. 3.
  • This temperature responsive means consists of two bi-metal discs spaced apart and secured to one another at their edges by a ring 40.
  • each of the discs of the temperature responsive device is composed of two layers 42-43 and 44-45 of metal welded together, said layers having different coefficients of expansion under variations in temperature.
  • the layers 42 and 44 having the lower coefficients of expansion are located on the outside, and the layers '43 and 45 having higher coefficients of expansion are located on the inside of the temperature responsive means.
  • Said discs (which are flat at room temperature with no compression but which are shown in Figs.
  • the casing member [4 is provided in the bottom of the chamber l8 with an abutment 46 having an upwardly extending central portion 48; and the discs of the temperature responsive means just described are provided at their centers with openings adapted to receive the upwardly extending portion 48 of the abutment 46.
  • the temperature responsive means is centered in the chamber I8.
  • the bolt 28 is provided at its lower end with a cup-shaped head 50 the edges of which are adapted to cooperate with the temperature responsive means, as shown in Fig. 2.
  • the inlet opening 20 in the casing member l4 may be provided with a check valve 52, as shown in Fig. 2, but this check valve may be omitted if desired.
  • the mode of operation of the pressure regulator will be understood with the aid of Fig. 2.
  • the oil, returning from the atomizer 4 through the opening 20, fills the chamber I8 and flows over the lip 22 into the trough 23 and from that trough flows out through the opening 24 and on to the fuel-oil tank 6 or instead to the intake side of the pump if desired.
  • the oil remains at the temperature it had when the screw 36 was set, cooperation of the diaphragm It; with the lip 22 will exert on the oil a constant throttling effect.
  • the discs in the temperature responsive element flex toward one another, thereby increasing the net effective pressure exerted by the spring 32 upon the backing member and the diaphragm 16 thus increasing the throttling effect on the oil flowing between the diaphragm l6 and the lip 22.
  • the action of the thermal responsive element is not actually to raise or lower the diaphragm from its seat but to counterbalance the spring pressure on the diaphragm, to a greater or less extent, which opposes the pressure of the fuel in the return flow pipe.
  • the discs of the temperature responsive element will flex away from one another, thus decreasing the net effective pressure exerted on the backing member by the spring 32 and decreasing the throttling effect on the oil flowing between the diaphragm l6 and the lip 22.
  • the pressure of the oil in the return passage of the atomizer 4 is automatically increased and decreased with the rising and falling of the temperature of the oil, that is, with the decreasing and increasing of the viscosity of the oil, with the result that the atomizer will spray oil at substantially a constant rate, even though the viscosity of the oil passing through the atomizer varies considerably.
  • Fig.2 represents in exaggerated form the space between the diaphragm l6 and the lip 22; and this space is in fact very small at all times, because the rate of oil flow between the diaphragm i6 and the lip 22 is very low during the functioning of the pressure regulator in combination with a mechanical atomizer of the returnfiow type designed to supply a fuel-oil spray at the low rates above mentioned.
  • the oil squeezes through between the seat 22 and the diaphragm I5 in a film. of almost unmeasurable thinness against the net effective pressure of the spring.
  • a fuel-oil control system of the kind illustrated in Fig. 1 When a fuel-oil control system of the kind illustrated in Fig. 1 is shut down by cutting off the supply of oil to the spray nozzle 4, it is important that no oil be allowed to bleed" back into the atomizer 4 from the return pipe.
  • the pressure regulator shown in Fig. 2 prevents such back-flow into the oil atomizer, due to the fact that when the supply of oil to the atomizer is cut off the pressure of the oil in the return-flow pipe drops, and the outer portion of the diaphragm l6 instantly flexes into contact with the lip 22, thereby preventing back-flow toward the atomizer of the fuel-oil trapped in the return pipe and in the pressure regulator.
  • the check valve 52 assists in preventing such backflow of oil but, as has been mentioned, this check valve is unnecessary under most conditions of operation because in the absence of a defect of the diaphragm it forms a complete seal by itself.
  • the temperature responsive means when used with different oils having varying viscosities and with L different types of return-flow nozzles having varying pressure-flow characteristics, the temperature responsive means will have to be changed accordingly. This is best done by varying the thickness of the bi-metallic discs which is normally about .025 to .030 of an inch. Also, if less temperature compensation is required, the thickness of the discs should be less and viceversa.
  • two bi-metallic elements have been used in order to reduce the spring rate, that is, the rate of change of force exerted by the bi-metallic elements as they are further compressed. This is desirable in order to reduce sensitivity to dimensional tolerances. It should be understood that this effect can be accomplished in other ways or may not be necessary, and that a single bi-metallic element with corresponding changes in cooperating parts can be used.
  • a system for supplying to a burner a constant atomized flow of liquid fuel subject to variations in viscosity due to changes in its temperature comprising, a fuel atomizer of the return-flow type,-means for supplying fuel to said atomizer under pressure, a return flow pipe for conducting unatomized fuel away from said atomizer, and a pressure actuated throttling device in said pipe, said device including temperature responsive means bathed by the fuel flowing through said device and arranged to increase the throttling effect of said device upon ,an increase in fuel temperature and to decrease the throttling efiect of said device upon a decrease in fuel temperature, whereby the flow of atomized fuel from said nozzle is maintained substantially constant notwithstanding variations in its temperature.
  • a system for supplying to a burner a constant atomized flow of liquid fuel subject to variations in viscosity due to changes in its temperature comprising, a fuel atomizer of the returnflow type, means for supplying fuel to said atomizer under pressure, a return flow pipe for conducting unatomized fuel away from said atomizer, and a pressure actuated throttling device in said pipe, a chamber in said device, said device including temperature responsive means in said chamber bathed by the fuel flowing through said device and arranged to increase the throttling effect of said device upon an increase in fuel temperature and to decrease the throttling effect of said device upon a decrease in fuel temperature, and means preventing flow from said chamber back to said atomizer whereby the flow of atomized fuel is maintained substantially constant notwithstanding variations in its temperature.
  • a system for supplying to a burner a constant atomized flow of liquid fuel subject to variations in viscosity due to changes in its temperature comprising a fuel atomizer of the return-flow type, means for supplying fuel to said atomizer under pressure, a return flow pipe for conducting unatomized fuel away from said atomizer, and a pressure actuated throttling device in said pipe, said device including a temperature responsive bimetallic element bathed by the fuel flowing through said device and arranged to increase the pressure required to actuate said device upon an increase in fuel temperature and to decrease the pressure required to actuate said device upon a decrease in fuel temperature, whereby the flow of atomized fuel from said nozzle is maintained substantially constant notwithstanding variations in its temperature.

Description

March 1952 c. D. Ma cRAcKEN ETAL FUEL OIL CONTROL SYSTEM Filed Jan'. 15, 1949 R m v. 2 WWW E 1 mm in; T 4
\ war/4 Patented Mar. 25, 1952 UNITED STATES PATENT OFFICE FUEL OIL CONTROL SYSTEM of New York Application January 13, 1949, Serial No. 70,773
3 Claims.
gallons per hour which is sufficient for heating purposes in most house-heating and certain other systems. The term fuel oil as hereinafter used is intended to include any liquid fuel.
Mechanical atomizers of the return-flow type are characterized by a central whirling chamber to which the fuel-oil is supplied, at substantially constant pressure, through tangential passages, thereby imparting whirling motion to the oil in said chamber some of which is discharged in a spray through a small orifice and some of which leaves the whirling chamber through an orifice or orifices communicating with a pipe through which the oil returns to the supply source. The quantity of fuel-oil emitted from an atomizer of that type in the form of a spray may be controlled by regulating the flow of oil through the return pipe by providing therein a valve which is manually or otherwise operated. These returnfiow type atomizers are particularly useful at low fuel-oil delivery rates, because their larger total fuel-oil fiow requires greater internal dimensions and gives a cooling and scouring action, all of which greatly reduces the tendency to plug-up with dirt or fuel-oil residue.
So long as the temperature ofthe oil passing through the atomizer remains substantially constant, the viscosity of the oil is substantially constant, and the quantity of oil supplied from the atomizer in the form of a spray for combustion purposes will not vary substantially if the pressure in the return pipe is held constant. However, in many heating systems, the temperature of the fuel-oil in the supply tank may vary considerably, particularly when the tank is located out-ofdoors; and we have found that such variations in the temperature of the oil which is supplied to the atomizer may cause considerable variation in the quantity of oil supplied as a spray for combustion purposes by theatomizer. Such variations are due to changes in the viscosity of the fuel-oil which has a lower viscosity at high temperatures than at low temperatures. It is incorrect, however, to assume that the quantity of fueloil emitted by an atomizer of the type mentioned is greater when the oil has a high temperature and low viscosity, than when it has a low temperature and high viscosity. In fact, the contrary is true; and it is our belief that this is due to the fact that, when the temperature of the oil is high and its viscosity is low, more rapid whirling of the oil within the atomizer and decreased resistance in the return passage, which is larger than the spray orifice, result in a decrease of the total amount of oil which flows out of the spray orifice.
Normally, there may be a rise of perhaps 20 F. in the temperature of the fuel-oil during its passage from the supply tank to and through the atomizer. If the tank is located out-of-doors and the temperature of the oil in it is 0 F; the temperature of the oil in the atomizer may be about 20 F., but, if the temperature of the oil in the tank is F., the temperature of the oil in the atomizer may be about F. Therefore, when the fuel-oil in the supply tank has such widely varying temperatures, there is a considerable difference in the viscosity of the oil in the whirling chamber in the atomizer; and, due to this fact, there may be a considerable difference in the amount of oil which is emitted from the atomizer as a spray for combustion purposes.
An important object of the present invention is to maintain substantially constant, thequantity of oil emitted in a spray by an atomizer'in a system of the kind above mentioned, notwithstanding variations of the temperature of the oil. Another object of the invention is to prevent bleeding of the oil from the return-pipe back into the atomizer and out of the spray opening therein, when the system is shut down by cutting off the supply of oil to the atomizer.
According to the present invention, these objects are attained by providing in the return line from the atomizer a pressure regulating device which automatically responds to variations'in the temperature of the oil passing through said device, and' exerts on the oil flowing in the return pipe a throttling effect which is greater'at high temperatures of the oil than at low temperatures thereof, and which, upon shutting off the oil supply, prevents any back fiow of fuel to the atommen The novel pressure regulating device described herein is claimed in a divisional application, Ser. No. 195,202, filed November 13, 1950, this application being directed to the novel combination constituting the system as a whole.
The invention will be understood from the following description taken in connection with the accompanying drawing in which Fig. 1 is a diagrammatic representation of fuel-oil control system embodying the invention; Fig. 2 is a sectional elevation of the novel pressure regulator employed in that system; and Fig. 3 is a sectional elevation, on an enlarged scale, showing the construction of the temperature responsive element of the pressure regulator.
Referring to Fig. 1 of the drawing, a mechanical fuel-oil atomizer 4 of the return-flow type is shown as supplied with fuel-oil from an oil tank 6 at a substantially constant pressure by an oil pump 8; and the return-flow outlet of the atomizer t is connected through a pressure regulator III (of the type illustrated in Fig. 2 and hereinafter described) to the oil tank 6. As will hereafter appear, the pressure regulator l0, through which flows the oil returning from the atomizer 4, is characterized by the fact that it contains an element responding to the temperature of the oil and functioning to increase and decrease the throttling effect of the regulator on the oil flowing through it, with the rise and fall of the temperature of the oil. That is, after the pressure regulator III has been set so as to exert a throttling efiect on the returning oil such that the atomizer will spray fuel-oil at the desired rate, the pressure regulator will continue to function in response to varying temperatures of the oil so that the throttling effect of the regulator will maintain substantially constant the quantity of oil sprayed by the atomizer.
Referring now to Fig. 2, in which the construction of the pressure regulator I0 is illustrated, it will be evident that the regulator has a casing made in two parts l2 and I4 having cooperating flanges which are bolted together by the bolts 15. A flexible circular diaphragm iii, of Neoprene or any other suitable material, the edge of which is clamped between the flanges of the casing parts l2 and I4, is thus mounted within the casing and serves as a movable valve member. It will be seen that the casing part M is provided with a chamber l8 having an oil-flow opening 20 and surrounded by a circular lip 22 which cooperates with the diaphragm l6 and serves as a valve seat. The casing part I4 is also provided with a circular trough 23 located outside of and concentric with said lip 22; and this trough is provided with an oil-flow opening 24. Cooperating with the diaphragm I6, is a backing member consisting of a circular plate 26 having a hub 21 provided with a central hole through which is threaded a bolt 28 having a nut 30 cooperating therewith and with the hub 2! of the plate 26. It will be obvious from the drawing that the plate 26 forming part of the backing member cooperates with the upper side of the diaphragm l6, and that said plate 26 extends outwardly to the neighborhood of the lip 22 and preferably to approximately the outer edge of said lip. Thus the plate 26 confines the upward flexing of the diaphragm IE to that portion of the latter which is between the outer edge of the plate 26 and the casing flanges between which the edge of the diaphragm I6 is clamped. In Fig. 2, the space shown between the diaphragm l6 and the lip 22, and the flexing of the diaphragm i6 are both exaggerated, in order to aid in understanding that in the functioning of the regulator the oil flows from the chamber l8 over the lip 22 into the trough 23. Since diaphragm I6 is fastened to plate 26 only at the center, nothing holds the diaphragm off its seat 22 except the pressure of the oil flowing between the seat and the adjacent portion of the diaphragm, and when there is no pressure or the slightest negative pressure the diaphragm immediately seals against its seat. Since there is only a thin film of oil separating them, practically no oil is displaced when such sealing occurs. Located within the casing section I2 is a coiled spring 32 which at its lower end cooperates with the plate 26 of the backing member and at its upper end with 'a disc 34 engaged by a screw 36 threaded through a hole in the top of the casing member [2. It will be understood that the screw 36 may be adjusted so as to cause the spring 32 to exert any desired pressure upon the backing member which cooperates with the diaphragm [6.
Located within the chamber 18 in the casing member I4, is a temperature responsive means which is illustrated on an enlarged scale in Fig. 3. This temperature responsive means consists of two bi-metal discs spaced apart and secured to one another at their edges by a ring 40. As is best shown in Fig. 3, each of the discs of the temperature responsive device is composed of two layers 42-43 and 44-45 of metal welded together, said layers having different coefficients of expansion under variations in temperature. The layers 42 and 44 having the lower coefficients of expansion are located on the outside, and the layers '43 and 45 having higher coefficients of expansion are located on the inside of the temperature responsive means. Said discs (which are flat at room temperature with no compression but which are shown in Figs. 2 and 3 under initial compression from the force of the spring 32) buckle toward one another at higher temperatures and away from one another at lower temperatures. As will be apparent from Fig. 2, the casing member [4 is provided in the bottom of the chamber l8 with an abutment 46 having an upwardly extending central portion 48; and the discs of the temperature responsive means just described are provided at their centers with openings adapted to receive the upwardly extending portion 48 of the abutment 46. In this way, the temperature responsive means is centered in the chamber I8. It will also be evident that the bolt 28 is provided at its lower end with a cup-shaped head 50 the edges of which are adapted to cooperate with the temperature responsive means, as shown in Fig. 2. Thus the abutment and bolt head 50 limit the compression of the temperature responsive means under the force of the spring 32 so that the disc will not be overstressed. The inlet opening 20 in the casing member l4 may be provided with a check valve 52, as shown in Fig. 2, but this check valve may be omitted if desired.
The mode of operation of the pressure regulator will be understood with the aid of Fig. 2. The oil, returning from the atomizer 4 through the opening 20, fills the chamber I8 and flows over the lip 22 into the trough 23 and from that trough flows out through the opening 24 and on to the fuel-oil tank 6 or instead to the intake side of the pump if desired. As long as the oil remains at the temperature it had when the screw 36 was set, cooperation of the diaphragm It; with the lip 22 will exert on the oil a constant throttling effect. Upon a rise in the temperature of the oil flowing through the chamber 18 and bathing the temperature responsive element, the discs in the temperature responsive element will flex toward one another, thereby increasing the net effective pressure exerted by the spring 32 upon the backing member and the diaphragm 16 thus increasing the throttling effect on the oil flowing between the diaphragm l6 and the lip 22. The action of the thermal responsive element is not actually to raise or lower the diaphragm from its seat but to counterbalance the spring pressure on the diaphragm, to a greater or less extent, which opposes the pressure of the fuel in the return flow pipe. If, however, the temperature of the oil decreases, the discs of the temperature responsive element will flex away from one another, thus decreasing the net effective pressure exerted on the backing member by the spring 32 and decreasing the throttling effect on the oil flowing between the diaphragm l6 and the lip 22. In this way, the pressure of the oil in the return passage of the atomizer 4 is automatically increased and decreased with the rising and falling of the temperature of the oil, that is, with the decreasing and increasing of the viscosity of the oil, with the result that the atomizer will spray oil at substantially a constant rate, even though the viscosity of the oil passing through the atomizer varies considerably. As has been stated, Fig.2 represents in exaggerated form the space between the diaphragm l6 and the lip 22; and this space is in fact very small at all times, because the rate of oil flow between the diaphragm i6 and the lip 22 is very low during the functioning of the pressure regulator in combination with a mechanical atomizer of the returnfiow type designed to supply a fuel-oil spray at the low rates above mentioned. Virtually, the oil squeezes through between the seat 22 and the diaphragm I5 in a film. of almost unmeasurable thinness against the net effective pressure of the spring.
When a fuel-oil control system of the kind illustrated in Fig. 1 is shut down by cutting off the supply of oil to the spray nozzle 4, it is important that no oil be allowed to bleed" back into the atomizer 4 from the return pipe. The pressure regulator shown in Fig. 2 prevents such back-flow into the oil atomizer, due to the fact that when the supply of oil to the atomizer is cut off the pressure of the oil in the return-flow pipe drops, and the outer portion of the diaphragm l6 instantly flexes into contact with the lip 22, thereby preventing back-flow toward the atomizer of the fuel-oil trapped in the return pipe and in the pressure regulator. Because the flexing of the diaphragm l6 displaces only a minute quantity of oil from between the diaphragm I6 and the lip 22, the result is that substantially no back-flow of oil to the atomizer occurs. The check valve 52 assists in preventing such backflow of oil but, as has been mentioned, this check valve is unnecessary under most conditions of operation because in the absence of a defect of the diaphragm it forms a complete seal by itself.
It will be understood that, when used with different oils having varying viscosities and with L different types of return-flow nozzles having varying pressure-flow characteristics, the temperature responsive means will have to be changed accordingly. This is best done by varying the thickness of the bi-metallic discs which is normally about .025 to .030 of an inch. Also, if less temperature compensation is required, the thickness of the discs should be less and viceversa. In this disclosure two bi-metallic elements have been used in order to reduce the spring rate, that is, the rate of change of force exerted by the bi-metallic elements as they are further compressed. This is desirable in order to reduce sensitivity to dimensional tolerances. It should be understood that this effect can be accomplished in other ways or may not be necessary, and that a single bi-metallic element with corresponding changes in cooperating parts can be used.
What is claimed is:
1. A system for supplying to a burner a constant atomized flow of liquid fuel subject to variations in viscosity due to changes in its temperature, said system comprising, a fuel atomizer of the return-flow type,-means for supplying fuel to said atomizer under pressure, a return flow pipe for conducting unatomized fuel away from said atomizer, and a pressure actuated throttling device in said pipe, said device including temperature responsive means bathed by the fuel flowing through said device and arranged to increase the throttling effect of said device upon ,an increase in fuel temperature and to decrease the throttling efiect of said device upon a decrease in fuel temperature, whereby the flow of atomized fuel from said nozzle is maintained substantially constant notwithstanding variations in its temperature.
2. A system for supplying to a burner a constant atomized flow of liquid fuel subject to variations in viscosity due to changes in its temperature comprising, a fuel atomizer of the returnflow type, means for supplying fuel to said atomizer under pressure, a return flow pipe for conducting unatomized fuel away from said atomizer, and a pressure actuated throttling device in said pipe, a chamber in said device, said device including temperature responsive means in said chamber bathed by the fuel flowing through said device and arranged to increase the throttling effect of said device upon an increase in fuel temperature and to decrease the throttling effect of said device upon a decrease in fuel temperature, and means preventing flow from said chamber back to said atomizer whereby the flow of atomized fuel is maintained substantially constant notwithstanding variations in its temperature.
3. A system for supplying to a burner a constant atomized flow of liquid fuel subject to variations in viscosity due to changes in its temperature, said system comprising a fuel atomizer of the return-flow type, means for supplying fuel to said atomizer under pressure, a return flow pipe for conducting unatomized fuel away from said atomizer, and a pressure actuated throttling device in said pipe, said device including a temperature responsive bimetallic element bathed by the fuel flowing through said device and arranged to increase the pressure required to actuate said device upon an increase in fuel temperature and to decrease the pressure required to actuate said device upon a decrease in fuel temperature, whereby the flow of atomized fuel from said nozzle is maintained substantially constant notwithstanding variations in its temperature.
CALVIN D. MACCRACKEN. CHARLES W. WOOD.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 853,541 Eddy May 14, 1907 1,220,985 Harter e Mar. 27, 1917 1,656,392 Russel et al Jan. 17, 1928 1,824,952 Graham et a1 Sept. 29, 1931 1,854,402 Goosmann Apr. 19, 1932 1,871,287 Whitaker Aug. 9, 1932 1,894,842 Appelberg Jan. 17, 1933 1,941,023 Smith Dec. 26, 1933 1,966,098 Kuenhold July 10, 1934 1,972,908 Shaw Sept. 11, 1934 2,037,994 Neubauer Apr. 21, 1936 2,115,665 Florez et a1. l Apr. 26, 1938 2,139,050 Vickers Dec. 6, 1938 2,286,581: Scott June 16, 1942 2,451,707 Armstrong Oct. 19, 1948 2,471,541 Plass May 31, 1949 OTHER REFERENCES ASME Transactions, vol. 61 of 1939, pages 373- 381.
US70773A 1949-01-13 1949-01-13 Fuel oil control system Expired - Lifetime US2590111A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US70773A US2590111A (en) 1949-01-13 1949-01-13 Fuel oil control system
US195202A US2590112A (en) 1949-01-13 1950-11-13 Temperature-responsive throttling valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70773A US2590111A (en) 1949-01-13 1949-01-13 Fuel oil control system

Publications (1)

Publication Number Publication Date
US2590111A true US2590111A (en) 1952-03-25

Family

ID=22097314

Family Applications (1)

Application Number Title Priority Date Filing Date
US70773A Expired - Lifetime US2590111A (en) 1949-01-13 1949-01-13 Fuel oil control system

Country Status (1)

Country Link
US (1) US2590111A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634806A (en) * 1951-10-22 1953-04-14 Syncromatic Corp Fuel and air delivery adjusting means for oil burners
US2915076A (en) * 1954-07-26 1959-12-01 Sundstrand Corp Temperature compensating device
US2917067A (en) * 1956-09-21 1959-12-15 United Aircraft Corp Temperature compensated regulator
US3241763A (en) * 1963-10-25 1966-03-22 Calmac Mfg Corp Oil-fired water and air heating system
US3282323A (en) * 1965-04-14 1966-11-01 Gen Electric Viscosity responsive devices
US3442284A (en) * 1966-05-27 1969-05-06 Gen Electric Viscosity compensated flow regulating device
US3595262A (en) * 1968-08-12 1971-07-27 Ite Imperial Corp Temperature-responsive switch
US3957177A (en) * 1974-11-01 1976-05-18 Leroy C. Walls Metering applicator apparatus with pressure regulating bypass
WO1984003754A1 (en) * 1983-03-17 1984-09-27 Babington Robert S Flow control module and method for liquid fuel burners and liquid atomizers

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US853541A (en) * 1906-01-26 1907-05-14 Charles E Shepard Automatic expansion-valve.
US1220985A (en) * 1914-02-09 1917-03-27 Fulton Co Thermostatic valve.
US1656392A (en) * 1925-09-05 1928-01-17 Vapor Car Heating Co Inc Steam trap
US1824952A (en) * 1929-10-01 1931-09-29 Peabody Engineering Corp Oil burning system
US1854402A (en) * 1928-07-05 1932-04-19 Justus C Goosmann Refrigerating apparatus and control valve therefor
US1871287A (en) * 1930-08-23 1932-08-09 Westinghouse Electric & Mfg Co Hydraulic escapement device
US1894842A (en) * 1930-03-27 1933-01-17 Birka Regulator Ab thermostat switch
US1941023A (en) * 1931-05-11 1933-12-26 Smith Chetwood Combination relief valve
US1966098A (en) * 1929-08-12 1934-07-10 H M Sheer Company Thermally actuated regulator for heaters
US1972908A (en) * 1933-12-23 1934-09-11 William H Shaw Thermostatic control
US2037994A (en) * 1932-07-09 1936-04-21 Ray Burner Company Apparatus for metering fluids
US2115665A (en) * 1934-09-14 1938-04-26 Texas Co Apparatus for temperature control
US2139050A (en) * 1937-05-01 1938-12-06 Harry F Vickers Viscosity compensating device
US2286581A (en) * 1940-02-29 1942-06-16 Lewis L Scott Oil burner
US2451707A (en) * 1944-01-28 1948-10-19 Armstrong Fullerton Geo Gordon Valve arrangement
US2471541A (en) * 1946-01-28 1949-05-31 Ray Oil Burner Co Burner control system, including a viscosity sensitive by-pass valve

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US853541A (en) * 1906-01-26 1907-05-14 Charles E Shepard Automatic expansion-valve.
US1220985A (en) * 1914-02-09 1917-03-27 Fulton Co Thermostatic valve.
US1656392A (en) * 1925-09-05 1928-01-17 Vapor Car Heating Co Inc Steam trap
US1854402A (en) * 1928-07-05 1932-04-19 Justus C Goosmann Refrigerating apparatus and control valve therefor
US1966098A (en) * 1929-08-12 1934-07-10 H M Sheer Company Thermally actuated regulator for heaters
US1824952A (en) * 1929-10-01 1931-09-29 Peabody Engineering Corp Oil burning system
US1894842A (en) * 1930-03-27 1933-01-17 Birka Regulator Ab thermostat switch
US1871287A (en) * 1930-08-23 1932-08-09 Westinghouse Electric & Mfg Co Hydraulic escapement device
US1941023A (en) * 1931-05-11 1933-12-26 Smith Chetwood Combination relief valve
US2037994A (en) * 1932-07-09 1936-04-21 Ray Burner Company Apparatus for metering fluids
US1972908A (en) * 1933-12-23 1934-09-11 William H Shaw Thermostatic control
US2115665A (en) * 1934-09-14 1938-04-26 Texas Co Apparatus for temperature control
US2139050A (en) * 1937-05-01 1938-12-06 Harry F Vickers Viscosity compensating device
US2286581A (en) * 1940-02-29 1942-06-16 Lewis L Scott Oil burner
US2451707A (en) * 1944-01-28 1948-10-19 Armstrong Fullerton Geo Gordon Valve arrangement
US2471541A (en) * 1946-01-28 1949-05-31 Ray Oil Burner Co Burner control system, including a viscosity sensitive by-pass valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634806A (en) * 1951-10-22 1953-04-14 Syncromatic Corp Fuel and air delivery adjusting means for oil burners
US2915076A (en) * 1954-07-26 1959-12-01 Sundstrand Corp Temperature compensating device
US2917067A (en) * 1956-09-21 1959-12-15 United Aircraft Corp Temperature compensated regulator
US3241763A (en) * 1963-10-25 1966-03-22 Calmac Mfg Corp Oil-fired water and air heating system
US3282323A (en) * 1965-04-14 1966-11-01 Gen Electric Viscosity responsive devices
US3442284A (en) * 1966-05-27 1969-05-06 Gen Electric Viscosity compensated flow regulating device
US3595262A (en) * 1968-08-12 1971-07-27 Ite Imperial Corp Temperature-responsive switch
US3957177A (en) * 1974-11-01 1976-05-18 Leroy C. Walls Metering applicator apparatus with pressure regulating bypass
WO1984003754A1 (en) * 1983-03-17 1984-09-27 Babington Robert S Flow control module and method for liquid fuel burners and liquid atomizers
US4516928A (en) * 1983-03-17 1985-05-14 Owens-Illinois Flow control module and method for liquid fuel burners and liquid atomizers

Similar Documents

Publication Publication Date Title
US1964300A (en) Gas pilot burner control
US2590111A (en) Fuel oil control system
US2199454A (en) Means for preheating oil for oil burners
US2364489A (en) Fuel feeding system for burners
US1729819A (en) Pressure regulation
US1897155A (en) Thermostatic valve
US1805802A (en) Sensitive fuel governor
US2440663A (en) Means for automatically controlling the supply of liquid fuel to prime movers
US2590112A (en) Temperature-responsive throttling valve
US2621077A (en) Check valved nozzle
US2734523A (en) Protective
US1716325A (en) Oil burner
US2286581A (en) Oil burner
US2933257A (en) Temperature control system
US3236261A (en) Pressure operated step-opening valve
US2032284A (en) Pressure regulating valve
US1471229A (en) Check valve
US2324100A (en) Gas control means
US2976885A (en) Fuel control valves
US1885565A (en) Fluid pressure actuated control mechanism
US2886057A (en) Fuel injection filter system
US2277490A (en) Valve structure
US2980133A (en) Multi-purpose diaphragm gas valve
US3474962A (en) Snap-acting thermostatic gas valve
US2679259A (en) Differential fluid pressure responsive bellows type valve