US2575196A - Mixed estirs of polyhydric alcohols and dibasic acids - Google Patents
Mixed estirs of polyhydric alcohols and dibasic acids Download PDFInfo
- Publication number
- US2575196A US2575196A US52430A US5243048A US2575196A US 2575196 A US2575196 A US 2575196A US 52430 A US52430 A US 52430A US 5243048 A US5243048 A US 5243048A US 2575196 A US2575196 A US 2575196A
- Authority
- US
- United States
- Prior art keywords
- acid
- formula
- oxygen
- radical
- glycol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M3/00—Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
- C10M2207/302—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
- C10M2209/111—Complex polyesters having dicarboxylic acid centres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/085—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2221/043—Polyoxyalkylene ethers with a thioether group
Definitions
- This invention relates to a new class of compounds which have been particularly suitable for use as synthetic lubricants because of their low pour points and high viscosity indices.
- Esters represent one class of materials which have attracted unusual interests as synthetic lubricants. In general, they are characterized by higher viscosity indices and lower pour points than mineral oils of corresponding viscosity. The esters described in the present specification have. been found to exhibit very low pour points, and high viscosity indices. Lubricants possessing such properties are of special value in the lubrication of engines which are subjected to high temperatures such as combustion turbine engines, particularly those of the prop-jet type.
- Mineral oil lubricants containing added viscosity index improvers, thickeners or other highly nonvolatile additives are undesirable for use in such engines because of the tendency to leave a residue which accumulates and interferes with the operation of the engine.
- a synthetic lubricant of the type described in the present specification is especially adapted to use under such conditions, since the lubricant contains no additives and thus tends to leave no residue upon volatilization.
- the new compounds of the present invention which have been found to be particularly suitable for use as lubricating oils are complex esters prepared by reacting one molecular proportion of a monobasic aliphatic acid with one molecular proportion of a glycol, thereby forming a half ester of-the glycol, after which two molecular proportions of such half ester are reacted with one molecular proportion of a dibasic aliphatic acid.
- the esters are formed by simple reaction of the component parts, without heating or otherwise treating the product to form 0, polymerized or resinous material. It is usually desirable to employ an esterification catalyst such as p-toluenesulfonic acid.
- the reactions are conducted by the usual esterification methods, removing water as formed, as by means of a water trap attached to a refluxing condenser.
- a reaction medium or water-entraining medium such as naphtha, benzene, toluene, or the like, is go usually employed.
- the new class of compounds may be broadly defined by the following general formula:
- R1 and R1 are glycol radicals which may consist of saturated aliphatic hydrocarbon groups, straight chain or branched, containing 2 to 20 carbon atoms each, or they may each represent a series of saturated aliphatic hydrocarbon radicals interlinked by one or more oxygen or sulfur atoms, or both oxygen and sulfur atoms, provided there are at least two carbon atoms between each carboxyl group and the nearest oxygen 0r sulfur atom and at least two carbon atoms between each pair of oxygen and/or sulfur atoms in the chain, and provided further that the total number of carbon, oxygen and sulfur atoms in each radical is from 5 to 80 and the number of sulfur atoms in each radical is not greater than two.
- R2 and R2 of the formula each represent 3 an aliphatic hydrocarbon radical, straight chain or branched, saturated or unsaturated, containing 1 to 22 carbon atoms, or they may represent organic radicals consisting of groups of short aliphatic hydrocarbon radicals interlinked by oxygen atoms, provided that the number of oxygen atoms in each radical is not greater than 5 and provided that there is at least one carbon atom between the carboxyl group and the first oxygen atom and at least two carbon atoms between each pair of oxygen atoms, the total number of carbon and oxygen atoms in the radical being from 3 to 22, or the radicals R2 and R2 containing up to 20 carbon atoms.
- These may include, for example, ethylene. glycol, propylene glycol, butylene glycols; pinacone, trimethylene glycol, tetramethylene glycol, pentamethylene.
- the polypropylene glycols of the general formula may represent organic radicals eachconsisting of an aliphatic hydrocarbon chain containing a single interlinking sulfur atom.
- sulfur atom being separated from the carboxyl group by at least one carbon atom, the total number of carbon and sulfur atoms in the radical being from 3 to 22,
- R3 of the formula is an aliphatic hydrocarbon radical, straight chain or branched, saturated or unsaturated, containing 0 to 30 carbon atoms, or it may be an organic radical consisting of a series of saturated aliphatic hydrocarbon radicals interlinked by one or more atoms of oxygen or sulfur, or both oxygen and sulfur, provided there are at least two carbon atoms between each pair of oxygen or sulfur atoms, provided there are not more than two sulfur atoms in each chain, provided there is at least one carbon atom between the carboxyl group and the first oxygen or sulfur atom, and provided that the total number of carbon, oxygen, and sulfur
- the preferred glycols are the polyethylene glycols of the formula H0 (CH2C'H2O) nCH2CH2OH where n i to 26.
- the preferred monobasic acids are e fatty acids containing 2 to 10 carbon atoms per molecule.
- the preferred dibasic acids are the straight chain dibasic acids of the parafifinic group having from 6 to 10 carbon atoms per molecule.
- dibasic acids which may be employed in the synthesis of the complex esters of the present invention are the following: Oxalic acid Malonic acid Succinic acid Glutaric acid Adipic acid Pimelic acid Suberic acid Azeiaio acid Sebacic acid Brassylic acid Pentadecanedicarboxylic acid Tetracosanedicarboxylic acid C4C24 Alkenylsuccinic acids Diglycolic acid Thiodiglycolic acid The C4--Czi alkenyl succinic acids listed above are prepared by condensing olefins or mixtures of r olefins with maleic anhydride.
- esters of the present invention may be incorporated in the esters of the present invention for the purpose of improving their properties with respect to their usefulness as lubricants.
- antioxidants for example, antioxidants, viscosity index improvers, thickeners, dyes, etc., may be added.
- R1 and R1 represent radicals of the formula Flash Kinematic Viscosity A i t A STM seos our Component of Ester 31 Slope Index m;
- R1 and R1 are radicals of the formula -(CH2CH2X)nCH2CH2-in whichX is a member of the group consisting of oxygen and sulfur and n is an integer from 1 to 7; where R: and R2 are alkyl groups containing 1 to 7 carbon atoms each; and where R3 is a radical selected from a group consisting of (1) radicals of the formula -(CH2)m-- where m is an integer from 4 to 8,
- R is a radical of the formula (CH2)m where m is an integer from 4 to 8.
- composition according to claim 1 in which 2 R1 and R1 of the formula represent radicals of the formula in which R2 and R2 of the formula represent methyl radicals, and in which R3 of the formula represents the radical 7.
- R1 and R1 of the formula represent the radical (CH2CH2O 3CH2CH2- in which R: and R2 of the formula represent (CH2):CHz
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Patented Nov. 13, 1951 T OFFICE MIXED EST] BIS F POLYHYDRIC ALCOHOLS -.\ND DIBASIC ACIDS Paul V. Smith, In, Westileld, N. 3., minor to Standard Oil Development Company, a corporation of Delaware No Drawing. Application October 1, 1948,
Serial No. 52,4
'1 Claims.
This invention relates to a new class of compounds which have been particularly suitable for use as synthetic lubricants because of their low pour points and high viscosity indices.
In the lubricant art, considerable progress .has beenrealized in recent years in the production of lubricants characterized by one or morespecific properties and adapted for particular uses. In the main, this progress can be attributed to two developments: the first, new refining procedures, and the second, addition agents capable of imparting particular properties to available lubricants. Thus, viscosity index improvers and pour depressants are added to automotive lubricants to render the lubricants more adaptable to wide changes in temperature conditions, while other agents are added to improve the load-carrying properties of a lubricant which is to be employed, from example, under extreme pressure conditions.
Recently, in an efiort to obtain superior lubricants endowed with specific and superior characteristics, a new field has been explored, namely the synthesis of lubricants from various materials. Esters represent one class of materials which have attracted unusual interests as synthetic lubricants. In general, they are characterized by higher viscosity indices and lower pour points than mineral oils of corresponding viscosity. The esters described in the present specification have. been found to exhibit very low pour points, and high viscosity indices. Lubricants possessing such properties are of special value in the lubrication of engines which are subjected to high temperatures such as combustion turbine engines, particularly those of the prop-jet type. Mineral oil lubricants containing added viscosity index improvers, thickeners or other highly nonvolatile additives are undesirable for use in such engines because of the tendency to leave a residue which accumulates and interferes with the operation of the engine. A synthetic lubricant of the type described in the present specification is especially adapted to use under such conditions, since the lubricant contains no additives and thus tends to leave no residue upon volatilization.
The new compounds of the present invention which have been found to be particularly suitable for use as lubricating oils are complex esters prepared by reacting one molecular proportion of a monobasic aliphatic acid with one molecular proportion of a glycol, thereby forming a half ester of-the glycol, after which two molecular proportions of such half ester are reacted with one molecular proportion of a dibasic aliphatic acid. The esters are formed by simple reaction of the component parts, without heating or otherwise treating the product to form 0, polymerized or resinous material. It is usually desirable to employ an esterification catalyst such as p-toluenesulfonic acid. The reactions are conducted by the usual esterification methods, removing water as formed, as by means of a water trap attached to a refluxing condenser. A reaction medium or water-entraining medium, such as naphtha, benzene, toluene, or the like, is go usually employed.
The new class of compounds may be broadly defined by the following general formula:
1 OOC R OOC Ra where R1 and R1 are glycol radicals which may consist of saturated aliphatic hydrocarbon groups, straight chain or branched, containing 2 to 20 carbon atoms each, or they may each represent a series of saturated aliphatic hydrocarbon radicals interlinked by one or more oxygen or sulfur atoms, or both oxygen and sulfur atoms, provided there are at least two carbon atoms between each carboxyl group and the nearest oxygen 0r sulfur atom and at least two carbon atoms between each pair of oxygen and/or sulfur atoms in the chain, and provided further that the total number of carbon, oxygen and sulfur atoms in each radical is from 5 to 80 and the number of sulfur atoms in each radical is not greater than two. R2 and R2 of the formula each represent 3 an aliphatic hydrocarbon radical, straight chain or branched, saturated or unsaturated, containing 1 to 22 carbon atoms, or they may represent organic radicals consisting of groups of short aliphatic hydrocarbon radicals interlinked by oxygen atoms, provided that the number of oxygen atoms in each radical is not greater than 5 and provided that there is at least one carbon atom between the carboxyl group and the first oxygen atom and at least two carbon atoms between each pair of oxygen atoms, the total number of carbon and oxygen atoms in the radical being from 3 to 22, or the radicals R2 and R2 containing up to 20 carbon atoms. These may include, for example, ethylene. glycol, propylene glycol, butylene glycols; pinacone, trimethylene glycol, tetramethylene glycol, pentamethylene.
HO CH2CH2OMCH2CH=OH where'n is 1 to 26, and the polypropylene glycols of the general formula may represent organic radicals eachconsisting of an aliphatic hydrocarbon chain containing a single interlinking sulfur atom. such sulfur atom being separated from the carboxyl group by at least one carbon atom, the total number of carbon and sulfur atoms in the radical being from 3 to 22, R3 of the formula is an aliphatic hydrocarbon radical, straight chain or branched, saturated or unsaturated, containing 0 to 30 carbon atoms, or it may be an organic radical consisting of a series of saturated aliphatic hydrocarbon radicals interlinked by one or more atoms of oxygen or sulfur, or both oxygen and sulfur, provided there are at least two carbon atoms between each pair of oxygen or sulfur atoms, provided there are not more than two sulfur atoms in each chain, provided there is at least one carbon atom between the carboxyl group and the first oxygen or sulfur atom, and provided that the total number of carbon, oxygen, and sulfur atoms in the entire radical R3 is from 3 to 80. The molecular weight of the entire ester should be at least 300 and the viscosity at 210 F. should not be greater than 150 seconds (Saybolt) to provide a product having lubricating properties.
Among the various components of the complex esters of the present invention, certain preferences may be pointed out as giving the optimum of desired properties from the standpoint of service as a lubricant. The preferred glycols are the polyethylene glycols of the formula H0 (CH2C'H2O) nCH2CH2OH where n i to 26. The preferred monobasic acids are e fatty acids containing 2 to 10 carbon atoms per molecule. The preferred dibasic acids are the straight chain dibasic acids of the parafifinic group having from 6 to 10 carbon atoms per molecule.
Among the monobasic acids which may be employed in the preparation of the esters of the present invention the following may be listed as illustrative:
Acetic acid Propionic acid Butyric acid Valeric acid ,Caproic acid 1 R1 Br Br fimcn-cnoblnkcnon where R1 or R2 is a methyl group and the other is hydrogen, and where n is l to 20, maylikewise be employed. Glycols containing sulfur atoms in thioether linkages may also be employed, and these include such compounds as thiodiglycol and l,2-bis(2 hydroxyethylmercapto) ethane. There also may be used glycols containing both oxygen and sulfur in similar linkages; such a compound is bis- [2- (2-hydroxyethoxy) ethyl] sulfide.
Illustrative examples of the dibasic acids-which may be employed in the synthesis of the complex esters of the present invention are the following: Oxalic acid Malonic acid Succinic acid Glutaric acid Adipic acid Pimelic acid Suberic acid Azeiaio acid Sebacic acid Brassylic acid Pentadecanedicarboxylic acid Tetracosanedicarboxylic acid C4C24 Alkenylsuccinic acids Diglycolic acid Thiodiglycolic acid The C4--Czi alkenyl succinic acids listed above are prepared by condensing olefins or mixtures of r olefins with maleic anhydride.
If desired, various addition agents may be incorporated in the esters of the present invention for the purpose of improving their properties with respect to their usefulness as lubricants. For example, antioxidants, viscosity index improvers, thickeners, dyes, etc., may be added.
Data will be given below showing the preparation of severalexarnples of complex esters within the scope of the present invention, indicating the adaptability of these esters to lubricating service. All of these esters were Prepared by a general esterification method which may be described in detail as follows: In a 1-liter round bottom reaction flask, fitted with a reflux condenser and water trap, were placed one mol of monobasic acid, one mol of glycol, 2.5 grams of p-toluenesuifonic acid monohydrate (catalyst), and ml. toluene. The mixture was refluxed until no more Water collected in the water trap. After cooling, 0.5 mol of dibasic acid was added and the refluxing process resumed until again no more water collected in the trap. The mixture was washed with three 100 ml. portions of saturated aqueous sodium carbonate solution and one 100 ml. portion of water. After drying with Drierite (anhydrous calcium sulfate) the material was filtered and stripped at a pressure of about 5 mm. to a bath temperature of about 225 C.
The results of tests of various properties of esters prepared by the above general method are shown in the table of data as follows:
2. A composition according to claim 1 in which R1 and R1 represent radicals of the formula Flash Kinematic Viscosity A i t A STM seos our Component of Ester 31 Slope Index m;
,Valerlc acid Adi c 435 42. 480 8. 487 0. 588" v 153 -35 475 43. 335 8. 678 0. 583 153 -35 Adfp acid... 470 37. 240 7. 493 0. 610 152 Triethylene glycol Acetic i Sebaclc acid 440 82- m 13.409 0. 567 141 35 Tetraethylene glycol Propionic acid.
baclc acid 415 51. 846 9. 922 0. 573 150 -35 Tetraethylene glycol Butyric acid Bebacic acid 435 54. 56 10. 60 0. 559 152 35 Tetraethylene gly Valerie acid 1 Sebacic acid 445 58. 852 11.576 0. 542 152 -35 Tetraethylene glycol Caproic acid I Sebaeie acid 465 56. 150 10. 995 0. 651 152 -35 Tetraethylene glycol--- But ic acid Thlodipropionic acid 375 37. 330 7. 111 0. 636 150 -35 'xlahito l l u Thiodipro ionic acid 390 42. 470 7.734 0. 633 144 -40 'ietraethy ene glycol. 13% i th"? 1 e an mo sebgcie acid (0 25 mol) an 37.840 7. 493 0.614 151 4a Tetraethylene glycol- Acetic acid Adipic acid 395 116.3 14030 0.631 121 15 gthylene glycol ut 10 ac Adigi c acid i 435 62. 155 11. 476 0. 560 148 --35 Polyethylene glycol (300 mol wt.)
where R1 and R1 are radicals of the formula -(CH2CH2X)nCH2CH2-in whichX is a member of the group consisting of oxygen and sulfur and n is an integer from 1 to 7; where R: and R2 are alkyl groups containing 1 to 7 carbon atoms each; and where R3 is a radical selected from a group consisting of (1) radicals of the formula -(CH2)m-- where m is an integer from 4 to 8,
. (2) radicals of the formula -(CH2)nO(CH2)n where n is an integer from 2 to 4, and (3) radicals of the formula -(CH2)pS(CH2)p where p is an integer from 2 to 4.
(CH1CH2O) nCH2CH2- where n is an integer from 2 to 3.
3. A composition according to claim l in which R: is a radical of the formula (CH2)m where m is an integer from 4 to 8.
4. A compositionaccording to claim 3 in which m is 4.
5. As a new composition of matter a compound according to claim 1 in which R1 and R1 of the formula each represent the radical R: and R2 of the formula each represent the radical -(CH1):CH3 and R: of the formula represents CH2CH2S-CH:CH2
6. A composition according to claim 1 in which 2 R1 and R1 of the formula represent radicals of the formula in which R2 and R2 of the formula represent methyl radicals, and in which R3 of the formula represents the radical 7. A composition according to claim 1 in which R1 and R1 of the formula represent the radical (CH2CH2O 3CH2CH2- in which R: and R2 of the formula represent (CH2):CHz
6 Name Date Roberts Dec. 10, 1935 PAUL SMITH 2,234,722 Dickey et a1. Mar. 11, 1941 2,384,119 Muskat Sept. 4, 1945 REFERENCES CITED The following references are of record in the file of this patent:
Claims (1)
1. AS A NEW COMPOSITION OF MATTER A COMPOUND OF THE FORMULA
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US52430A US2575196A (en) | 1948-10-01 | 1948-10-01 | Mixed estirs of polyhydric alcohols and dibasic acids |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US52430A US2575196A (en) | 1948-10-01 | 1948-10-01 | Mixed estirs of polyhydric alcohols and dibasic acids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2575196A true US2575196A (en) | 1951-11-13 |
Family
ID=21977559
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US52430A Expired - Lifetime US2575196A (en) | 1948-10-01 | 1948-10-01 | Mixed estirs of polyhydric alcohols and dibasic acids |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2575196A (en) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2705724A (en) * | 1951-05-24 | 1955-04-05 | Exxon Research Engineering Co | Reduction of acidity in synthetic ester lubes with olefin oxides |
| US2723957A (en) * | 1952-02-27 | 1955-11-15 | Exxon Research Engineering Co | Synthetic lubricating oils containing paraffinic resins |
| US2750341A (en) * | 1951-12-28 | 1956-06-12 | Exxon Research Engineering Co | Lubricating grease comprising a synthetic oil and a complex thickener |
| US2764551A (en) * | 1954-05-17 | 1956-09-25 | Exxon Research Engineering Co | Ashless detergent additive for lubricating oils |
| US2768139A (en) * | 1952-10-20 | 1956-10-23 | Exxon Research Engineering Co | Lubricating greases from oxo glycols |
| US2782166A (en) * | 1949-05-07 | 1957-02-19 | Exxon Research Engineering Co | Ester base lubricating greases |
| US2815354A (en) * | 1951-11-16 | 1957-12-03 | Gen Aniline & Film Corp | Acylated polyesters of dihydroxyalkanes with dicarboxylic acids |
| US2820815A (en) * | 1954-04-08 | 1958-01-21 | Exxon Research Engineering Co | Synthetic lubricating compositions and process for their preparation |
| US2837562A (en) * | 1955-01-04 | 1958-06-03 | Exxon Research Engineering Co | Synthetic lubricating oil compositions |
| US2926139A (en) * | 1952-11-08 | 1960-02-23 | Bayer Ag | Lubricants for refrigerating systems |
| US2937996A (en) * | 1955-03-04 | 1960-05-24 | British Petroleum Co | Synthetic lubricants |
| US2956954A (en) * | 1955-07-11 | 1960-10-18 | Exxon Research Engineering Co | Synthetic ester lubricants |
| US3016353A (en) * | 1954-12-15 | 1962-01-09 | Exxon Research Engineering Co | Ester type synthetic lubricants |
| US3048623A (en) * | 1957-11-01 | 1962-08-07 | Exxon Research Engineering Co | Preparation of complex diester synthetic lubricants |
| US3119849A (en) * | 1962-02-27 | 1964-01-28 | Reuben O Feuge | Esterification process |
| US3131151A (en) * | 1961-02-27 | 1964-04-28 | Cities Service Res & Dev Co | Synthetic lubricants |
| US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
| US3387059A (en) * | 1963-12-28 | 1968-06-04 | Kuhlmann Ets | Polyesters prepared from branched chain monocarboxylic acids |
| US3459787A (en) * | 1965-10-11 | 1969-08-05 | Research Corp | Sulphur containing polyesters |
| US3466323A (en) * | 1965-12-13 | 1969-09-09 | Eastman Kodak Co | Low molecular weight linear thiodipropionic polyesters |
| US4128483A (en) * | 1977-03-16 | 1978-12-05 | Nippon Oil And Fats Co. Ltd. | Sulfur-containing complex esters and spin finishing compositions using said esters |
| EP0006957B1 (en) * | 1977-11-16 | 1984-10-03 | American National Can Company | Method of making metal containers |
| US4909952A (en) * | 1989-01-03 | 1990-03-20 | The Lubrizol Corporation | Sulfur-containing polymeric polyesters and additive concentrates and lubricating oils containing same |
| US5820777A (en) * | 1993-03-10 | 1998-10-13 | Henkel Corporation | Blended polyol ester lubricants for refrigerant heat transfer fluids |
| US5851968A (en) * | 1994-05-23 | 1998-12-22 | Henkel Corporation | Increasing the electrical resistivity of ester lubricants, especially for use with hydrofluorocarbon refrigerants |
| WO1999011864A1 (en) * | 1997-09-02 | 1999-03-11 | Clariant Finance (Bvi) Limited | Paper production process |
| US5906769A (en) * | 1992-06-03 | 1999-05-25 | Henkel Corporation | Polyol ester lubricants for refrigerating compressors operating at high temperatures |
| US5976399A (en) * | 1992-06-03 | 1999-11-02 | Henkel Corporation | Blended polyol ester lubricants for refrigerant heat transfer fluids |
| US6183662B1 (en) | 1992-06-03 | 2001-02-06 | Henkel Corporation | Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures |
| US6221272B1 (en) | 1992-06-03 | 2001-04-24 | Henkel Corporation | Polyol ester lubricants for hermetically sealed refrigerating compressors |
| US7018558B2 (en) | 1999-06-09 | 2006-03-28 | Cognis Corporation | Method of improving performance of refrigerant systems |
| WO2012166571A1 (en) | 2011-05-27 | 2012-12-06 | Exxonmobil Research And Engineering Company | A method for producing a two phase lubricant composition |
| WO2012166575A1 (en) | 2011-05-27 | 2012-12-06 | Exxonmobil Research And Engineering Company | Oil-in-oil compositions and methods of making |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2023976A (en) * | 1933-12-07 | 1935-12-10 | Tretolite Co | Process for breaking petroleum emulsions |
| US2234722A (en) * | 1938-12-21 | 1941-03-11 | Eastman Kodak Co | Yarn conditioning process and composition therefor |
| US2384119A (en) * | 1941-11-13 | 1945-09-04 | Pittsburgh Plate Glass Co | Unsaturated esters |
-
1948
- 1948-10-01 US US52430A patent/US2575196A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2023976A (en) * | 1933-12-07 | 1935-12-10 | Tretolite Co | Process for breaking petroleum emulsions |
| US2234722A (en) * | 1938-12-21 | 1941-03-11 | Eastman Kodak Co | Yarn conditioning process and composition therefor |
| US2384119A (en) * | 1941-11-13 | 1945-09-04 | Pittsburgh Plate Glass Co | Unsaturated esters |
Cited By (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2782166A (en) * | 1949-05-07 | 1957-02-19 | Exxon Research Engineering Co | Ester base lubricating greases |
| US2705724A (en) * | 1951-05-24 | 1955-04-05 | Exxon Research Engineering Co | Reduction of acidity in synthetic ester lubes with olefin oxides |
| US2815354A (en) * | 1951-11-16 | 1957-12-03 | Gen Aniline & Film Corp | Acylated polyesters of dihydroxyalkanes with dicarboxylic acids |
| US2750341A (en) * | 1951-12-28 | 1956-06-12 | Exxon Research Engineering Co | Lubricating grease comprising a synthetic oil and a complex thickener |
| US2723957A (en) * | 1952-02-27 | 1955-11-15 | Exxon Research Engineering Co | Synthetic lubricating oils containing paraffinic resins |
| US2768139A (en) * | 1952-10-20 | 1956-10-23 | Exxon Research Engineering Co | Lubricating greases from oxo glycols |
| US2926139A (en) * | 1952-11-08 | 1960-02-23 | Bayer Ag | Lubricants for refrigerating systems |
| US2820815A (en) * | 1954-04-08 | 1958-01-21 | Exxon Research Engineering Co | Synthetic lubricating compositions and process for their preparation |
| US2764551A (en) * | 1954-05-17 | 1956-09-25 | Exxon Research Engineering Co | Ashless detergent additive for lubricating oils |
| US3016353A (en) * | 1954-12-15 | 1962-01-09 | Exxon Research Engineering Co | Ester type synthetic lubricants |
| US2837562A (en) * | 1955-01-04 | 1958-06-03 | Exxon Research Engineering Co | Synthetic lubricating oil compositions |
| US2937996A (en) * | 1955-03-04 | 1960-05-24 | British Petroleum Co | Synthetic lubricants |
| US2956954A (en) * | 1955-07-11 | 1960-10-18 | Exxon Research Engineering Co | Synthetic ester lubricants |
| US3048623A (en) * | 1957-11-01 | 1962-08-07 | Exxon Research Engineering Co | Preparation of complex diester synthetic lubricants |
| US3131151A (en) * | 1961-02-27 | 1964-04-28 | Cities Service Res & Dev Co | Synthetic lubricants |
| US3119849A (en) * | 1962-02-27 | 1964-01-28 | Reuben O Feuge | Esterification process |
| US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
| US3387059A (en) * | 1963-12-28 | 1968-06-04 | Kuhlmann Ets | Polyesters prepared from branched chain monocarboxylic acids |
| US3459787A (en) * | 1965-10-11 | 1969-08-05 | Research Corp | Sulphur containing polyesters |
| US3466323A (en) * | 1965-12-13 | 1969-09-09 | Eastman Kodak Co | Low molecular weight linear thiodipropionic polyesters |
| US4128483A (en) * | 1977-03-16 | 1978-12-05 | Nippon Oil And Fats Co. Ltd. | Sulfur-containing complex esters and spin finishing compositions using said esters |
| EP0006957B1 (en) * | 1977-11-16 | 1984-10-03 | American National Can Company | Method of making metal containers |
| US4909952A (en) * | 1989-01-03 | 1990-03-20 | The Lubrizol Corporation | Sulfur-containing polymeric polyesters and additive concentrates and lubricating oils containing same |
| US6296782B1 (en) | 1992-06-03 | 2001-10-02 | Henkel Corporation | Polyol ester lubricants for refrigerator compressors operating at high temperatures |
| US6666985B2 (en) | 1992-06-03 | 2003-12-23 | Cognis Corporation | Polyol ester lubricants for hermetically sealed refrigerating compressors |
| US6551524B2 (en) | 1992-06-03 | 2003-04-22 | Cognis Corporation | Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures |
| US5906769A (en) * | 1992-06-03 | 1999-05-25 | Henkel Corporation | Polyol ester lubricants for refrigerating compressors operating at high temperatures |
| US5976399A (en) * | 1992-06-03 | 1999-11-02 | Henkel Corporation | Blended polyol ester lubricants for refrigerant heat transfer fluids |
| US6183662B1 (en) | 1992-06-03 | 2001-02-06 | Henkel Corporation | Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures |
| US6221272B1 (en) | 1992-06-03 | 2001-04-24 | Henkel Corporation | Polyol ester lubricants for hermetically sealed refrigerating compressors |
| US5820777A (en) * | 1993-03-10 | 1998-10-13 | Henkel Corporation | Blended polyol ester lubricants for refrigerant heat transfer fluids |
| US5851968A (en) * | 1994-05-23 | 1998-12-22 | Henkel Corporation | Increasing the electrical resistivity of ester lubricants, especially for use with hydrofluorocarbon refrigerants |
| US6267844B1 (en) * | 1997-09-02 | 2001-07-31 | Clariant Finance (Bvi) Limited | Process for production of paper using thioether compounds |
| WO1999011864A1 (en) * | 1997-09-02 | 1999-03-11 | Clariant Finance (Bvi) Limited | Paper production process |
| US7018558B2 (en) | 1999-06-09 | 2006-03-28 | Cognis Corporation | Method of improving performance of refrigerant systems |
| WO2012166571A1 (en) | 2011-05-27 | 2012-12-06 | Exxonmobil Research And Engineering Company | A method for producing a two phase lubricant composition |
| WO2012166575A1 (en) | 2011-05-27 | 2012-12-06 | Exxonmobil Research And Engineering Company | Oil-in-oil compositions and methods of making |
| US8623796B2 (en) | 2011-05-27 | 2014-01-07 | Exxonmobil Research And Engineering Company | Oil-in-oil compositions and methods of making |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2575196A (en) | Mixed estirs of polyhydric alcohols and dibasic acids | |
| US2575195A (en) | Dibasic acid esters and method for producing them | |
| US2632767A (en) | Complex phosphate ester synthetic lubricant | |
| US3562300A (en) | Liquid neoalkylpolyol esters of mixtures of neo-and straight or branched chain alkanoic acids and their preparation | |
| US2379728A (en) | Methods of preparing polymerization products | |
| US2651657A (en) | Synthetic lubricating oil | |
| US2559510A (en) | Synthetic lubricants | |
| US2703811A (en) | Dibasic acid esters of glycols | |
| US2548493A (en) | Esters of trimethyladipic acid | |
| US2680094A (en) | Rust preventive oil composition | |
| US2683119A (en) | Compounded lubricant | |
| US2601063A (en) | Glycol esters of alkyl-mercapto-carboxylic acids | |
| US2561232A (en) | Dialkylalkenylsuccinates | |
| US2563609A (en) | Lubricating oil additives | |
| US2733235A (en) | Table ii | |
| US4207195A (en) | Sulfurized olefin adducts of dihydrocarbyl phosphites and lubricant compositions containing same | |
| US2637698A (en) | Mineral oil lubricating composition containing a copolymer of an alkyl ester of itaconic acid and an alkyl acrylate or methacrylate | |
| US3681440A (en) | Esters of tetrahydroxy dineoalkyl ethers | |
| US2705724A (en) | Reduction of acidity in synthetic ester lubes with olefin oxides | |
| US2668848A (en) | Ester-type synthetic lubricants | |
| US2837562A (en) | Synthetic lubricating oil compositions | |
| US2257290A (en) | Organic sulphur compound and composition thereof | |
| US2570037A (en) | Esters of aliphatic dibasic acids and ether-alcohols containing a branched chain in the glycol group | |
| US2411178A (en) | Oil composition | |
| US2723286A (en) | Reduction of acidity in synthetic ester lubes with ethylene carbonate |