US2561437A - Temperature sensitive device for ice bank controllers - Google Patents

Temperature sensitive device for ice bank controllers Download PDF

Info

Publication number
US2561437A
US2561437A US57859A US5785948A US2561437A US 2561437 A US2561437 A US 2561437A US 57859 A US57859 A US 57859A US 5785948 A US5785948 A US 5785948A US 2561437 A US2561437 A US 2561437A
Authority
US
United States
Prior art keywords
tube
wall
inner tube
bulb
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US57859A
Inventor
Clifton A Cobb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Missouri Automatic Control Corp
Original Assignee
Missouri Automatic Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Missouri Automatic Control Corp filed Critical Missouri Automatic Control Corp
Priority to US57859A priority Critical patent/US2561437A/en
Application granted granted Critical
Publication of US2561437A publication Critical patent/US2561437A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • F25D31/003Liquid coolers, e.g. beverage cooler with immersed cooling element

Definitions

  • This invention relates to control devices which are actuated by the change in volume of a liquid as it is frozen or melted. More particularly, it relates to a control device of this character adapted to control the operation of a refrigeration com-.- ⁇ pressor so as to closely control the ice formation or thickness of the ice bank which builds up on or adjacent to the refrigerant coils in a cold water type cooler.
  • An object of this invention is to provide a generally new and improved control device of this character which is unusually sensitive and dependable, which is simple and inexpensive to produce, and which will not be damaged by eX- DOsure to temperatures considerably below the freezing point of water.
  • a further object is to provide a control device of this character having an improved all metal-l lic feeler bulb adapted to measure the ice thickness, which comprises a pair of liquid containing chambers separated by a flexible metallic wall wherein many suitable combinations of freezing and non-freezing liquids may be used without danger of absorption by the separating wall or its dissolution, or of dilution of either of the liquids by osmosis.
  • a further object is the provision of a control device of this character having a feeler bulb comprising a hollow elongated metal outer tube of circular cross section and an inner elongated relatively thin walled metal tube of non-circular cross section, which inner tube contains a nonfreezing liquid and has communication with a remote expansible element, and which outer tube contains a volume of pure water surrounding the inner tube.
  • a further object is the provision of a control device of this character having a feeler bulb comprising a pair of chambers separated by a rela- ⁇ tively thin flexible metal wall in which one of the chambers contains pure water and the other contains a non-freezing liquid, the chamber containing the non-freezing liquid being in communication with a remote expansible element, the
  • chamber containing the non-freezing liquid also having a rigid backing wall opposite the flexible separating walll which is shaped to permit uniform deflection of any part of the wall to a point below the elastic limit of the material of which the flexible wall is constructed.
  • a further Object is the provision of a feeler bulb for use in a control device as above comprising an elongated hollow metal outer tube of circular cross section, and an inner elongated andrelatively thin metal inner tube of non-:circular cross section, ⁇ which inner tube contains sealed therein a volume of pure water and which outer tube contains a volume of non-freezing liquidsurrounding the inner tube and has communication with a remote expansible element.
  • Fig. v1 is a schematic view showing a cooler in part together with a motor driven compressor and refrigerant coils and a control device constructed in accordance with the present invention associated therewith so as to control the starting and stepping of the compressor so as to maintain a predetermined thickness of ice formation .on the wall of the cooler.
  • Fig. :2 is ,an enlarged view of the control device shown use in Fig. 1 in which parts have been shown in section to more clearly illustrate.
  • Fig; 3 is an enlarged transverse sectional View taken through the feeler bulb of the control de- ViGe Shown Fig. 2 and is taken on line ⁇ fie-3 of 2.
  • Fig, fi illustrates a second form ,of feeler bulb which may be used in lieu of the one shown in Fig. 3.
  • Fig. 5 is an enlarged transverse sectional view taken on line 5,-5 of the bulb shown in Fig. 4.
  • Fig. 6 1S a part longitudinal section taken .on line 6-7-6 of Fis. 4.
  • the reference numeral ID indicates a cooler shown in Dart having a wall I I in which are ar.- ransed refrigerant evaporator coils I2.
  • the cooler substantially flledwith water as indicated at 1 3 and the refrigerant coils connect with a compressor indicated at I4 which is drivenfby .an electric motor I5.
  • a circuit for the motor I5 comprising the leads I6 and Il connected to a source of power is provided and a control device generally indicated at I8 is interposed in the circuit to effect an off and on control of the operation of the compressor.
  • the control I 3 includes a feeler bulb generally indicated at It which'is positioned at a predetermined distance from the wall thereby to control the thickness of the ice bank.
  • 9 as shown in Figs. 2 and 3 comprises an outer metal tube 2U in which is fitted a relatively thin walled metal tube 2
  • the outer tube 20 in cross section has a circular exterior wall 24 and a passage 25 therethrough which is generally elliptical in cross section and which receives the attened inner tube 2
  • the inner metal tuber At its ends the outer tube 26 isfprovided with concentric circular counterbores at 28 and 29 to receive the circular end closing plugs 36 and 3
  • is shown as being an integral' part of the filler bar 26.
  • may be attached to the ller bar 26 by welding or solder- 1,
  • maybe rigidly held in place by soldering or welding.
  • the shape of the passage 25 in cross section is such that the rounded edges 23 of the inner tube are contiguous therewith for a full 180 as indi-V cated.
  • a longitudinal passage 32 in the filler bar 26 extending from one end to approximately the center of its length and a transverse passage 33 intersecting the passage 32 providing communication between the passage 32 and the opposite spaces which lie between the concave sides 21 of the ller bar and the at sides 22 of the inner tube 2
  • the passage 32 extends through the end closing plug 3
  • an expansible element 35 comprising a rigid outer metal cup member 36 and an inner iiexible metal cup member 31.
  • the outer and inner cup members 36 and 31 are attached alongY their side walls as by continuous welding Vas indicated at 38.
  • As ⁇ fluid pressure is applied through the capillary 34 to the space between the bottom walls of the cups, the bottom wall ofthe y ally mounted a sensitive snap action switching device 42 mounted on a pivot 43,v supported by the casing.
  • the switching device 42 is provided vwith an actuating plunger 44 and the switch mechanism is arranged so as to open upon de" pression of the actuating plunger 44.
  • Slidably fitted in the wall of the casing is a second actuating plunger 45 which bears at one end on the bottom wall of the inner flexible cup member 31 and at its other end on the switchY actuating plunger 44.
  • the longitudinal passage 25 in the outer tube 20 is filled with a suitable liquid which preferably freezes at 32P F. such as pure water.
  • does not extend the full length of the passage 25, a small space being provided at one end as indicated at 53 to permit communication between the spaces on opposite sides of the inner tube.
  • the concave sides 21 of the ller bar 26 are developed so as to permit normal deflection of the thin flat sides 22 of the inner tube under uniformly distributed load and to limit thedeilection of any part of the tube to a point below the elastic limit of the material.
  • the thin inner tube is preferably constructed of a high nickel chrome steel and has a wall thickness in the order of .002 to .004 of an inch.
  • of the outer tube 20 which lie opposite the surfaces 21 ofthe ller 26 are developed.
  • a second form of feeler ll, 5 and 6 comprises an outer tube 52 of. circular cross section having a generally elliptical passageway 53 therethrough in which is fitted a thin walled inner tube 54 having substantially at opposite walls 55 and rounded ends 56.
  • the shape of the passage 53 in cross section is such that the rounded edges of the inner tube 54 are contiguous therewith for a full 180 as indicated.v
  • the inner tube 54 is closed at its ends ⁇ by pinching together the flat sides as indicated' at 51 in- Fig. 6. The ends are further sealed ⁇ by soldering or welding.
  • the outer tube 52 is counterbored at each end at 58 and 59 to receive the round end.
  • are soldered or welded to the tube 52.
  • is perforated to receive one end of a capillarytube 34a, the other end of which may be attached to the expansible element 35.
  • the passage 53 in outer tube 52 is therefore connected to the expansible element and together' ⁇ with the expansible element and capillary tube form a closed system which is lled with a suitable non-freezing liquid.
  • the inner tube 54 1 being hermetically sealed is iilled with a freezing liquid such as pure water. l I
  • the curved walls 32 of the passage 53 in outer f tube 52 are likewise developed so as to permit normal deflection of the inner tube walls- 55 under uniform load and to limit the deflection to a point
  • the end"1 plugs of the outer tubes of both formsof feeler f bulbs are provided with short pieces of capillary, tubing 63 to facilitate lling the outer tubesj' These capillary tubes are pinched and soldered" below the elastic limit of the material.
  • cooler and spaced at the desired distance from biased between the rear wall of the casingandv the wall or the evaporator coils.
  • the actuation of the switching device may be achieved by expansion resulting from only partial freezing cf the water within the feeler bulb.
  • I have proportioned the volumes of Vthe freezing and non-freezing liquids within the bulb and the expansible element 35 so as to achieve switch actuation with not more than 25 per cent of the total expansion of the water in the bulb which would occur between water at 32 F. and solid ice at 32 F.
  • the device may however be subjected to temperatures considerably below 32 F. in shipment or in storage when not in use.
  • the relation of the permissible displacement of the inner tube walls to the volume of water within the tube is made such therefore, as to permit total expansion of the water upon complete solidifica tion and some additional expansion of the solid ice as may occur in atmospheric temperatures likely to be encountered. It will be understood that the principles set forth hereinabove may be applied to a design of feeler bulb employing a flat circular diaphragm as well as the preferred round, elongated tube design shown and described.
  • a temperature sensitive bulb comprising a relatively thick walled outer tube of circular cross-section, a relatively thin walled inner tube flattened s0 as to have relatively extensive and substantially flat and parallel opposite side walls and rounded edges arranged within said outer tube, an elongated filler member within said inner tube extending substantially the full length thereof, said illler member having rounded edges contiguous with the rounded edges of said inner tube and having transversely concave surfaces opposite the flat walls of said inner tube, said outer tube having sealed ends and containing a freezing liquid, said inner tube being sealed at one end and containing a non-freezing motion transmission fluid, an outlet at the other end of said inner tube, and means Dmlldiletcmmunicaticn between ⁇ tlnelspaces;1y'-- mena ennostei sides of said euer member. .i
  • a remote sensitive bulb comprising a charnber having a relatively rigid surrounding wall and being divided by a relatively thin normally flat flexible metal wall, one of the divisions of said -chamber being sealed and containing a freezing liquid, the other division having communication with said expansible chamber and being filled with a non-freezing motion transmitting liquid, said rigid bulb chamber wall deilning said last mentioned division being arcuate and being subtended by said flat flexible metal wall, and the curvature of this wall being such that said flexible metal wall may be deflected at any point so as to be contiguous therewith without exceeding its elastic limit at any point.
  • a remote temperature sensitive bulb comprising a chamber divided by a normally flat relatively thin flexible metal wall into ilrst and second divisions, said bulb chamber Walls forming relatively flat arcuate curves on both sides of said flexible metal wall and being subtended thereby, the curvature of the chamber Wall defining said second division being such that said flexible metal wall may be deflected at any point sufficiently so as to be contiguous therewith without exceeding its elastic limit, said first chamber division being sealed and filled with a freezing liquid, and said second division having communication with said expansible chamber together with which it forms a sealed system lled with a non-freezing motion transmitting liquid.
  • an ice detecting bulb comprising a chamber divided into first and second divisions by a relatively thin flexible metal wall, said opposite chamber Walls being curved so as to form relatively flat arches on both sides of said flexible metal dividing Wall, said ilrst chamber division being sealed and filled with a freezing liquid, said second chamber division having communication with said expansible chamber and being lled with a non-freezing motion transmitting liquid, the curvature of said second chamber division wall being such that stress and deflection is substana tially equal at alll points on said flexible metal ywallg when deflected so as to be contiguous therewithi andthecurvature of said rst chamber division Wall being 'such that the expansion at any point thereon acting normally to said iexible metal wall 5 CLIFTON A. COBB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

July 24, 1951 c. A. coBB 2,561,437
TEMPERATURE SENSITIVE DEVICE FOR ICE RANK CONTROLLERS Filed Nov. 2, 1948 Patented July 24, 1951 UNITED STATES PATENT OFFICE TEMPERATURE SENSITIVE DEVICE FOR ron BANK ooNrnoLLEas I Clifton A. Gobbi University City, Mo., assigner to Missouri Automatic Control Corporation, St. Louis, Mo., a corporation of Missouri Application November 2, 194s, serial No. 57,859
6 Claims. l
This invention relates to control devices which are actuated by the change in volume of a liquid as it is frozen or melted. More particularly, it relates to a control device of this character adapted to control the operation of a refrigeration com-.-` pressor so as to closely control the ice formation or thickness of the ice bank which builds up on or adjacent to the refrigerant coils in a cold water type cooler.
`The advantage of employing the considerable volume change of a liquid as it freezes or melts to actuate a refrigeration controller is well known. Also devices have been proposed which employ this principle of operation and which incorporate therewith a non-freezing transmission lud for transmitting movement of the expansible receptable or feeler bulb containing the freezing liquid to a remote point,`there to cause the expansion of a second expansible element and the actuation of an associated control member.
An object of this invention is to provide a generally new and improved control device of this character which is unusually sensitive and dependable, which is simple and inexpensive to produce, and which will not be damaged by eX- DOsure to temperatures considerably below the freezing point of water.
A further object is to provide a control device of this character having an improved all metal-l lic feeler bulb adapted to measure the ice thickness, which comprises a pair of liquid containing chambers separated by a flexible metallic wall wherein many suitable combinations of freezing and non-freezing liquids may be used without danger of absorption by the separating wall or its dissolution, or of dilution of either of the liquids by osmosis.
A further object is the provision of a control device of this character having a feeler bulb comprising a hollow elongated metal outer tube of circular cross section and an inner elongated relatively thin walled metal tube of non-circular cross section, which inner tube contains a nonfreezing liquid and has communication with a remote expansible element, and which outer tube contains a volume of pure water surrounding the inner tube.
A further object is the provision of a control device of this character having a feeler bulb comprising a pair of chambers separated by a rela-` tively thin flexible metal wall in which one of the chambers contains pure water and the other contains a non-freezing liquid, the chamber containing the non-freezing liquid being in communication with a remote expansible element, the
chamber containing the non-freezing liquid also having a rigid backing wall opposite the flexible separating walll which is shaped to permit uniform deflection of any part of the wall to a point below the elastic limit of the material of which the flexible wall is constructed.
A further Object is the provision of a feeler bulb for use in a control device as above comprising an elongated hollow metal outer tube of circular cross section, and an inner elongated andrelatively thin metal inner tube of non-:circular cross section,` which inner tube contains sealed therein a volume of pure water and which outer tube contains a volume of non-freezing liquidsurrounding the inner tube and has communication with a remote expansible element.
Other objects and advantages will appear from the following complete description when read in connection with the accompanying drawing.
In the drawing,
Fig. v1 is a schematic view showing a cooler in part together with a motor driven compressor and refrigerant coils and a control device constructed in accordance with the present invention associated therewith so as to control the starting and stepping of the compressor so as to maintain a predetermined thickness of ice formation .on the wall of the cooler.
Fig. :2 is ,an enlarged view of the control device shown use in Fig. 1 in which parts have been shown in section to more clearly illustrate.
Fig; 3 is an enlarged transverse sectional View taken through the feeler bulb of the control de- ViGe Shown Fig. 2 and is taken on line `fie-3 of 2.
Fig, fi illustrates a second form ,of feeler bulb which may be used in lieu of the one shown in Fig. 3.
Fig. 5 is an enlarged transverse sectional view taken on line 5,-5 of the bulb shown in Fig. 4.
Fig. 6 1S a part longitudinal section taken .on line 6-7-6 of Fis. 4.
The reference numeral ID indicates a cooler shown in Dart having a wall I I in which are ar.- ransed refrigerant evaporator coils I2. The cooler substantially flledwith water as indicated at 1 3 and the refrigerant coils connect with a compressor indicated at I4 which is drivenfby .an electric motor I5. A circuit for the motor I5 comprising the leads I6 and Il connected to a source of power is provided and a control device generally indicated at I8 is interposed in the circuit to effect an off and on control of the operation of the compressor. The control I 3 includes a feeler bulb generally indicated at It which'is positioned at a predetermined distance from the wall thereby to control the thickness of the ice bank.
The bulb |9 as shown in Figs. 2 and 3 comprises an outer metal tube 2U in which is fitted a relatively thin walled metal tube 2| having flat sides 22 and rounded edges 23. The outer tube 20 in cross section has a circular exterior wall 24 and a passage 25 therethrough which is generally elliptical in cross section and which receives the attened inner tube 2|. has inserted therein a ller bar 26 having concave surfaces 21 opposite the flat sides 22 of the inner tube. Otherwise the iiller 26 nicely nts the interior of tube 2|.
The inner metal tuber At its ends the outer tube 26 isfprovided with concentric circular counterbores at 28 and 29 to receive the circular end closing plugs 36 and 3|. The end closing plug 3| is shown as being an integral' part of the filler bar 26. For economical construction the circular plug 3| may be attached to the ller bar 26 by welding or solder- 1,
ing. The end closing plugs 36 and 3| maybe rigidly held in place by soldering or welding. The shape of the passage 25 in cross section is such that the rounded edges 23 of the inner tube are contiguous therewith for a full 180 as indi-V cated.
There is a longitudinal passage 32 in the filler bar 26 extending from one end to approximately the center of its length and a transverse passage 33 intersecting the passage 32 providing communication between the passage 32 and the opposite spaces which lie between the concave sides 21 of the ller bar and the at sides 22 of the inner tube 2|. The passage 32 extends through the end closing plug 3| and receives at its outer end a capillary tube 34. The other end of the capillary tube 34 communicates with the.
interior of an expansible element 35 comprising a rigid outer metal cup member 36 and an inner iiexible metal cup member 31. The outer and inner cup members 36 and 31 are attached alongY their side walls as by continuous welding Vas indicated at 38. As` fluid pressure is applied through the capillary 34 to the space between the bottom walls of the cups, the bottom wall ofthe y ally mounted a sensitive snap action switching device 42 mounted on a pivot 43,v supported by the casing. The switching device 42 is provided vwith an actuating plunger 44 and the switch mechanism is arranged so as to open upon de" pression of the actuating plunger 44. Slidably fitted in the wall of the casing is a second actuating plunger 45 which bears at one end on the bottom wall of the inner flexible cup member 31 and at its other end on the switchY actuating plunger 44.
A relatively strong diaphragm return spring 46 biased between the front casing wall and a ange Y 41 on the plunger 45 resists expansion of the element 35. A second relatively strong spring 48 at both ends as by soldering or welding and this inner tube, the capillary 34 and the expansible element 35 form a sealed system which is filled with a suitable non-freezing motion transmitting liquid such as, xylene (ortho). The longitudinal passage 25 in the outer tube 20 is filled with a suitable liquid which preferably freezes at 32P F. such as pure water. The inner tube 2| does not extend the full length of the passage 25, a small space being provided at one end as indicated at 53 to permit communication between the spaces on opposite sides of the inner tube.
The concave sides 21 of the ller bar 26 are developed so as to permit normal deflection of the thin flat sides 22 of the inner tube under uniformly distributed load and to limit thedeilection of any part of the tube to a point below the elastic limit of the material. The thin inner tube is preferably constructed of a high nickel chrome steel and has a wall thickness in the order of .002 to .004 of an inch. The inner wall surfaces 5| of the outer tube 20 which lie opposite the surfaces 21 ofthe ller 26 are developed.
so that expansion proportional to thedistance which the walls 22v are permitted to iiex at any point will occur.
A second form of feeler ll, 5 and 6 comprises an outer tube 52 of. circular cross section having a generally elliptical passageway 53 therethrough in which is fitted a thin walled inner tube 54 having substantially at opposite walls 55 and rounded ends 56. The shape of the passage 53 in cross section is such that the rounded edges of the inner tube 54 are contiguous therewith for a full 180 as indicated.v The inner tube 54 is closed at its ends `by pinching together the flat sides as indicated' at 51 in- Fig. 6. The ends are further sealed `by soldering or welding. The outer tube 52 is counterbored at each end at 58 and 59 to receive the round end. The plugs 60 and 6| are soldered or welded to the tube 52. Thev plug 6| is perforated to receive one end of a capillarytube 34a, the other end of which may be attached to the expansible element 35. In this form of bulb, the passage 53 in outer tube 52 is therefore connected to the expansible element and together'` with the expansible element and capillary tube form a closed system which is lled with a suitable non-freezing liquid. The inner tube 54 1 being hermetically sealed is iilled with a freezing liquid such as pure water. l I
The curved walls 32 of the passage 53 in outer f tube 52 are likewise developed so as to permit normal deflection of the inner tube walls- 55 under uniform load and to limit the deflection to a point The end"1 plugs of the outer tubes of both formsof feeler f bulbs are provided with short pieces of capillary, tubing 63 to facilitate lling the outer tubesj' These capillary tubes are pinched and soldered" below the elastic limit of the material.
closed after the outer tubes have been lled.
In operation The feeler bulb is placed in the water filledj:
. cooler and spaced at the desired distance from biased between the rear wall of the casingandv the wall or the evaporator coils.
sition, the temperature of the bulb and the water bulb as shown vin Figs.
If the ice bank.' is not thick enough to touch the bulb injthis po'- the, tube would ordinarily result. The cur-ved` Walls 211' of' the filler bar 2f,` inthe first form of bulb described and' the curved walls S2 of the outer tube in the second form of bulb described, prevent undue deflection of the thin tube walls at any point and force the freezing mixture which is still suiiiciently fluent to permit this, to uniformly deflect these walls both longitudinally and transversely, As hereinbefore stated, the curvature of walls 2'! and @2 is such that the thin tube walls cannot be stressed beyond the elastic limit.
By the use of a sensitive switching device requiring only a slight actuating movement in the order of .002 or .003 inch and the use of a liquid motion transmission medium together with a metal diaphragm type expansible element which altogether results in a positive unyielding transmission of motion, the actuation of the switching device may be achieved by expansion resulting from only partial freezing cf the water within the feeler bulb. In the present invention, I have proportioned the volumes of Vthe freezing and non-freezing liquids within the bulb and the expansible element 35 so as to achieve switch actuation with not more than 25 per cent of the total expansion of the water in the bulb which would occur between water at 32 F. and solid ice at 32 F. Thus it will be seen that in normal operation the water within the bulbs does not completely solidify and the inner tube walls are not deflected to the permissible limit.
The device may however be subjected to temperatures considerably below 32 F. in shipment or in storage when not in use. The relation of the permissible displacement of the inner tube walls to the volume of water within the tube is made such therefore, as to permit total expansion of the water upon complete solidifica tion and some additional expansion of the solid ice as may occur in atmospheric temperatures likely to be encountered. It will be understood that the principles set forth hereinabove may be applied to a design of feeler bulb employing a flat circular diaphragm as well as the preferred round, elongated tube design shown and described.
I claim:
1. In a device of the class described, a temperature sensitive bulb comprising a relatively thick walled outer tube of circular cross-section, a relatively thin walled inner tube flattened s0 as to have relatively extensive and substantially flat and parallel opposite side walls and rounded edges arranged within said outer tube, an elongated filler member within said inner tube extending substantially the full length thereof, said illler member having rounded edges contiguous with the rounded edges of said inner tube and having transversely concave surfaces opposite the flat walls of said inner tube, said outer tube having sealed ends and containing a freezing liquid, said inner tube being sealed at one end and containing a non-freezing motion transmission fluid, an outlet at the other end of said inner tube, and means Dmlldiletcmmunicaticn between` tlnelspaces;1y'-- mena ennostei sides of said euer member. .i
2a A temperature, sensitive bulb as set forth in claim` 1- in which; the curvature of the; concave surfaces; ot the filler member are such thatdeflec.- tien of the flat surfaces. of said inner tube to the` extent. that theyare contiguous therewith relatively thin walled metal innerV tube of non-` circular cross section arranged therein, said inner tube having an elongated member disposed therein and extending substantially the full length thereof for limiting the extent to which said inner tube may be collapsed transversely, said inner tube having a conduit connected to one end thereof which extends exteriorly of said outer tube and is connected to said expansible chamber, said outer tube containing sealed therein a quantity of freezing liquid, and said inner tube, said connecting conduit and said expansible chamber being filled with a non-freezing motion transmitting liquid.
4. For use in a fluid pressure operated refrigeration control device having an expansible chamber, a remote sensitive bulb comprising a charnber having a relatively rigid surrounding wall and being divided by a relatively thin normally flat flexible metal wall, one of the divisions of said -chamber being sealed and containing a freezing liquid, the other division having communication with said expansible chamber and being filled with a non-freezing motion transmitting liquid, said rigid bulb chamber wall deilning said last mentioned division being arcuate and being subtended by said flat flexible metal wall, and the curvature of this wall being such that said flexible metal wall may be deflected at any point so as to be contiguous therewith without exceeding its elastic limit at any point.
5. In a device of the class described an expansible chamber, a remote temperature sensitive bulb comprising a chamber divided by a normally flat relatively thin flexible metal wall into ilrst and second divisions, said bulb chamber Walls forming relatively flat arcuate curves on both sides of said flexible metal wall and being subtended thereby, the curvature of the chamber Wall defining said second division being such that said flexible metal wall may be deflected at any point sufficiently so as to be contiguous therewith without exceeding its elastic limit, said first chamber division being sealed and filled with a freezing liquid, and said second division having communication with said expansible chamber together with which it forms a sealed system lled with a non-freezing motion transmitting liquid.
6. For use in a fluid pressure operated refrigeration control device having an expansible chamber, an ice detecting bulb comprising a chamber divided into first and second divisions by a relatively thin flexible metal wall, said opposite chamber Walls being curved so as to form relatively flat arches on both sides of said flexible metal dividing Wall, said ilrst chamber division being sealed and filled with a freezing liquid, said second chamber division having communication with said expansible chamber and being lled with a non-freezing motion transmitting liquid, the curvature of said second chamber division wall being such that stress and deflection is substana tially equal at alll points on said flexible metal ywallg when deflected so as to be contiguous therewithi andthecurvature of said rst chamber division Wall being 'such that the expansion at any point thereon acting normally to said iexible metal wall 5 CLIFTON A. COBB.
REFERENCES CITED ...i-,The following references are of record in the,
file; of this patent:
Number Number 8 UNITED STATES PATENTS Name Date Powers Dec. 10. 1889 Powers Feb. 11, 1896 Halsey Nov. 26, 1918 Swift Oct. 19, 1920 Smilack Dec. 29, 1936 Wood Jan. 16, 1940 Miller Nov. 16, 1948 FOREIGN PATENTS Country Date Great Britain Mar. 27, 1924 Germany Oct. 22, 1930
US57859A 1948-11-02 1948-11-02 Temperature sensitive device for ice bank controllers Expired - Lifetime US2561437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US57859A US2561437A (en) 1948-11-02 1948-11-02 Temperature sensitive device for ice bank controllers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57859A US2561437A (en) 1948-11-02 1948-11-02 Temperature sensitive device for ice bank controllers

Publications (1)

Publication Number Publication Date
US2561437A true US2561437A (en) 1951-07-24

Family

ID=22013162

Family Applications (1)

Application Number Title Priority Date Filing Date
US57859A Expired - Lifetime US2561437A (en) 1948-11-02 1948-11-02 Temperature sensitive device for ice bank controllers

Country Status (1)

Country Link
US (1) US2561437A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643524A (en) * 1950-05-30 1953-06-30 Wilbushewich Eugen Freezing plant
US2682155A (en) * 1950-03-18 1954-06-29 Seeger Refrigerator Co Ice cube making apparatus
US2717498A (en) * 1952-12-10 1955-09-13 Servel Inc Ice maker
US2722108A (en) * 1953-09-21 1955-11-01 James G Hailey Refrigeration control service
US2724950A (en) * 1952-05-03 1955-11-29 Penn Controls Ice bank control
US2784563A (en) * 1952-03-27 1957-03-12 Gen Motors Corp Ice making apparatus
US2995905A (en) * 1952-08-25 1961-08-15 Whirlpool Co Ice cube forming machine
US3007101A (en) * 1956-10-25 1961-10-31 Dole Valve Co Thermostat motor control
US3027730A (en) * 1959-04-17 1962-04-03 Dole Valve Co Thermally responsive actuator
US3218731A (en) * 1962-03-19 1965-11-23 Little Inc A Vacuum freeze dryer having integral freezing means
FR2510243A2 (en) * 1981-07-10 1983-01-28 Bonnet Andre Defrosting detector for refrigerators and heat pumps - has small plastic membrane deformed by change in volume due to ice-water transition to displace contact button of electrical circuit
US20080256972A1 (en) * 2007-03-26 2008-10-23 Natural Choice Corporation Water dispenser
US11802756B2 (en) 2020-08-18 2023-10-31 Steven R. Weeres Ice thickness transducer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US416947A (en) * 1889-12-10 Thermostat
US554398A (en) * 1896-02-11 Temperature-controlling apparatus
US1285990A (en) * 1916-03-01 1918-11-26 Edward S Halsey Thermostatic heat-regulating valve mechanism.
US1356175A (en) * 1919-03-24 1920-10-19 Taylor Instrument Co Thermometer
GB213207A (en) * 1923-12-05 1924-03-27 William Herbert Apthorpe Improvements in and relating to vapour pressure thermometers
DE510721C (en) * 1928-04-19 1930-10-22 Platen Munters Refrigerating S Thermostat device for refrigerators or the like.
US2066235A (en) * 1936-12-29 Refrigerating apparatus
US2187258A (en) * 1936-08-31 1940-01-16 Penn Electric Switch Co Controller
US2453851A (en) * 1945-08-10 1948-11-16 Penn Electric Switch Co Thermostatic power element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US416947A (en) * 1889-12-10 Thermostat
US554398A (en) * 1896-02-11 Temperature-controlling apparatus
US2066235A (en) * 1936-12-29 Refrigerating apparatus
US1285990A (en) * 1916-03-01 1918-11-26 Edward S Halsey Thermostatic heat-regulating valve mechanism.
US1356175A (en) * 1919-03-24 1920-10-19 Taylor Instrument Co Thermometer
GB213207A (en) * 1923-12-05 1924-03-27 William Herbert Apthorpe Improvements in and relating to vapour pressure thermometers
DE510721C (en) * 1928-04-19 1930-10-22 Platen Munters Refrigerating S Thermostat device for refrigerators or the like.
US2187258A (en) * 1936-08-31 1940-01-16 Penn Electric Switch Co Controller
US2453851A (en) * 1945-08-10 1948-11-16 Penn Electric Switch Co Thermostatic power element

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682155A (en) * 1950-03-18 1954-06-29 Seeger Refrigerator Co Ice cube making apparatus
US2643524A (en) * 1950-05-30 1953-06-30 Wilbushewich Eugen Freezing plant
US2784563A (en) * 1952-03-27 1957-03-12 Gen Motors Corp Ice making apparatus
US2724950A (en) * 1952-05-03 1955-11-29 Penn Controls Ice bank control
US2995905A (en) * 1952-08-25 1961-08-15 Whirlpool Co Ice cube forming machine
US2717498A (en) * 1952-12-10 1955-09-13 Servel Inc Ice maker
US2722108A (en) * 1953-09-21 1955-11-01 James G Hailey Refrigeration control service
US3007101A (en) * 1956-10-25 1961-10-31 Dole Valve Co Thermostat motor control
US3027730A (en) * 1959-04-17 1962-04-03 Dole Valve Co Thermally responsive actuator
US3218731A (en) * 1962-03-19 1965-11-23 Little Inc A Vacuum freeze dryer having integral freezing means
FR2510243A2 (en) * 1981-07-10 1983-01-28 Bonnet Andre Defrosting detector for refrigerators and heat pumps - has small plastic membrane deformed by change in volume due to ice-water transition to displace contact button of electrical circuit
US20080256972A1 (en) * 2007-03-26 2008-10-23 Natural Choice Corporation Water dispenser
US7861550B2 (en) 2007-03-26 2011-01-04 Natural Choice Corporation Water dispenser
US20110068128A1 (en) * 2007-03-26 2011-03-24 Knoll George W Water dispenser
US20110068125A1 (en) * 2007-03-26 2011-03-24 Knoll George W Water dispenser
US20110079612A1 (en) * 2007-03-26 2011-04-07 Knoll George W Water dispenser
US20110217786A1 (en) * 2007-03-26 2011-09-08 Chandrasekhar Dayal Mudaliar Optimized time temperature indicator
US8341975B2 (en) 2007-03-26 2013-01-01 Natural Choice Corporation Water dispenser
US11802756B2 (en) 2020-08-18 2023-10-31 Steven R. Weeres Ice thickness transducer

Similar Documents

Publication Publication Date Title
US2561437A (en) Temperature sensitive device for ice bank controllers
US2161321A (en) Refrigerating apparatus
US2459173A (en) Defrosting means for refrigeration apparatus
US2274220A (en) Refrigerated dough mixer
US2187258A (en) Controller
US3296817A (en) Freezer cylinder construction
US3131553A (en) Refrigeration system including condenser heat exchanger
US2622923A (en) Ice bank controller
KR880010296A (en) Refrigeration circuit
US2453851A (en) Thermostatic power element
US3246482A (en) Heat pumps
US2683973A (en) Freezeproof expansion valve
US2487674A (en) Cabinet defrosting device
ES444466A1 (en) Refrigerator unit, particularly dual temperature refrigerator
US2223234A (en) Temperature controlled container
US3740967A (en) Forced flow vaporizer for compression type refrigerating equipment
US2418671A (en) Restrictor device for refrigerating apparatus
US2481968A (en) Refrigerant flow controlling device
US3388558A (en) Refrigeration systems employing subcooling control means
US1831861A (en) Refrigerating apparatus
US3287927A (en) Hydraulic ice maker
US1876915A (en) Refrigerator
US2214298A (en) Refrigerating apparatus
US1886042A (en) Refrigerator
US2735272A (en) Liquid-level control devices